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Abstract
The demand for medical implants has rapidly increased over the last decades. These artificial devices should possess various 
properties such as biointegration and mechanical characteristics comparable to that of the replaced body parts. Nowadays, 
orthopedic, dental, and cardiovascular implants consist mainly of metal-based materials. However, metals suffer from poor 
osseointegration, some are not biocompatible, and some are not corrosion-resistant. Therefore, surface modification is neces-
sary to enhance and improve the overall compatibility. Electrodeposition methods such as electrophoretic and electrochemi-
cal deposition are facile approaches for forming homogeneous and multifunctional coatings on conductive and complex 
geometries. Moreover, electrochemistry enables driving the deposition of nanomaterials and introduce biomolecules and 
polymers, by which various properties such as antibacterial activity, cell proliferation, and biointegration can be added to 
the implant surface. This review aims at describing the recent studies involving electrodeposition methods for coatings of 
medical implants by nanomaterials.

Abbreviations
BG	� Bioglass
CB	� Carbon black
CS	� Chitosan
DEX	� Dexamethasone
GO	� Graphite oxide
HA	� Hydroxyapatite
PDFE	� Pergularia daemia Fiber extract
PEEK	� Polyetheretherketone
PEI	� Polyethylene-imine
γ-PGA-g-AMC	� Poly(γ-glutamic 

acid)-g-7-amino-4-methyl-coumarin
PLGA	� Poly lactic-co-glycolic acid
PLL	� Poly-L-lysine
PLLA	� Poly-L-lactic acid
PVA	� Polyvinyl alcohol
PVK	� Poly(N-vinyl carbazole)

SF	� Silk fibroin
SS	� Stainless steel

Introduction

World population as well as life expectancy and quality are 
rising rapidly due to better health conditions. This growth 
of the elderly population worldwide leads to a significant 
increase in injuries, orthopedic diseases such as arthritis, 
fractures due to osteoporosis, tooth loss, and more. Hence, 
the demand for implantable devices for dental, orthopedics, 
cardiology, and wound care has risen dramatically over the 
last few decades. For instance, in 2018, the dental and ortho-
pedic implants market in the world was approximately 5 and 
43 billion USD, respectively, and is expected to reach 7 and 
66 billion USD, respectively, by 2028 [1, 2].

Medical implants are mainly manufactured from strong 
materials such as Ti and its alloys, stainless steel (SS), 
Mg and its alloys, and polyetheretherketone (PEEK) [3]. 
These materials should have a modulus of elasticity that is 
comparable to the replaced body part, appropriate tensile 
strength, and matching compressive strength to prevent 
fractures [4]. Additionally, these materials should pos-
sess biocompatible and osseointegration capabilities, cor-
rosion resistance, and high durability. In general, metals 
lack osseointegration, namely, have poor biocompatibility 
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with bone tissues due to their bioinert nature. Moreover, 
the human body represents a complex environment that 
reacts with foreign object such as implants by the release 
of different species, e.g., ions and organic and biologi-
cal substances which reduced the biocompatibility of the 
implant due to denaturation and fragmentation of adherent 
proteins [5]. Thus, chemical and physical surface modifi-
cations of the implants are essential to ensure good inte-
gration between them and the surrounding tissues and to 
meet clinical demands.

Physical surface modifications such as plasma spray, 
sputtering, microarc oxidation, chemical acid etching, and 
anodizing are applied to control and alter the surface topog-
raphy, including forming nanostructures that improve the 
implant performance. Anodizing is one of the techniques 
which allows the formation of a homogeneous porous layer 
on the substrate surface [6]. These microstructures can 
increase the corrosion resistance and enhance the adhesion 
to other bioactive ingredients in the coating process [7]. It 
has been shown that microarc oxidation can improve the 
degradation rate of metals, such as Mg-based alloys, by 
forming a thick oxide layer on the implant surface [8].

Chemical modifications involve adding or changing the 
chemical functionalities of the implants. This is achieved 
by either chemically reacting the implant surface or more 
commonly by coating the implant by an additional thin layer. 
Clearly, coatings of medical implants should improve the 
physical and chemical properties of the implants and add to 
their performance. Coatings can be made of a wide variety 
of organic and inorganic materials, where the dominants 
are polymers because of their processability and the ability 
to fine-tune their chemical and physical properties. Natural 
polymers, such as chitosan (CS) and gelatin, are biocompat-
ible, biodegradable, and form a good film coating [9, 10]. 
However, to fulfill the desired requirements for the implant 
and to improve their chemical and physical properties, addi-
tional materials, such as biomolecules and nanoparticles 
(NPs), should be embedded in the polymeric matrix of the 
coating [11–13].

The addition of NPs to the coating can significantly 
improve the corrosion resistance, bioactivity, cell adhesion, 
and antibacterial activity of implants [14–16]. For example, 
NPs can act as drug carriers and release nanomedicines in a 
controlled manner in the desired area [17]. Furthermore, it 
has been shown that the mechanical properties of orthopedic 
implants are significantly improved by incorporating NPs in 
the coating [18]. Another common application is the incor-
poration of metal NPs such as Ag and Cu into the coating, 
which provide antibacterial properties that can reduce infec-
tions [19, 20]. Moreover, the introduction of hydroxyapatite 
(HA) NPs into the coating significantly improves the osse-
ointegration capabilities of the implant with the surrounding 
tissues [21].

Various coating methods have been developed, including spin 
coating, dip coating [22], plasma spraying [23], plasma electro-
lytic oxidation [24], magnetron radio frequency-sputtering [25], 
microarc oxidation [26], electrophoretic deposition (EPD) [27], 
and electrochemical deposition (ECD) [28]. EPD and ECD are 
versatile coating methods, which allow the processing of a broad 
spectrum of materials and can produce bioactive coatings [29]. 
Furthermore, these methods offer many advantages for coat-
ing implants since they are able to control the thickness of the 
coating and produce a uniform and stable coating on complex 
geometric shapes as well as on porous and three-dimensional 
structures [30].

This review summarizes the developments in implant 
coating by nanomaterials using electrodeposition methods. 
In the first part, we discuss the types of metallic materials 
suitable for implants, which can be coated using electrodep-
osition methods. The second part focuses on electrodeposi-
tion methods such as EPD and ECD and their advantages in 
implant coating. The third part discusses how NPs can be 
incorporated into the coating of the implant and their role 
in the coating. Finally, we organize the studies based on 
the desirable functionalities, such as corrosion resistance, 
antimicrobial activity, and biointegration introduced by the 
NPs to the implant coating via electrodeposition methods.

Substrates

Medical implants are made of a variety of materials includ-
ing metals, polymers, and ceramic. The majority of metal-
based medical implants that are being used nowadays are 
composed of SS, cobalt–chrome (Co–Cr) alloys, Ti alloys, 
zirconium–niobium (Zr–Nb), and Mg alloys. This is due to 
their mechanical properties (high strength, low modulus of 
elasticity, high wear resistance), and biocompatibility [31, 
32]. Despite the significant benefits and widespread usage 
of metal-based implants, they have major limitations. Cor-
rosion, insufficient biointegration to tissues and bones, and 
stress shielding (i.e., modulus mismatch of the implant 
material with the natural bone) are known problems that 
can occur when using bare metal implants [33]. Hence, 
bioactivation and biocompatibility are necessary and can 
be achieved by either pretreatment or coating the surface 
[34]. Evidently, such modification depends on the metal, and 
therefore, procedures have been developed for the individual 
metals depending on their mechanical and chemical proper-
ties. The following is a brief description of the pretreatment 
categorized by the different metals.

