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Abstract
In this study, copper (Cu) and silver (Ag)–doped  TiO2 nanotubes were fabricated by in situ anodization method to improve 
their photocatalytic performance. The resulting nanotubes (NTs) were characterized by scanning electron microscopy (SEM), 
energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman 
spectroscopy, and Mott-Schottky analysis. The SEM study shows the formation of NT structure and reveals that the doping 
does not affect the surface morphology. The XPS analysis proves that a mixture of  Ag0/Ag+ and  Cu+/Cu2+ exists simultane-
ously on the surface of the Ag- and Cu-doped  TiO2 NTs, respectively. XRD and Raman spectroscopy analyses show that the 
doping shifted the anatase and rutile phase transformation and stabilized the anatase phase. The Mott-Schottky measurements 
demonstrate that the potential of the flat band shifted to negative values by doping. The prepared NTs were evaluated in 
methylene blue (MB) photodegradation under UV. The results reveal that the doped  TiO2 NTs were more efficient than pure 
 TiO2 NTs in the degradation of MB. The Cu-doped  TiO2 NTs exhibited excellent degradation efficiency of about 92.61% 
with a kinetic rat 0.0089  min−1. Furthermore, the reusability studies showed that the photocatalysts are globally stable and 
efficient for the degradation of MB.
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Introduction

Titanium dioxide is the most widely used semiconductor as a 
chemically stable, highly efficient, and relatively inexpensive 
photocatalyst [1]. The fabrication of  TiO2 with interesting 
morphologies and properties has recently attracted consid-
erable attention. Various nanostructures of  TiO2 such as 
nanowire, nanoparticles, nanorods, nanosheets, nanotubes, 
and microspheres have been successfully synthesized [2–8]. 

Among these nanostructures, it is well known that ordered 
 TiO2 nanotube arrays with larger specific surface areas are a 
suitable structure in photocatalytic applications. However, the 
photocatalytic efficiency of  TiO2 is mainly limited by its large 
bandgap, the recombination of photogenerated electron–hole 
pairs, and their small lifetime [9, 10]. Recently, many efforts 
have been made, and different approaches have been devel-
oped to improve these limitations, such as doping of  TiO2 
[11–13], coupling the  TiO2 with a semiconductor material 
with a narrow bandgap [14–17], decoration of  TiO2 with 
different noble metals [18], and surface photosensitization 
[19]. The doping process is the typical approach that has been 
widely applied to enhance the photocatalytic efficiency of 
 TiO2 [20]. A previous study revealed that doping with metal 
elements reduces the bandgap of  TiO2 to increase the number 
of photogenerated electron–hole pairs and the recombination 
rate of the photogenerated electron–hole pairs [21, 22]. Park 
et al. [23]. doped  TiO2 by divalent metals  (Co2+,  Ni2+,  Cu2+, 
and  Zn2+) and showed that Cu-doped  TiO2 and Zn-doped 
 TiO2 were highly interesting materials in the photodecom-
position of methylene blue. Sangpour et al. [24] showed that 
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doping with Ag, Au, and Cu metal increases the photocata-
lytic activity of  TiO2 by improving the radical formation. 
They found that the photocatalytic efficiency increased from 
40% for pure  TiO2 to 90%, 75%, and 50% for Cu-doped  TiO2, 
Au-doped  TiO2, and Ag-doped  TiO2, respectively. Only a 
few studies focused on the doping of  TiO2 NTs during the 
anodizing process in the literature [25–29].

This study reports a simple approach to fabricating Cu 
and Ag-doped  TiO2 NTs by anodizing of pure titanium in 
glycerol electrolyte containing ammonium fluoride. The 
effects of incorporating ions into  TiO2 NTs on their pho-
tocatalytic efficiency were investigated. The morphology 
and structure were studied by scanning electron micros-
copy (SEM), energy-dispersive X-ray spectroscopy (EDX), 
X-ray photoelectron spectroscopy (XPS), X-ray diffraction 
(XRD), and Raman spectroscopy. The electrical properties 
were studied by Mott-Schottky measurement. The effect of 
Cu and Ag doping on the photocatalytic activity of doped 
samples was evaluated by methylene blue (MB) degradation 
under UV irradiation.