Titanium and its alloys have some outstanding character-
istics such as high strength per density (specific strength), 
low corrosion rate, and enhanced biocompatibility [31]. 
However, Ti does not integrate well with the host bone tis-
sue, which can lead to implant failure [32]. To improve Ti 
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surface compatibility, physical treatment can be accom-
plished by methods such as sandblasting, plasma treatment, 
polishing, chemical acid etching, and a combination of those 
methods [34]. Electrochemical anodization offers an excel-
lent approach for surface pretreatment to form different TiO2 
structures [6].

Magnesium has an elastic modulus and density that 
resemble natural bone better than any other metallic implant. 
The unresolved challenge comprises the rapid and localized 
pitting corrosion of magnesium due to an unstable surface 
oxide layer [35]. Accordingly, substantial efforts have been 
made to passivate the Mg surface by thermal, chemical, and 
electrochemical pretreatments [33]. Adjustment of grain 
microstructure by polishing and anodization has also been 
shown to decrease the corrosion rate [36, 37].

Stainless steel, in contrast to Ti and Mg, has excellent 
corrosion resistance; however, the main downside associated 
with corrosion is cracked areas that can be created as a result 
of a damaged passivating chromium oxide surface layer [38]. 
This can provoke the hosting tissue and cause an undesirable 
biological response. Thus, modifications include grounding 
and polishing, oxidation, and cold working.

The second way to increase the biocompatibility while 
preserving the mechanical properties of the metal-based 
implants is by coating the surface. Although a wide variety 
of coatings, mostly by polymers has been applied to medical 
implants, we will focus here only on NP-based coatings. The 
advantages of such coatings are further discussed in “NPs in 
medical implant coating.” In this section, we will focus on 

the conductive implant that serves as the electrode for the 
ECD and EPD of NPs.

Titanium substrate

Implants based on Ti and Ti alloys have shown remarkable 
properties such as specific strength, excellent biocompatibil-
ity, and corrosion resistance. Ti and its alloys have a lower 
elasticity modulus as compared with SS, and Co–Cr alloys, 
which are also being used extensively in surgical implanta-
tion (Fig. 1). This property contributes to lowering the stress 
shielding effect, which arises due to the strain mismatch 
between the bone and the implant [39].

Ti has excellent corrosion resistance because of its stable, 
continuous, and highly adherent passivating oxide layer on 
the surface. The passivating mechanism was deeply investi-
gated by Cabrera-Sierra and its coworkers [40]. Neverthe-
less, the use of Ti is less common in implants that require 
load-carrying, due to poor fatigue and low wear resistance 
[41]. These can cause fractures in the oxide layer and lead to 
a decrease in corrosion resistance in some aggressive or low 
oxygen environments [42]. Subsequently, efforts have been 
made to enhance the mechanical properties of Ti and over-
come these challenges [43–56]. Most of the studies, reporting 
an improvement in corrosion resistance, involved the forma-
tion of a passivating TiO2 nanotube (TNT)–based layer by 
anodization. Khanmohammadi et al. suggested a coating pre-
pared by EPD of bioglass (BG) reinforced with HA whiskers 
on an anodized Ti substrate [48]. TNTs were deposited as an 

Fig. 1   Comparison of modulus 
elasticity of Co–Cr–Mo, SS and 
different Ti alloys. TNZTO and 
TNZT stand for Ti–35Nb–5Ta–
7Zr–0.4O and Ti–Nb–Zr–Ta, 
respectively. Reproduced with 
permission from [32]
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intermediate layer on the Ti surface to improve the coating 
adhesion. They showed that the corrosion of bare Ti was 
reduced from 147 to 17 nA cm − 2 for the anodized Ti, which 
was further reduced upon assembling the HA layer.

Additionally, different articles have shown that the use 
of certain NPs such as HA, Au, and graphite oxide (GO) 
provides protection and increases corrosion resistance. 
Moskalewicz et al. reported that HA NP EPD on commer-
cially pure Ti (CP-Ti) and Ti–13Nb–13Zr alloy increased the 
corrosion resistance as shown in Fig. 2 [50]. Besides the HA 
NPs, they also applied GO, which enhanced the corrosion 
resistance presumably due to the crack-free morphology.

Another crucial issue that needs to be addressed is the 
poor osseointegration of Ti, which is vital to bone–implant 
interaction for the long-term durability of the implant. 
Surface properties such as microroughness and corrosion 
directly affect early cell formation and long-term osseoin-
tegration. A significant number of studies have shown that 
the incorporation of different substances and NPs into the 
coating can improve the implant’s topography and roughens 
the surface, both leading to an increase in the durability of 
the Ti implants [57].

It has been reported that TNTs, which are used as a 
passivation oxide layer, can impart bioactivity and chemi-
cal bonding to the bone. Such a layer that is composed of 
smooth and dense TiO2, can, however, be susceptible to the 
formation of a fibrous tissue that prohibits osteoblastic cells 
from firmly attaching to the surface. Thus, improvement of 
the interface can be accomplished by integrating a larger 
adhesion area, which requires structuring [58]. Oh showed 
that the topography of the TNTs, produced by heat treat-
ment at 500 °C, formed an interlocked cell structure that 

accelerated the growing cells into the nanotube pores. Wang 
et al. introduced Au NP-loaded TNTs, which increased sur-
face energy and improved corrosion resistance as compared 
with Ti and TNT arrays. This assembly also improved 
cell–material interaction and, thereby, increased osteoblastic 
cell attachment and proliferation [55].

Other studies report on various coatings that show 
improvement of cell proliferation and osseointegration with 
different pretreatments alongside oxidation [49, 59–65]. 
Yet, these studies focus mostly on the NPs rather than on 
the metal surface and therefore are presented under “NPs in 
medical implant coating.”

SS

The most common graded SS used for medical implants 
are SS 316 and 316L [66]. The major advantages of these 
SS-based alloys are their corrosion resistance and low cost 
[67]. Nevertheless, the corrosion of SS alloys is still inferior 
compared with Co–Cr and Ti alloys. The human body has a 
mildly corrosive environment with a certain salt level and a 
low oxygen content, which cause degradation and the release 
of Cr(III) and Ni(II) ions [68]. This may lead to the dena-
turation of adhered proteins after implantation and reduce 
biocompatibility [5]. SS-based implant drawbacks can be 
treated by coatings that address bioactivity, corrosion resist-
ance, and cell adhesion.

BG and CS are extensively applied as a means of increas-
ing the biocompatibility and corrosion resistance of SS 
implants [16, 69–77]. It is crucial to demonstrate good 
adhesion strength between the SS implant and the coating 
to ensure a long-lasting activity. This has been shown for 
the first time by Boccaccini et al. who applied PEEK and 
BG composite coatings by EPD improving significantly 
the mechanical stability and bioactivity [77]. Rehman 
et  al. showed that the adhesion strength measured on 
PEEK–BG–Ag coating (3.85–4.09 N for PEEK–BG–Ag 
coating and 17.6–12.82 N for PEEK–BG coating) applied 
by EPD can be satisfactory for orthopedic implants [72].

A positive triggered response of the human body towards 
placing an implant is often the formation of a thin hydrophilic 
film on the implant surface. Lee et al. claimed that optimal 
adhesion and growth of the osteoblastic cells result in a water 
contact angle of 55° [78]. Surface wettability is a good meas-
ure for determining protein attachment, which affects cell 
proliferation at the later stages. Accordingly, Nawaz et al. 
formed a PEEK/BG as a primary layer by EPD on stainless 
steel followed by a top layer made of CS/gelatin–Ag–Mn 
mesoporous BG nanoparticles (MBGN) by EPD as well. The 
contact angle was reduced from 86° ± 2° to 50° ± 4°. The 
multistructured coatings enhanced cell viability, attachment, 
and spreading [79]. The use of MBGN enhanced chemical 
reactivity and improve bioactivity and osseointegration as 

Fig. 2   Polarization curves of HAp/sodium alginate and GO/HAp/sodium 
alginate coatings on Ti alloy. Reproduced with permission from [50]
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was also demonstrated by Aqib who carried out cathodic 
EPD to form an Ag–Sr–MBGN-loaded CS-gelatin layer on 
316L-SS [69]. The coatings showed less than 5% delami-
nation by an adhesion tape test. EPD was employed by  
Karbowniczek who formed an antibacterial coating made of 
sodium alginate-polyvinyl alcohol and ZnO NPs, on top of a 
primer layer of BG and CS. They showed that while the CS 
increased considerably the corrosion protection, the addition 
of BG (that was added to increase the bioactivity) reduced 
it [71].

Mg alloys

Traditionally used metal implants for orthopedics, dental 
and cranial implants are based on Ti, Cr, and SS alloys. In 
some cases, a second surgery is required after implantation 
for the removal of these metal-based implants because of 
infections, insufficient bone–implant integration, and healed 
bone fracture (implant no longer needed) [80]. Therefore, 
biodegradable materials are suggested to replace traditional 
metal implants. Mg alloys can potentially replace these 
implants due to their compatible mechanical properties. Mg 
exhibits a low young modulus (similar to cortical bone); it 
is biocompatible and biodegradable, which can be naturally 
appended to the human body without stimulating toxicity 
effects. However, the Mg degradation rate in physiologi-
cal environments is uncontrollable due to its low corrosion 
resistance in the presence of chloride. This results in pitting 
corrosion, which causes a fast and local increase in the pH 
and evolution of H2, which causes blood circulation block-
age. These drawbacks affect the adhesion and cause implant 
failure. Therefore, it is vital to enhance the corrosion resist-
ance of Mg, which has been targeted by either developing 
Mg alloys that are more corrosion-resistant or by modifying 
the Mg surface.

Different nanomaterials have been used for coating Mg 
implants and to enhance their corrosion resistance. For 
example, BG NPs (see “Si NPs and BG NPs”) could poten-
tially enable bone–implant integration, control the micro-
structure, improve the mechanical and surface properties of 
the coating, and, therefore, reduce corrosion. Indeed, Alaei 
et al. showed that low BG NPs concentrations increased the 
corrosion resistance [3]. Other studies whereby HA NPs 
were applied showed a corrosion resistance increase of the 
Mg [80–85]. Rojaee et al. performed a two steps EPD of 
HA NPs to form a more homogenous and crack-free coat-
ing on Mg AZ91 [81]. The same group has used microarc 
oxidation as a means of generating an intermediate oxide 
layer between the Mg and the HA NP layers. The obtained 
layer ennobled the corrosion potential of the implant and 
increased the corrosion resistance. As can be seen, the uti-
lization of Mg implants is far from being exhausted, and 
therefore, there is still much room for additional approaches 

using electrochemistry and nanomaterials for controlling its 
corrosion resistance, which will make Mg an attractive metal 
for medical implants.

To conclude this part, the dominant metals used for 
mostly orthopedic and dental implants are made of Ti and 
SS. Recently, different alloys made of Cr, Co, and Ni have 
been introduced mostly for stents [86]. For both medical 
implants and stents, different methods and pretreatments 
have been presented to control the corrosion rate and the 
biointegration of the metal implants. Following, we will 
focus on the deposition methods and the substances that lead 
to the formation of uniform and biofunctionalized coatings.

Electrodeposition methods

Electrodeposition methods, such as ECD and EPD, are 
among the most frequently used coating approaches [27, 
87–89]. A wide range of materials and nanomaterials span-
ning from metals, through polymers to NPs, can be depos-
ited from solutions and dispersions on conductive surfaces 
using electrochemistry [90, 91]. These methods are simple, 
versatile, cost-effective, and applicable at room temperature. 
The latter allows the deposition of sensitive materials such 
as proteins and enzymes [91]. Furthermore, electrodeposi-
tion techniques enable to control very well the thickness 
of the deposited layer and form defectless and homogene-
ous coatings on complex shapes and porous substrates that 
characterize medical devices. Therefore, electrodeposition 
methods are attractive for coating medical implants such as 
orthopedic and dental implants. In this section, we overview 
the various techniques of electrodeposition and their applica-
tion in the field of medical implants.

EPD

Electrophoresis is based on the movement of charged par-
ticles under an electrical field. Thus, EPD drives the depo-
sition of charged particles onto a conductive surface as a 
result of a strong electrical field. EPD is often used for dif-
ferent applications such as car painting, making ceramic 
films, and electronic components. To obtain a good coat-
ing, first, the charged particles have to be stable, well dis-
persed, and move freely in the suspension. Then, by apply-
ing an electrical field, the charged particles migrate to the 
oppositely charged electrode, resulting in the formation of 
a layer on the surface. EPD can be carried out in aqueous 
and non-aqueous solvents. The application of an electric 
field in a protic solvent, e.g., water and ethanol, causes a 
local increase or decrease in the pH at the cathode or anode, 
respectively (Eqs. 1–2).
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These reactions can promote electrostatic attractions of 
materials in the dispersion toward the electrodes as well as 
changes in the zeta-potential, resulting in the accumulation 
and deposition of various compounds on the electrode [88]. 
For example, a poly-l-lysine (PLL) film can be deposited 
onto a metallic substrate by EPD [92, 93]. Dissolving PLL-
HBr in water forms a cationic polyelectrolyte (PLL-H+) that 
is deprotonated and deposited (Eq. 3) by applying negative 
potential, which elevates the pH on the cathode (Eq. 1).

EPD has been widely used to coat metallic implants, where 
in most studies, the implant served as the cathode. Wang 
et al. developed a cathodic EPD process for the deposition of 
PLL and HA NPs onto a Pt electrode [92]. The PLL-H + pro-
vided stabilization for the HA NPs in the suspension. Clifford 
et al. developed a one-step cathodic EPD process to form a 
composite film of catechol modified PLL with HA and rutile 
TiO2 NPs [93]. The film exhibited bioactivity and biocom-
patibility due to the addition of HA and TiO2 NPs, respec-
tively, as well as good adhesion caused by the addition of the  
catechol. Yang and his group deposited silk fibroin (SF) onto  
a Ti electrode in an aqueous solution [94]. This was achieved 
by applying a constant positive voltage, which oxidized the 
water, causing pH reduction (Eq. 2) on the Ti surface. The 
oxidation of water neutralized the SF nanospheres. This 
reduced the repulsive interactions between the particles and 
caused the irreversible aggregation of the nanospheres onto 
the Ti anode.