Materials and method

Materials

Titanium foil (99.99% pure, 1 mm thick), glycerol (99.8%, 
anhydrous),  NH4F (98%),  HNO3 (99.98%), HF (40%), silver 
nitrate  (AgNO3), copper (II) sulfate  (CuSO4,  5H2O), ben-
zoquinone (99.5%), isopropanol (99.0%), triethanolamine 
(98%), and methylene blue were purchased from Sigma-
Aldrich (St. Louis, USA).

Fabrication of pure and doped  TiO2 NTs

The titanium foils were first polished with different emery 
paper sizes (from #1000 to #5000 grade), rinsed with dis-
tilled water, and then chemically etched by immersion in 
a mixture of HF and  HNO3 acids for 10 s. The mix’s HF/
HNO3/H2O ratio was 1:1:2 in volume [30]. The pure and 
doped  TiO2 NTs were synthesized by electrochemical ano-
dization of titanium foils in a glycerol-based electrolyte 
solution containing  NH4F and distilled water. The condi-
tions of anodization are described in detail in our previous 
paper [31]. Briefly, the anodization was performed in a two-
electrode electrochemical device with a platinum foil as the 

cathode and pure titanium as the anode. The anodization was 
carried out under a constant voltage of 60 V for 60 min at a 
temperature of 25 ± 1 °C. The distance between anode and 
cathode was kept at 1 cm. The electrolyte bath composition 
used to elaborate the different samples is listed in Table 1. 
The electrolyte solution was magnetically stirred during the 
electrochemical reaction (250 tr/min). After anodization, 
the anodized samples were immediately washed in distilled 
water. To improve the crystallinity of the as-synthesized 
NTs, the as-formed samples were heat-treated in a muffle 
furnace at 600 °C for 2 h with a heating ramp of 10 °C/min 
[32].

Characterization

The morphology and composition of the  TiO2 NTs and 
modified  TiO2 NTs were characterized under a field emis-
sion scanning electron microscope (TESCAN VEGA3 SEM) 
coupled with an energy dispersive X-ray microanalysis sys-
tem (EDAX, EDX) operated at an accelerating voltage of 
20 kV and under a pressure of 1.3 ×  10−4 Pa. The samples’ 
surface properties and oxidation states were analyzed using 
X-ray photoelectron spectroscopy (XPS). The XPS peaks 
are deconvoluted using CasaXPS software (version 2.3.23) 
with Lorentzian Asymmetric LA (1.53, 243) peak fitting. 
The  TiO2 crystalline structure was determined by X-ray 
diffraction (XRD) using a Rigaku, SmartLab SE, operated 
at 40 kV and 50 mA. The X-ray source consists of Cu Kα 
radiation (1.54184 Å) selected with a Cu  Kβ filter. The data 
were collected between 10 and 70° with a scan speed of 5°/
min. The Raman spectrum was recorded using a confocal 
Raman spectrometer (Confotec MR520 microscope) instru-
ment with a laser (λ = 532 nm) and analyzed with 1200 lines/
in the grating. The acquisition time of 30 s is used with 10 
mW incident power. The functional groups and their modes 
of vibrations are analyzed by using a VERTEX 70 FT-IR 
Spectrometer with ATR attachment.

The Mott-Schottky measurements were performed using 
a conventional three-electrode cell in a 0.1 M  Na2SO4 aque-
ous solution [33]. The anodized  TiO2 NT electrode (working 
area = 1  cm2), a saturated calomel electrode (SCE), and a 
platinum sheet (4  cm2) were used as the working, reference, 
and counter electrodes, respectively. The measurements 
were performed using a VoltaLab potentiostat (PGZ301) 
controlled by the VoltaMaster 4 software. The tempera-
ture was controlled in jacketed glass at 293 K using a bath 