Although aqueous solutions are environmentally friendly, 
safe, with easily controlled temperature, and need lower volt-
age and faster deposition time than organic solutions; pH 
changes are usually accompanied by the formation of H2 
or O2 gases (Eqs. 1–2). This gas formation can damage the 
quality of the deposited layer by forming porous polymer 
film [50, 95]. Bartmański et al. showed that an increase of 
the applied voltage resulted in a more porous coating of CS-
nanosilver layer deposited onto a Ti electrode due to the gas 
bubbles formed during the deposition process [95]. Several 

(1)2H
2
O + 2e− → H

2
+ 2OH

−

(2)2H
2
O → O

2
+ 4H+ + 4e−

(3)PLL-H
+ + OH

−
→ PLL + H

2
O

ways were suggested to overcome this problem. For exam-
ple, to avoid water hydrolysis, Ahangari et al. demonstrated 
HA deposition onto Mg through two-step EPD [85]. The 
first step involved applying relatively high voltage for a short 
time, followed by a lower potential for a longer time. This 
led to the formation of a compact structure and uniform HA 
coating. In another study, CS and BG nanocomposite were 
deposited onto a Mg alloy by applying a cathodic voltage of 
10 V and a deposition time of 5 min with different concen-
trations of acetic acid [3]. It was found that by reducing the 
acetic acid concentration from 1 to 0.2 vol.%, the reduction 
of hydrogen gas on the Mg surface was obtained. This led 
to the formation of a more uniform and crack-free coating.

Pulsed EPD where the voltage or current is applied in 
a series of pulses is a popular strategy to reduce the gas 
bubbles formation and can produce uniform and cracks-less 
coatings [96]. Ramesh et al. examined the influence of direct 
and pulsed-direct EPD on the deposition of Pt NPs onto 
a Pt-Ir electrode [97]. They found that pulsed-direct EPD 
results in more ordered and uniform surface coating than 
direct EPD. A follow-up study showed that the coating can 
be improved even more in a suspension that contained a 
water–ethanol mixture due to the reduction of gas bubble 
formation [98].

Working with organic solvents usually generates a more 
uniform coating than in an aqueous environment, and the 
formation of H2 and O2 gases is prevented [83, 84, 99–101]. 
It is important to note that it is vital to work with high purity 
of suspension and to avoid humidity, thus avoiding hydroly-
sis [81]. This is especially crucial for Mg due to its high 
water reactivity [83]. On the other hand, relatively high volt-
age is required in an organic environment, which can cause 
cracks due to high particle accumulation onto the surface 
in a short time [65]. Farrokhi-Rad et al. deposited HA NPs 
onto SS from an organic dispersion with different alcohols 
(methanol, ethanol, isopropanol, and butanol) [102, 103]. 
The obtained layer was thicker as the molecular weight was 
lower due to faster kinetics. The coating obtained using a 
methanolic dispersion was highly cracked, while those from 
ethanolic dispersion had fewer cracks. The layers obtained 
from iso-propanol and butanol were crack-free (Fig. 3).

The quality of the coating is dependent on various param-
eters of the EPD process, including the applied voltage [95, 
102], the deposition time [104–106], the concentration of 

Fig. 3   SEM images of HA coat-
ings deposited from a methanol, 
b ethanol, c isopropanol, and d 
butanol suspensions. Repro-
duced with permission from 
[102]
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the materials in the deposited solution [102, 107, 108], and 
the distance between the electrodes [51, 109–111]. Apply-
ing accurate and appropriate conditions enables achieving 
uniform [49] or porous [54, 112, 113] structures.

Many studies have examined the influence of the applied 
potential on the deposited coatings [50, 51, 69, 114]. 
Moskalewicz’s group coated Ti electrodes with HA/MoS2/
PEEK to increase the corrosion resistance of the substrate 
[53]. They found that dense and homogeneous coatings were 
achieved at 90–110 V. Lower voltages led to thin and inho-
mogeneous layers, while higher voltages resulted in pores 
in the Ti substrate (Fig. 4). Farrokhi-Rad showed that fiber 
HA particles were randomly oriented when a high voltage of 
60 V was applied. In comparison, horizontally aligned ori-
entation was obtained at a lower voltage (5 V) due to enough 
space and time for the particles to rotate upon the deposi-
tion [115]. Tabesh et al. studied the influence of the applied 
potential on the deposition of Laponite®: poly(caprolactone) 
nanocomposite onto a SS surface [116]. An applied voltage 
of 60 V resulted in the formation of a pore-free and defect-
less coating compared with a non-uniform coating obtained 
at 90 V. It was suggested that this was due to the higher 
speed of movement of the particles in the dispersion, which 
reduces the compactness of the coating.

The deposition time is another critical parameter that 
influences the coating morphology and thickness [51, 69, 
84, 104, 115]. For example, Cheng et al. EPD double-layered 
SF nanospheres coating onto Ti implant to obtain a con-
trollable drug delivery system [117]. They found that the 
thickness of the layer was controlled by the deposition time. 
When the deposition time increased from 0 to 6 min, the 
thickness of the layer increased linearly in agreement with 
the classical Hamaker equation. When the deposition time 
exceeded 6 min, the coating thickness slowed down due to 
self-limitation. Qu et al. deposited ZnO NPs onto Mg by 
applying a potential of 3 V for different deposition times to 
examine the influence of the corrosion resistance [118]. The 
corrosion resistance improved as the deposition time raised 
from 30 to 210 min, which was related to the formation of 
a thicker protecting layer. Further increase in the deposition 

time reduced the corrosion resistance due to a decrease in 
the coating stability.

The possibility to co-deposit different organic and inor-
ganic composites at room temperature is another benefit of 
EPD, especially for various biomedical applications [50, 76, 
113, 119–127]. Humayun et al. EPD CS with Zn-halloysite 
nanotubes and gentamicin on Ti [128] in an aqueous solution 
containing acetic acid. They showed that the CS is neces-
sary for the deposition process as it provides a net positive 
charge at low pH due to the protonation of the amino groups 
(Eq. 4), which resulted in adsorption onto the NPs. When 
a negative potential was applied, the pH increased in the 
cathode (Eq. 1) which caused the CS to deprotonate and 
deposit (Eq. 5; Fig. 5).

Deen et al. deposited similarly a composite of CS-halloysite-
nanotube-HA onto SS to provide corrosion resistance to the 
substrate in a simulated body fluid (SBF) [129]. Tomas et al. 
deposited gentamicin encapsulated in CS NPs and CaP by 
applying negative potential [122]. The coating contained a 
high-weight percent of gentamicin and a controlled release 
of the drug. Nawaz et al. showed that the addition of biologi-
cally active metallic ions (Mn and Ag) and molecules (CS) 
exhibited a strong antibacterial effect [121]. Furthermore, 
the coating exhibited a negligible toxic effect on the bioac-
tivity due to the inclusion of the Mn and Ag in the matrix.