Table 1  The electrolyte used for 
the preparation of the samples

Samples Electrolyte

Pure  TiO2  (TiO2 NTs) Glycerol +  H2O (8%) +  NH4F (0.4 M)
Cu doped  TiO2 (Cu-TiO2 NTs) Glycerol +  H2O (8%) +  NH4F (0.4 M) +  CuSO4,  3H2O (0.2 M)
Ag doped  TiO2 (Ag-TiO2 NTs) Glycerol +  H2O (8%) +  NH4F (0.4 M) +  AgNO3 (0.2 M)
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Fig. 1  SEM images and EDX spectra of pure  TiO2 NTs a, d, Cu-TiO2 NTs b, e, and Ag-TiO2 NTs c, f 
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thermostat. The analysis was performed at a frequency of 
1 kHz in a wide voltage range (from − 1 V to 1 V/SCE) [34].

Photocatalytic study

Photocatalytic activities of pure and doped  TiO2 samples 
were evaluated by degradation of the MB dye in an aqueous 
solution under UV irradiation. The initial concentration of 
MB was 2.5 mg/L. Before illumination, the  TiO2 NT pho-
tocatalyst was immersed in the reactor containing 50 mL 
of MB and magnetically stirred for 20 min in the dark to 
establish an adsorption–desorption equilibrium between 
the photocatalyst and MB. Then, the solution was irradiated 
under UV light using an Ultra-Vitalux lamp at 300 W with 
a high-pressure tungsten filament source for 4 h. The reac-
tor temperature was kept at 25 °C by a water flow. At each 
30-min interval, a volume of 3 mL of solution was sampled 
for analysis, and a UV–vis spectrophotometer measured the 
absorbance of MB at 664 nm. The reusability test was per-
formed using the same protocol described above by reutiliz-
ing the used  TiO2 NT photocatalyst for the next experiment.

Results and discussion

Morphology and composition characterizations

Figure 1 shows a representative SEM image and EDX spec-
tra of the pure  TiO2 NTs (Fig. 1a, d), Cu-TiO2 NTs (Fig. 1b, 
e), and Ag-TiO2 NTs (Fig. 1c, f). From SEM images, it can 
be seen that the morphology of the doped TNs is similar to 
that of pure  TiO2 NTs, indicating that these elements’ doping 
does not influence the morphologies of the  TiO2. The highly 
ordered NT arrays with an inner diameter and wall thickness 
of about 127 and 52 nm, respectively, were produced on the 
titanium surface by anodization.

The EDX analysis was performed on the sample to ver-
ify the doping process and determine its surface’s chemical 
composition. The EDX analysis indicates qualitatively the 
presence of the Ti, O, F, and C in all anodized samples. The 
peaks of copper (at 0.94 kV) and silver (at 2.98 kV) were 
also detected in the doped NTs, as revealed in Fig. 1e and 
f, respectively, indicating clearly that the doping has been 
carried out successfully.

Fig. 2  Full XPS spectrum of a pure  TiO2 NTs, b Cu doped  TiO2 NTs, and c Ag-doped  TiO2 NTs

Fig. 3  Ti2p spectra: a pure  TiO2 NTs, b Cu-doped  TiO2 NTs, and c Ag-doped  TiO2 NTs
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XPS analysis

The XPS analysis was performed to determine the compo-
sition and chemical bonding states of all samples. Figure 2 
shows the survey spectra for pure and doped  TiO2 NTs. 
The photoelectron peaks for Ti, O, F, and C were clearly 
recorded for all three samples. The peaks of copper  (Cu2p3/2 
and  Cu2p1/2) and silver  (Ag3d3/2 and  Ag3d5/2) were detected 
in the doped NTs, as shown in Fig. 2b and c, respectively, 
indicates clearly that Ag and Cu species are successfully 
incorporated into the oxide lattice during its growth.

Figure 3a shows high-resolution region scan spectra of 
the Ti2p for pure  TiO2 NTs. This spectrum is fitted with 
three peaks corresponding to titanium dioxide  (Ti4+) and 
titanium suboxide  (Ti3+) in  Ti2p1/2 and  Ti2p3/2, respectively. 
These peaks are fitted as  Ti4+2p3/2 at 459.38 eV,  Ti4+2p1/2 at 
465.11 eV, and  Ti3+2p3/2 at 460.87 eV. The position and the 
FWHM (~ 1.5 eV) of the observed peak at 460.87 eV are 
consistent with  Ti4+ in the  TiO2 lattice [34, 35]. The differ-
ence between the energy of  Ti4+2p1/2 and  Ti4+2p3/2 is 5.73 eV, 
which is consistent with the standard binding energy of  TiO2 
[34, 36, 37]. The  Ti3+2p3/2 is attributed to the formation of 
 Ti3+ and the presence of oxygen deficiency in  TiO2 NTs [22, 
38]. After doping with Ag, the high-resolution XPS spec-
trum (Fig. 3b) shows a slight shift in the position along with 
a variation in the area of the peaks. The Ti2p spectrum is 
fitted with three peaks located at binding energies 458.65 eV 
 (Ti4+2p3/2), 464.38 eV  (Ti4+2p1/2), and 460.87 eV  (Ti3+2p3/2), 
respectively. Figure 3c shows the high-resolution spectrum of 

Cu-TiO2 NTs. Similar to Ag-doped  TiO2 NTs, the Ti2p spec-
trum is fitted with peaks at 459.04 eV  (Ti4+2p3/2), 464.78 eV 
 (Ti4+2p1/2),  and 459.11 eV  (Ti3+2p3/2), respectively. The shift 
of  Ti4+2p peaks to lower binding energy for doped  TiO2 NTs 
is widely discussed in the literature. It has been explained 
by the formation of  Ti3+ species or substitution of  Ti+4 by 
 Cu+ and  Ag+ ions in Cu-TiO2 NTs and Ag-TiO2 NT samples, 
respectively [39–42]. In comparison to the pure  TiO2, the 
area of the  Ti3+ peak in Ag-TiO2 NTs and Cu-TiO2 NT sam-
ples decreased, and that of the  Ti4+ peak increased (Table 2). 
The increase in the area of  Ti4+ peak after doping indicates 
that the doping improves the formation of  TiO2. These can 
be explained by the interaction between oxygen vacancies in 
 TiO2 NTs and the doped element.

The oxygen O1s peak of pure  TiO2 NTs (Fig. 4a) is prom-
inent and can be deconvoluted into two subpeaks, centered 
at 530.67 eV and 532.41 eV. The first peak is attributed to 
the oxygen engaged in a Ti–O bond in  TiO2 or  Ti2O3 lattice 
 (OL), while the second one is related to the H–O bond or 
the adsorbed oxygen type  O2 on the surface of  TiO2  (OH) 
[34, 43–45]. Similarly, for the doped sample, the O1s spec-
trum of Cu and Ag-doped  TiO2 NTs fitted with two peaks is 
shown in Fig. 4b and c, respectively. However, in this case, 
the first peak air is higher than that of the second one. The 
increase in the area of the original peak at 530.67 eV after 
doping indicates that the doping may improve the formation 
of  TiO2.

Figure 5 shows the high-resolution XPS spectrum of 
Cu2p in Cu-TiO2 NTs. In this spectrum, the doublet  Cu2p3/2 

Table 2  Chemical composition 
of the Ag- and Cu-doped  TiO2 
thin film surface

Samples Position of peaks (eV) Element (wt%) Ratio OL/OH

Ti4+2p3/2 Ti4+2p1/2 Ti3+2p3/2 OL OH Ti3+ OL OL/OH

TiO2 NTs 459.38 465.11 460.10 530.67 532.41 15.31 26.65 0.36
Ag-TiO2 NTs 458.65 464.38 460.87 530.70 532.30 9.31 55.82 1.26
Cu-TiO2 NTs 459.04 464.78 461.07 530.32 531.90 12.38 66.74 1.77