ECD

As opposed to EPD, in ECD, a faradaic reaction occurs on 
the electrode when voltage is applied. The main advantage of 
ECD is the ability to form good bonding between the surface 
and the coating material without additional treatment, such 
as heating and sintering [130]. Furthermore, the deposition 
process can be conducted under mild conditions so sensitive 
materials such as biological agents can be embedded in the 

(4)CH
3
COOH + CS − NH

2
→ CH

3
COO

−
+ CS − NH+

3

(5)CS − NH+

3
+ OH

−
→ CS − NH

2
+ H

2
O

Fig. 4   HA/MoS2/PEEK coating on Ti alloy substrates deposited a voltage of a 50, V b 70 V, c 90 V, d 110 V, e 130 V, and f 150 V. Reproduced 
with permission from [53]
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coating. This method often produces a uniform and highly 
crystalline layer with low solubility in body fluids. As in 
EPD, to obtain the desired properties of the coating, the 
deposition time, the applied potential, the substrate materi-
als, the composition and concentration of the electrolyte, and 
the deposited compounds need to be carefully adjusted [131, 
132]. For example, Geuli et al. deposited HA NPs dispersed 
by either citrate or poly(acrylic acid) onto Ti by applying 
mild positive potentials [133]. The application of positive 
potential drove water oxidation which reduces the pH on 
the implant surface (Eq. 2) and generated protons. This 
reduced the repulsion interactions among the NPs, causing 
irreversible aggregation of the NPs onto the Ti surface. They 
found that the thickness of the HA coating increased as the 
applied potential raised from 1.5 to 2 V and leveled off at 
higher potentials. Levy et al. deposited latex NPs in a similar 
approach by applying a constant potential of 2 V for different 
times [134]. The thickness of the coating arose as the deposi-
tion time increased until a maximum thickness of 15 μm was 
obtained at 900 s or higher deposition times. They showed 
that the maximum thickness is determined by generating a 
gradient diffusion layer of protons.

Like in EPD, also in ECD, H2 gas can form due to the 
reduction of water that adheres to the surface of the metal, 
which leads to poor adherence of the coating to the substrate. 
Studies have shown that by adding H2O2 to the deposited 
solution, the formation of H2 gas is prevented [135–138]. 
This can be useful for forming HA NPs, as shown by Gopi 
et al. [135]. The addition of H2O2 to the deposited solution 
produced excess OH− ions (Eq. 6), which accelerated the 
formation of HA NPs on the cathode (Eq. 7) without evolv-
ing hydrogen gas.

(6)H
2
O

2
+ 2e− → 2OH

−

To further improve the crystallinity and the bonding between 
the coating material and the substrate, pulsed ECD (PED) was 
applied [136, 137, 139–144]. Wu et al. co-deposited polypyr-
role, HA NPs, and dexamethasone (DEX) onto Ti substrate by  
applying a series of pulses width of 50 s for oxidation and 300,  
600, or 900 s for reduction for 2 h [139]. During the oxidation 
pulse, polypyrrole was formed, and DEX− and PO4

3− were 
doped into the polymerized chain and attracted to the posi-
tively charged Ti. Then, by applying a reduction pulse, spheri-
cal HA NPs were formed due to the electrostatic interaction 
of PO4

3− and Ca2+ . The duration of the reduction pulse  
had a significant impact on the composite coating. For reduc-
tion width pulse of 300 s, the HA NP size was uneven, while 
for 900 s pulse, the coating showed agglomeration. When a 
reduction width pulse of 600 s was used, a uniform size of 
HA was obtained. Jia et al. applied different pulses during 
the PED [141]. When applying a moderate pulse voltage, a 
much uniform, denser, and lower porosity coating of CS-HA 
was obtained than for lower or higher pulsed voltages. Lu 
et al. demonstrated the co-deposition of HA and Ag simul-
taneously by PED, which generated uniform distribution of 
Ag NPs [145]. Zhou et al. coated Ti porous scaffold with 
polypyrrole–polydopamine–hydroxyapatite (PPy–PDA–HA) 
film through a layer-by-layer PED method which resulted in a 
multiple functionality film [140, 146]. Under electrochemical 
oxidation, pyrrole monomers were polymerized to form PPy 
polymer and acted as a stabilizer for HA NPs and prevented 
their aggregation (Fig. 6).

To summarize, EPD and ECD are powerful techniques 
that allow surface modification of metallic implants. These 
methods enable the fabrication of multifunctional coating 
by introducing various materials such as natural polymers 

(7)10Ca
+
+ 6PO

3−

4
+ 2OH

−
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(
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)
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2

Fig. 5   EPD process of proto-
nated CS with Zn-halloysite 
nanotube. Reproduced with 
permission from [128]
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and NPs. The following section will focus on the addition of 
NPs to medical implants and their contribution to multiple 
properties such as corrosion resistance, antibacterial activity, 
and biointegration.

NPs in medical implant coating

Nanomaterials, such as NPs, nanotubes, and nanorods, are 
defined as solid particles with at least one dimension that is 
1–100 nm. The most studied and applied nanomaterials are 
by far NPs. These are used in a wide range of applications 
including medicine, energy storage, sensing, and more. In 
medicine, NPs are mostly applied for diagnostic and dis-
ease treatment, although numerous other applications are 
also of interest [17, 147, 148]. One of the most appealing 
applications, which has not been exhausted yet, is the use of 
NPs as coatings for implants. Coatings based on NPs offer 
significant advantages, such as controlling the release of 
drugs and other biomaterials, locally after insertion [149]. 
Furthermore, NPs can be tailored-made to possess differ-
ent properties, including biocompatibility, cell viability, 
antibacterial, and osseointegration activity. Therefore, dif-
ferent approaches have been developed for the adsorption, 

attachment, or deposition of NPs on medical implants. These 
can be divided into two major categories where the NPs are 
applied from either the gaseous or the liquid phase.

Coating of implants from the liquid phase usually requires 
simple and low-cost instruments and operations and enables 
homogeneous and controllable layers on a variety of struc-
tures including complex geometries. Yet, the formation of 
stable coatings as well as the ability to form the coatings from 
the liquid phase require additional capping agents, which are 
added as a means of stabilizing a homogeneous dispersion 
and promoting good adhesion of the coating to the surface. 
The capping agents can be added either in the synthesis of 
the NPs or applied with or prior to the deposition of the NPs 
or as a post-treatment after the NPs are deposited.

Computational modeling and numerical testing can attrib-
ute for the understanding of the mechanism of NPs and their 
adverse effects [150]. These computational methods play a 
complementary role in the prediction of toxicity, bioactivity, 
degradation, and other properties of nanomaterials. These 
models can also predict the mechanism of NPs incorporation 
regarding cellular uptake and cell apoptosis [151]. Further-
more, numeric testing may elaborate the experimental pro-
cess and contribute for a better understanding of the clinical 
outcomes of embedded NPs onto medical implants.

Fig. 6   Preparation of the PPy–PDA–HA film via the LBL–PED process. During this process, each PPy–PDA layer or HA layer was in  situ 
deposited on top of a sublayer. Reproduced with permission from [146]
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In the following sections, we summarize most of the stud-
ies aiming at the coating of medical implants by NPs. The 
division is based on the NPs’ material and subcategories by 
the additives.