Fig. 4  Typical O1s spectra: a pure  TiO2 NTs, b Cu-doped  TiO2 NTs, and c Ag-doped  TiO2 NTs
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at 932.56 eV and  Cu2p1/2 at 952.92 eV arises from spin 
orbit-splitting. These peaks are related to  Cu+ [46, 47]. 
Also, the shoulders  Cu2p3/2 at binding energy 934.20 eV 
and  Cu2p1/2 at 953.23 eV are corresponding to  Cu2+ [39, 46, 
48]. The satellite peaks are also located at 943.93 eV [49]. 
This observation revealed that the doped Cu in the  TiO2 
lattice is in a mixture of  Cu+ and  Cu2+ oxidation states. The 
 Cu2p3/2 peak transition is lower than the values reported in 
the literature (933.6 eV) [50]. The shift of binding energies 
of  Cu2p3/2 peaks to the lower energy indicates the substi-
tutional incorporation of Cu ions in the  TiO2 lattice rather 
than the formation of  Cu2O or/and CuO at the surface of 
 TiO2 [51–54].

For the Ag-TiO2 NT sample, the XPS diagram of high 
resolution for Ag3d (Fig. 6) has two peaks at 368.8 eV and 
374.7 eV, belonging to the  Ag3d5/2 and  Ag3d3/2 orbits [55], 
respectively. The splitting of Ag3d doublet at about 5.9 eV 
confirms that the Ag element is present as metallic silver 
 (Ag0) in the Ag-TiO2 NT sample [56, 57], while the weak 
peaks at 367.7 and 373.7 eV are attributed to  Ag3d5/2 and 
 Ag3d3/2 of silver ions  (Ag+). These results further prove that 
 Ag0 and  Ag+ exist simultaneously on the surface of the Ag-
TiO2 NT sample [58, 59]. The oxygen deficiency can explain 
the formation of  Ag0 at the surface of  TiO2 [24, 60].

X‑ray diffraction (XRD) pattern

Determination of crystal structure, phase composition, 
and crystallite size of the synthesized pure  TiO2 NTs, Cu-
doped  TiO2 NTs, and Ag-doped  TiO2 NTs is carried out 
using XRD, and the results are shown in Fig. 7. The X-ray 
diffraction spectra of all the samples showed well-defined 
peaks, which could be indexed to the anatase, rutile phases 

of  TiO2, and titanium according to JCPDS file numbers 
21–1272, 21–1276, and 44–1296, respectively. The peaks 
in pure  TiO2 NTs are attributed to the reflection from 
(101), (200), and (105) planes of the anatase. In addition, 
the rutile phase is revealed by the apparition of peaks 
at 27.4°, 36.07°, 41°, 43.6°, and 56.9° corresponding to 
planes (110) (101), (111), (210), and (220), respectively. 
However, the Cu and Ag peaks are not visible in the XRD 
spectra of the doped  TiO2 NTs. This is probably due to 
their low amount or their high dispersion in the samples 
with small dimensions below the detection limits of XRD. 
Xu et al. [61]. reported that the diffraction peaks of cop-
per species disappeared when the copper component was 
highly dispersed in  TiO2. Compared to pure  TiO2 NTs, 
the anatase diffraction peak (200) shifts slightly to lower 
2θ values in the Ag- and Cu-doped  TiO2 NTs (inset in 
Fig. 7). In addition, the intensity of doped  TiO2 NT peaks 
is higher than that of pure  TiO2 NTs, which indicates that 
the doping enhances the crystallinity and improves the 
structural quality of  TiO2 (according to XPS results). On 
the other hand, the peak intensity of (100) anatase plan in 
doped  TiO2 NTs is higher than pure  TiO2 samples, while 
the peak intensity of rutile decreases.

It is well known that the grain size and phase composi-
tion of  TiO2 are the most significant for a  TiO2 photocatalyst  
[32, 62–64]. From XRD data, the grain size was calculated 
using the Scherrer equation [65]. The crystallite sizes of 
pure  TiO2 NTs, Cu-doped  TiO2 NTs, and Ag-doped  TiO2 
NTs ranged from 29.7 to 35.5 nm (pure  TiO2: 35.5 nm; 
Ag-TiO2 NTs: 29.71 nm, and Cu-TiO2 NTs: 29.71 nm). In 
addition, the relative anatase/rutile ratio was estimated at 
56.25%/43.75%, 83%/17%, and 83%/17% in pure  TiO2 NTs, 
Cu-TiO2 NTs, and Ag-TiO2 NTs, respectively. These results 

Fig. 5  High-resolution XPS spectra of Cu2p region for Cu-TiO2 NTs Fig. 6  High-resolution XPS spectra of Ag3d region for Ag-TiO2 NTs
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indicate that Ag and Cu inhibit the anatase–rutile phase 
transformation and stabilize the anatase phase significantly 
compared to the rutile phase [66].

Raman spectroscopy

The Raman spectra obtained for pure and doped  TiO2 NTs 
are presented in Fig. 8. For all samples, the Raman spectra 
show six Raman-active modes (Eg, Eg, B1g, B1g + A1g, and 
Eg), which indicates that the samples consist of a mixture 
of anatase and rutile phases [31, 35, 67]. The characteris-
tic Raman peaks at around 144.56, 197.8, 396.1, 516, and 
638  cm−1 are indexed to  Eg (1),  Eg (2),  B1g,  A1g, and  Eg 
(3) of anatase, respectively [31, 68]. Furthermore, the char-
acteristic peaks of the rutile phase are observed at around 
452 and 615  cm−1 [69]. The anatase band  Eg (1) is shifted, 
from 143  cm−1 (for pure  TiO2) to 143.7  cm−1 for the doped 
samples (inset in Fig. 8). The shift of the anatase band  (Eg 
(1)) has been reported in previous studies and attributed to 
the formation of  Ti3+, change of crystal size, and oxygen 
deficiencies in  TiO2 lattice [35, 70–74]. These results are 
consistent with those of XPS and XRD results.

FTIR analysis

The FT-IR spectra of pure and doped  TiO2 NTs calcined for 
2 h at 600 °C are presented in Fig. 9. Compared with pure 
 TiO2 NTs, there are no differences in the FT-IR spectra of 
doped  TiO2 NTs. The figure shows the presence of some 

bands between 560 and 800  cm−1 which are attributed to 
different vibrational modes of anatase and rutile phases of 
 TiO2 [19, 75]. Especially, the intense band observed below 
at 620  cm−1 is due to Ti–O vibrations [19, 76, 77]. The band 
at around 1631  cm−1 is attributed to the stretching vibrations 
of the O–H groups at the  TiO2 surface. On the other hand, 
a slight shift in the position and the change in the intensity 
of bands are observed. These shift may be due to the pres-
ence of the dopants in the interstitials of the lattices of the 

Fig. 7  XRD spectra of pure 
 TiO2 NTs, Cu-TiO2 NTs, and 
Ag-TiO2 NTs

Fig. 8  Raman spectra of pure  TiO2 NTs, Cu-TiO2 NTs, and Ag-TiO2 
NTs
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doped samples [78]. These results are in agreement with 
those obtained by XRD and Raman analysis.

Mott‑Schottky (MS) analysis

Determination of the semiconductor nature, the flat band 
positions  (EFB), and the carrier density  (ND) provide the first 
test that the material may be an effective photocatalyst. The 
most often used method for determining all these proprieties 
is based on measuring the potential dependence of the space 
charge region capacity  (Csc). Figure 10 shows the variation 
of  Csc for all samples as a function of the applied voltage in 
Mott-Schottky representation. The slope of all lines is posi-
tive, indicating that all investigated samples are an n-type 
semiconductor. Using the slope and intercept of the linear 
region, the  ND and  EFB were calculated according to the fol-
lowing Mott-Schottky relation [34, 79, 80].

where  CS is the space charge layer capacitance, e is the elec-
tron charge (1.60  10−19 C), ε

0
 is the permittivity of free space 

(8.85  10−14 F  cm−1), εS is the dielectric constant of  TiO2, 
which is assumed to be 100 F  cm−1 [81], E is the applied 

(1)
1

C2

S

=
2

�
0
εSeND

(E − EFB −
kT

e
)

potential, k is the Boltzmann constant (1.38  1023 J  K−1), and 
T is the absolute temperature.