HA nanoparticles

The main reason for using HA in implants is its osteoinduc-
tion. Hence, HA is often used to coat orthopedic medical 
implants, usually by plasma or thermal spraying and more 
recently by electrochemical deposition starting with ionic 
species, e.g., HPO4

2− [152, 153]. The development of nano-
technology has promoted the use of HA NPs as precursors 
for coatings. Excellent reviews describe the osteoinduction 
ability and biological responses of HA NPs and different 
deposition methods (including electrochemical processes) 
on surfaces [21, 154]. Furthermore, HA NPs are often used 
to roughen metal implant surfaces and as source materials 
for assembling bioactive coatings on orthopedic and dental 
implants [155].

The desired properties of a HA NP-based coating are the 
overall biocompatibility for both cells and bones, the dura-
bility or hardness of the coating, and the corrosion resistance 
of the produced implant. In a few studies, metal ions such 
as Zn2+ and Mg2+, which play important roles in osteogen-
esis, are substituted into the HA NPs [156–158]. The doped 
particles can stimulate cell proliferation and bring additional 
benefits to the coating such as antibacterial properties. Being 
versatile and easy to deposit, HA NPs are often used as the 
model material in method-focused studies of deposition. An 
example is described in “ECD” concerning Wu et al. and Jia 
et al. [139, 141] works. While many studies add some sort of 
an additive to the HA NPs solution to improve their disper-
sion in the coating, Geuli showed another way to achieve it 
based on the ECD of HA NPs [133] (see “ECD”).

CS is a majorly applied additive to HA NP–based coat-
ings since it can stabilize the dispersions of the NPs and 
create flexible composites (forming different shapes) [159]. 
Fabrication of such coatings by electrochemical processes 
takes advantage of the effect of pH on the solubility of CS. 

The pKa of protonated CS is 6.5, which enables its dep-
osition by applying negative potentials that cause a local 
increase of pH on the electrode surface (Eqs. 1 and 5). 
Therefore, HA NPs stabilized by CS aggregate and deposit 
on the cathode due to the deprotonation of the CS. This 
process can be used for EPD and for ECD, where HA is 
formed by an electrochemical reaction on the electrode, alike 
(Fig. 7). Accordingly, numerous stable multilayers with vari-
ous thicknesses (Fig. 8) were deposited onto SS, Pt foils, and 
graphite surfaces as reported by Sun et al. [160].

To further improve the durability and functionality of the 
implant, additional substances are often added along with 
CS. For example, higher adhesive strength and hardness 
were achieved by Zhong et al. [45]. They introduced multi-
walled carbon nanotubes to their zinc substituted HA NPs 
dispersion and used EPD to form a coating. The resulted 
composite layer exhibited better corrosion-resistance 

Fig. 7   ECD process of HA with 
CS and gentamicin (an added 
drug) through pH elevation. 
Reproduced with permission 
from [131]

Fig. 8   SEM side image of fractured multilayered coating. Containing 
alternating layers on graphite with different concentrations of HA NPs 
and different deposition conditions. Reproduced with permission from 
[160]
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behavior as compared with bare Ti. In their following study 
using the same coating, they showed improved cell adhesion, 
good HA formation ability, and differentiation of cells [60]. 
Moreover, CS is often used for drug delivery, an important 
feature with possible advantages in medicine. In a study by 
Eliaz, a coating of HA and CS NPs, in which antibiotics 
were entrapped, was formed [131]. The antibiotic release 
showed a steady cumulative release of 60% over 10 days 
with an enhanced early burst.

Alumina- and yttria-stabilized zirconia nanopowders sta-
bilized by HA were EPD on Ti by Asgari et al. by adding I2 
to an organic solvent, such as acetone [99]. I2 is known to 
react with acetone to form H+, which charged the nanopow-
ders by a positive charge and enabled the EPD.

Considering the high biocompatibility and wide array of 
possible applications of HA, it is not surprising that many 
studies have chosen to use it as a model system.

Ag NPs

Ag NPs are among the most studied NPs in medical appli-
cations, mainly due to their excellent antibacterial activity. 
Like in many other inorganic NPs, bacteria do not develop 
resistance toward Ag NPs [19]. Several hypotheses were pro-
posed for the antibacterial mechanism of Ag NPs, includ-
ing (i) enhancing the permeability of the bacteria through 
attachment of Ag NPs on its surface, (ii) production of cell-
damaging radicals, and (iii) strong binding between Ag and 
the thiol groups of cysteine residues of the proteins. The 
latter hypothesis affects irreversibly the proteins' secondary 
structure, thus, eradicating the bacteria [161]. Furthermore, 
Ag NPs can be dispersed easily in very high concentrations, 
which makes them ideal for deposition by electrochemistry.

CS is one of the most common materials used as an addi-
tive to the coating process with Ag NPs due to the chelating 
of Ag by CS. Furthermore, CS was suggested to reduce Ag 
toxicity while retaining its antibacterial activity [162]. Xie 
et al. examined the dual release of Ag ions and cytokines, 
with CS acting both as the stabilizing agent to chelate Ag 
ions and as the electrostatic immobilizer of the explanatory 
cytokine [132]. The complex coating was formed by the 
ECD of a solution that consisted of Ag+ complexed with CS 
and H2PO4

2− and Ca2+. In the course of the ECD, Ag+ was 
reduced to form Ag NPs and HA. The electrostatic repulsion 
of the CS discouraged aggregations of the NPs, and results 
in a uniform distribution. Same electrostatic interactions also 
contributed to the introduction of a second layer containing 
the cytokine. A significant focus was given to their long-
term release, and the functionality of the coated implant, 
demonstrating its usefulness for its high osteoinductivity and 
antibacterial properties both in vitro and in vivo.

Nawaz formed a bioactive two layers coating by EPD 
on SS of CS-gelatin/Ag–Mn-doped mesoporous bioactive 

glass NPs [79]. Gelatin was selected to improve both the 
biocompatibility and the attachment of CS to the implant. 
This approach was based on the creation of two distinct lay-
ers by EPD: The first layer controlled the surface area and 
roughness, creating a porous structure, while the second 
layer contained the active NPs. They found that the addi-
tion of Ag NPs to the coating caused the formation of HA 
crystals and enhanced the cell viability while retaining the 
antibacterial activity against bacteria. Another interesting 
usage of Ag NPs and CS in EPD-based coatings of implants 
was studied by Ma et al. [163]. Ma EPD Ag NPs stabilized 
by CS, followed by oxidation of the Ag NPs to form AgCl 
and Ag2O. The resulting coating showed uncompromising 
antibacterial and biocompatible activity with less than 1 w/w 
% degradation after a month of incubation in fresh steri-
lized phosphate-buffered saline (PBS) solution. Pawłowski 
also used EPD to create an Ag NPs/CS layer that included 
also the cationic copolymer Eudragit E 100 [51]. The lat-
ter is known to reduce the degree of degradation of such 
coatings [164] and is also pH-sensitive; hence, it could be 
codeposited by a change of Ph [165]. The obtained coating 
exhibited good corrosion resistance and strong sensitivity to 
a reduced pH environment, which is crucial for applications 
in controlled drug delivery systems.