The potential of the flat band  (EFB) shifts from − 0.19 V/
SCE for pure  TiO2NTs to − 0.31 and − 0.46 V/SCE for Ag-
TiO2 NTs and Cu-TiO2 NTs, respectively. On the other hand, 
the donor concentration  ND of about 4.50 ×  1017, 1.97 ×  1017, 
and 4.20 ×  1017  cm−3 for pure  TiO2 NTs, Cu-TiO2 NTs, and 
Ag-TiO2 NTs, respectively.

Fig. 9  FT-IR spectra of pure 
and doped  TiO2 NTs

Fig. 10  MS plots of pure  TiO2 NTs, Cu-TiO2 NTs, and Ag-TiO2 NTs
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Photocatalytic activity

The photocatalytic capacity of all samples was evaluated 
by the photodegradation of MB under UV irradiation.  
Figure 11a shows the evolution of the methylene blue con-
centration ([MB]) versus the irradiation time in the pres-
ence of a different catalyst. Under UV irradiation and in the 
absence of  TiO2 (photolysis), the concentration of MB is 
kept constant, suggesting that the MB is stable under UV 
irradiation. However, in the simultaneous presence of  TiO2 
and UV, the MB concentration decreases with the irradiation 
time, demonstrating it is degradation.

The experimental data of Fig.  11a were found to fit 
approximately a pseudo-first-order kinetic model by the 
linear transforms ln(C/C0) = f(t) = kt [82, 83], as shown in 
Fig. 11b. The values of the rate constant (k), regression coef-
ficient, and degradation efficiency (%) are listed in Table 3. 
The higher R2 reveals that the decomposition kinetics essen-
tially follows first-order kinetics. The results demonstrated 
that the Cu- and Ag-doped  TiO2 nanotube arrays exhibited 
a higher photocatalytic activity than the pure  TiO2 sample. 
From Table 3, only ∼2.5% of MB is degraded by the photol-
ysis process, about 79.6 9%, 88.23%, and 92.61% after 4 h of 
irradiation using pure  TiO2 NTs, Ag-TiO2 NTs, and Cu-TiO2 

NTs, respectively. The higher efficiency of doped  TiO2 can 
be explained by the enhancement of charge separation of 
photogenerated electrons and holes on  TiO2 by doping.

A recent study showed that the inclusion of doped ele-
ments increased the photocatalytic activity of  TiO2 under 
UV irradiation. For comparison, a summary list of very 
recent studies on photodegradation of MB by different based 
 TiO2 photocatalyst is listed in Table 4. The degradation per-
centages obtained by doped  TiO2 NTs prepared in our con-
ditions are very near to those reported in the literature for 
 TiO2 nanoparticles.

Previous studies demonstrate that the photocatalytic reac-
tion pathway is believed to involve the reaction of MB with 
the generated  OH• radicals producing a range of intermediate 
products to reach complete mineralization with the formation 
of  CO2 and  H2O [82, 87–90]. To study the main active com-
ponents in the degradation process of MB on the  TiO2 surface 
and to understand the degradation mechanism in more detail, 
trapping experiments were carried out. Isopropanol [91], 
triethanolamine [92], and benzoquinone [93, 94] are used as 
scavengers to capture hydroxyl radicals  (OH•), photogenerated 
holes  (h+), and superoxide anion radical  (O2•−), respectively. 

Fig. 11  Degradation of MB by photocatalysis on the pure  TiO2NTs, Ag-TiO2 NTs, and Cu-TiO2 NT surface, [MB] = 2.5 mg/L, Xe lamp 300 W

Table 3  Photodegradation kinetics data of MB by  TiO2

Samples k (min−1) R2 Degradation 
efficiency (%)

Photolysis 0.0001 0.98 2.5
Pure  TiO2  (TiO2 NTs) 0.0051 0.99 79.69
Ag doped  TiO2 (Ag-TiO2 NTs) 0.0073 0.99 88.23
Cu doped  TiO2 (Cu-TiO2 NTs) 0.0089 0.99 92.61