BG is another useful ingredient when it comes to coat-
ing metal surfaces with Ag NPs, as it offers osteoinductive 
properties, which lead to the stimulation of osteogenic cells 
to form a bone matrix [166]. In many cases, BG is coated 
along with other stable materials such as biomedical poly-
mers, e.g., PEEK. Previous researchers, such as Boccaccini, 
deposited uniform, microporous, and reproducible PEEK/
BG composite coatings using EPD where they optimized the 
conditions for deposition [111, 167]. Boccaccini has exten-
sively worked on Ag NP–based coatings [72, 73, 77]. In their 
most recent study, a thin Ag nanocluster–silica composite 
coating was deposited by radio frequency on top of an EPD 
PEEK/BG/mesoporous BG NPs (MBGN) layer (Fig. 9). By 
employing this approach, a controlled release of Ag+ was 
achieved and a structure resembling HA was formed on the 
surface of the coatings upon immersion in SBF.

Dopamine, a self-polymerizing substance, was introduced 
by dip-coating as a sandwich layer in between two layers 
of Ag NPs by Liu et al. [146, 168]. While the first layer 
was formed by electrospinning, the third layer was EPD. 
The poly(dopamine) layer enhanced the surface adhesive-
ness through hydrogen and π–π interactions, preventing the 
peeling of the coating. The layer contributed to a steady 
and slow release of Ag, improving the long-lasting bioactiv-
ity of the coating. Moreover, the resulted coating promoted 
the nucleation and growth of HA on the surface, making it 
biocompatible.

In summary, Ag NPs are well-studied agents in electrochemi-
cally coated medical implants with a range of advantages given 
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the proper modification. Their excellent local antibacterial 
activity as well as their conductivity are decisive factors in their 
incorporation.

Metal oxide NPs (TiO2, ZnO, Fe3O4, and others)

A few metal oxide NPs are of significant interest in orthope-
dic and dental implant research because of their biochemical 
properties such as antibacterial activity, drug delivery, and 
mechanical strength [18]. However, some metal oxide NPs 
are toxic to human tissues. Their nanotoxicity is a function 
of not only the metal oxide itself but also the size, shape, 
and concentration [169]. The most common metal oxide NPs 
used in implants are TiO2, ZnO, and Fe3O4.

TiO2 is often applied for implants as it can readily be 
formed by anodizing a Ti alloy surface (see “Titanium 
substrate”) as well as added to the deposition solution as 
NPs. There are excellent reviews discussing the antibacte-
rial mechanism of TiO2 NPs, where the dominant pathway 
is photochemistry [170–172]. Tangestani et  al. utilized 
TiO2 NPs along with HA NPs and poly(caprolactone) as an 
additive to create a series of biocompatible coatings for SS 
implants [100]. Corrosion resistance, sliding, microhardness, 

and adhesion strength measurements led them to conclude 
that TiO2 NPs acted as a reinforcement of the composite 
coating. This improvement is in part contributed to the elec-
trostatic interaction between the NPs and the added binder. 
Clifford et al. conducted a somewhat similar experiment 
with TiO2 and HA NPs that were capped with a catechol 
functionalized poly(lysine) that enabled their EPD on Ti 
[93]. The capping agent significantly increased the adhesion 
to inorganic particles and resulted in a high surface rough-
ness coating at high voltages (50 V). This procedure allowed 
the co-deposition of both NPs, combining their biocompat-
ibility, and stability to form a uniform bioactive layer. An 
elegant example of the formation of TiO2 nanotubes formed 
by anodization of Ti coated with HA doped with Ag was 
demonstrated by Yan et al. [56]. Applying negative potential 
to the TiO2/Ti in an aqueous solution that contained HPO4

2−, 
Ca2+ and Ag+ caused the formation of OH−, which promoted 
the formation of HA doped with Ag. The TNT enhanced 
the adhesion of the NPs through an anchoring effect. This 
process allowed for significant antibacterial and osteogenic 
properties and enhanced corrosion resistance.

ZnO NPs are also often embedded in implant coatings 
because of their antibacterial and relatively low toxicity to 

Fig. 9   Experimental setup to obtain multi-structured coatings via EPD and radio frequency co-sputtering. Reproduced with permission from 
[73]
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humans [20, 173]. One such example of applying ZnO NPs 
to a metallic structure by electrochemistry was published by 
Qu et al. [118]. Specifically, ZnO NPs were coated by EPD 
onto Mg alloy, followed by heat treatment to delay initial cor-
rosion. Their work proved to form a 99% corrosion-effective 
protection layer on the alloy. However, without biocompat-
ible and antibacterial tests, it seems that this coating is not yet 
ready for wide application. In a different approach, suggested 
by Karbowniczek, complex organic/inorganic coatings con-
taining ZnO NPs and BG were successfully deposited on SS 
by EPD [71]. While the BG improved the in vitro bioactivity 
of the coating, the high reactivity of BG negatively affected 
other properties.

Fe3O4 NPs are rarely studied as additives in implant 
coatings. While they are sometimes used for their magnetic 
properties to attach bioactive ingredients to the layer, other 
properties of the coating might be affected [174]. For exam-
ple, the incorporation of Fe3O4 NPs in a HA matrix showed 
an increase in osteoconductivity and chemical durability, 
which resulted in better stimulation of bone growth during 
the healing process [175]. Zhuang et al. incorporated Fe3O4 
NPs into a mineralized magnetically responsive coating of Ti 
using alternating potential-ECD [138]. Thanks to the mag-
netic abilities of the NPs, the mechanical stimuli and defor-
mation were controlled under an external magnetic field. 
They reported an improvement in the mechanical properties 
and enhanced osteogenic results. In a procedure containing 
multiple materials, Singh et al. managed to coat a Mg alloy 
with Fe3O4, HA, BG, and CS, by synthesizing nanocompos-
ites containing the four materials and depositing them by 
EPD [113]. The crystallinity of the coating was enhanced 
with the incorporation of Fe3O4 NPs, producing a crack-free 
hydrophilic coating.

Other metal oxide NPs were studied by several groups as 
a means of depositing coatings or modifying them and their 
functionalities. This includes CeO2 [176], Y2O3 [177], MgO 
[80], and Mn3O4 NPs [7]. Accounting for the large number 
of possible metal oxide NPs possessing attractive function-
alities, it is very likely that additional future studies will 
appear attempting to incorporate them in implant coatings.

Si NPs and BG NPs

Si NPs have been often used for drug delivery and as opti-
cal imaging agents. The main advantages they offer are 
their precisely synthesized microscopic form, mesoporous 
structure with pore size between 2 and 50 nm, and chemi-
cal functionality as an adhesive to antibiotics [178, 179]. 
Mesoporous silica (MSi) nanotubes have been explored as 
an appealing modification of Ti for drug loading purposes, 
cell adhesion, and osteogenicity [180, 181]. The motiva-
tion for modifying Ti is described in “Titanium substrate.” 
MSi nanotubes, CS, and collagen EPD enabled the loading 

of therapeutic molecules safely at high quantities, as well 
as the release in a sustainable and controlled manner [61]. 
The authors reported the in vitro early interactions with 
stem cells (derived from rat bone marrow). They found that 
mineral crystallites formed in a sustained way over 30 days, 
hinted at a substantial and continual apatite mineral induc-
tion, and suggested a high level of acellular bioactivity. The 
induced polarization of drug-loaded MSi NPs in a biologi-
cally focused study was reported by Luo et al. [182]. The 
coating process was EPD with CS as an additive on Ti, 
after the formation of TiO2 by anodization. The added NPs 
showed favorable cytocompatibility, as well as a drug stor-
age capability (less than 30% cumulative release of the drug 
was measured over 4 days incubation in PBS). While they 
report enhanced osteogenic differentiation behavior, the MSi 
NPs showed clear dose-dependent cytotoxicity, limiting this 
approach for further investigations.