Table 4  Photocatalytic activity of recently studied  TiO2-based photo-
catalysts for MB degradation under UV irradiation

Photocatalyst Irradiation time 
(min)

Degradation 
efficiency (%)

Ref

Ag-doped  TiO2 360 94 [84]
Cu-doped  TiO2 300 93 [23]
Hg-doped  TiO2 120 56.72 [85]
Au-doped  TiO2 200 50 [24]
Zn-doped  TiO2 300 99 [23]
V2O5-doped  TiO2 120 92 [86]
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To demonstrate the involvement of these radicals, a mixture 
of MB and isopropanol (2% v/v) or triethanolamine (2% v/v) 
or benzoquinone (2% v/v) was irradiated under the same con-
ditions. The results obtained are shown in Fig. 12. As can be 
observed in Fig. 12a, the addition of a radical scavenger inhib-
its the degradation of MB. These results indicate that holes are 
the primary active species in the degradation of MB, while 

 OH• and  O2•− radicals are likely of secondary importance in 
photodegradation.

Based on the above results and literature reports [95, 96], 
the possible photocatalytic mechanism of the  TiO2 NT photo-
catalyst was plotted as shown in Fig. 12b. The photodegrada-
tion process depends on the generation and separation of carri-
ers; under light conditions, once the semiconductor absorbing 

Fig. 12  Effects of radical scavenger addition on the photodegradation of MB a and schematic diagram of the photocatalytic mechanism of  TiO2 
photocatalyst b 

Fig. 13  Photocatalytic reusabil-
ity efficiency of all photocata-
lysts up to six uses
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energy is higher than the energy of its energy band, electrons 
will be excited from the valence band to the conduction 
band. At the same time, holes remain on the former (Eq. 2). 
According to the following equations, the formed holes reacted 
directly with MB molecules,  H2O, or  OH− adsorbed in the 
 TiO2 surface to form the active species  (OH•) [6, 97–103].

Reusability efficiency

In addition to the photocatalytic efficiency of the  TiO2 NTs, 
the stability and the reusability of the  TiO2 NT photocatalyst 
are significant parameters to assess its practical application in 
wastewater treatment. Therefore, we carried out studies on the 
reutilization of the photocatalysts. After every use, the photo-
catalyst was washed with distilled water and ethanol and then 
dried for 30 min at 60 °C. The same procedure was repeated six 
times with the already used photocatalyst. The results obtained 
are represented in Fig. 13. The activity of all photocatalysts 
showed a gradual decrease. The degradation efficiencies of 
64.35, 79.83, and 83.07% were achieved for pure  TiO2 NT, Ag-
TiO2 NT, and Cu-TiO2 NT photocatalysts, respectively, after 6 
reutilizations. These results indicate that the photocatalysts are 
globally stables and efficient for water treatment. This decrease 
in photocatalytic activity can be explained by poisoning of the 
active surface of the photocatalyst or the occupation of active 
sites by intermediates that adsorbed strongly on the surface of 
the photocatalyst [104, 105].

Conclusion

A facile and novel one-step anodization process fabricated 
photocatalytic materials based on copper- and silver-doped 
 TiO2 NTs. The obtained NTs have a diameter and wall thick-
ness of 128 and 56 nm, respectively. The Cu-doped  TiO2 NT 
composites have excellent photocatalytic performance. Cop-
per doping improved the photocatalytic performance of  TiO2 
NTs. These NTs are exciting candidates for photocatalytic 
reactions, such as MB oxidation. The new anodization pro-
cess developed in this study is a simple and efficient method 
that can be easily scaled up, thereby pioneering the fabrica-
tion of high-performance metal-doped  TiO2 NT photocata-
lysts with promising environmental applications.

(2)TiO
2
+ hυ → e−

CB
+ h+

VB

(3)h+
VB

+ H
2
O → +H+ + OH⋅

(4)h+
VB

+ OH−
→ +TiO

2
+ OH⋅

(5)MB Dye + h+
VB

→ Oxidation products
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