Ballarre and her team contributed significantly to the 
study of implant coatings [30, 63, 119, 183–185]. They 
deposited by EPD synthesized silica–gentamicin on SS and 
Ti in one and two-step procedures. The two-step coating 
involved spraying BG and EPD of NPs and biomaterials, 
forming a carrier system with improved biocompatibility. 
Through these approaches, an amorphous structure that 
allowed particle degradation and release of antibiotic drugs 
was formed on the implant surface. The mechanical and 
morphological characterization of the coatings was tested 
on SS and Ti. They found that CS and gelatin were excel-
lent biopolymer holders for Si and silica–gentamicin NPs, as 
strong uniform and homogeneous coatings were generated.

BG has not only been described as an additive to other 
NPs throughout this review, but can also be applied as the 
main material in coatings. The main advantages of BG (and 
BG NPs) are its osteoinductive properties and cell simu-
lating capabilities. Excellent reviews describing the origin 
of BG properties, such as its delivery of inorganic thera-
peutic ions and the antibacterial activity of the composites 
that it forms, have been published [186–188]. A few studies 
deposited a layer of BG NPs onto metals, where the aim 
was to create a better-controlled morphology of the implant 
through the creation of microstructures or nanostructures 
(nanocomposite coating) [189–191]. Patel et al. developed 
composite coatings of CS and BG NPs on Ti by EPD that 
showed favorable cell adhesion, drug delivery capability, 
growth, and stimulated osteogenic differentiation [126]. In 
this case, BG acted as the bioactive inorganic component 
of the implant, while the CS positive charge allowed for 
cathodic EPD. Alaei et al. constructed a similar coating to 
the latter on top of a Mg alloy with different BG and CS 
contents [3]. They reported the deposition of a crack-free 
uniform CS-BG NPs layer on the substrate with increased 
wettability and surface roughness, good adhesion, corrosion 
resistance, and apatite formation ability.

1883Journal of Solid State Electrochemistry (2022) 26:1871–1896



1 3

Considering the reported Si NP properties, it is not sur-
prising that they have often been used in drug-delivery sys-
tems. Yet, while the release of antibiotics can aid in short-
term antibacterial activity, the shift towards inorganic or 
metal NPs in implant studies is expected to grow as it proves 
to have long-term advantages.

Other NPs

Even though most studies of electrochemically deposited 
NPs on implants comprised inorganic or metal NPs, several 
reports describe the use of organic or biological NPs. This 
section demonstrates the effects of organic biopolymer-based 
NPs and SF NPs for implant coatings. One such example of 
organic NPs was demonstrated by Liu et al. in the construc-
tion of advanced drug-eluting stents [192]. Their primer layer 
was made of organic N-nitrosomelatonin-loaded poly(D,L-
lactide-co-glycolide) NPs acting as the active ingredient. The 
top layer of the coating was a collagen layer, deposited to 
reduce the immunological defensive reaction. Both collagen 
and the organic NPs are based on biodegradable polymers that 
would fully degrade, subsequently producing less inflamma-
tion in long-term applications [193]. The stent showed sus-
tained delivery of nitric oxide, significantly reducing platelet 
aggregation in vivo. Attempting to improve the biocompat-
ibility and anticorrosion properties of Mg let Sun et al. apply 
a coating with an organic/HA hybrid NPs via EPD [83]. The 
coated Mg showed, indeed, improved degradation and cor-
rosion resistance in vitro with greater cell viability and cell 
adhesion. CS-gelatin NPs with and without the addition of 
a cationic antibiotic drug were successfully fabricated as a 
layer on Ti through EPD by Cai et al. [62, 194]. Mechanical 
testing demonstrated enhanced interlocking in the coating-Ti 
interface for a high concentration of the drug.

Yang and his team published a novel additive-free EPD 
coating assembly procedure from pre-assembled SF NPs 
[94, 117]. Using this method, the controlled and sustained 
release of antibiotics was enhanced by a factor of 1.38 with 
prolonged drug release by 21 times without observed cyto-
toxicity. More recently, they created a bilayer of two distinct 
SF NPs (from Antheraea pernyi and Bombyx mori for the 
top and bottom layers, respectively). The need for two types 
of SF NPs is reasoned both economically and chemically 
based on the different rarity and stabilizing effects on some 
biological compounds of alternative silk proteins [195].

Evidently, the incorporation of different NPs in implants 
proves to be advantageous for various applications. Specifically, 
they show improvements in antibacterial properties, corrosion 
resistance, and other biological effects. Hence, it is expected 
that we will witness additional studies, whereby more sophis-
ticated NPs will be used to coat implants electrochemically.

Significant properties of medical implants

In this review, we have described a variety of coatings based 
on a broad range of substances for medical implants by 
electrodeposition methods. The incorporation of different 
materials took advantage of the metal-based implants and 
enhanced or modified surface properties. A combination of 
NPs and additives such as natural polymers provide multiple 
functionalities. Composite coatings allow (i) improvement 
of corrosion resistance of the metal implant surface; (ii) 
biointegration, osseointegration, and cell proliferation; and 
(iii) antibacterial performance. Tables 1, 2, and 3 summarize 
most literature studies that target surface modification of 
implants via electrodeposition methods. Further description 
and comparison of the tables can be found in the text.
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Table 1   Improvement of 
corrosion resistance

NPs Additives Substate Method Ref

HA CS
GO

Ti EPD [44]

HA Ti6Al4V EPD [104]
HA PEI Ti

Ti6Al4V
EPD [196]

HA
Cu

Ti13Zr13Nb alloy EPD [46]

HA–ZrO2 Ti6Al7Nb EPD [47]
HA
TiO2

PLL
Catechol

Ti EPD [93]

HA
GO

Sodium alginate CP-Ti
Ti13Nb13Zr alloy

EPD [50]

GaHA PDFE
PVK

Ti EPD [49]

HA
ZnHA

SF
CS

Ti EPD [45]

HA Ti (Grade 4) PEO-EPD [54]
HA
TiO2

Ti
Ti6Al4V

PEO-EPD [6]

HA
TiO2

Ag Ti ECD
Anodized

[56]

HA/TiO2 316 SS EPD [106]
HA CB 316 L SS EPD [82]
HA Methanol

Ethanol
Butanol
Isopropanol

316 L SS EPD [103]

HA Tris (tris(hydroxymethyl)
aminomethane

316 L SS EPD [102]

HA 316 L SS EPD [82]
HA-chitosan
BrTiO3

Tri-ethanolamine 316 L SS EPD [75]

HA
TiO2

Polycaprolactone SS EPD [100]

HA Graphene
Carboxymethyl cellulose

Mg alloy (AZ31) EPD [85]

HA PLGA Mg EPD [84]
γ-PGA-g-AMC/HA Mg EPD [197]
γ-PGA-g-AMC/HA Mg EPD [83]
HA Ethylene glycol

Triethanolamine
ZrO2

Zr EPD [8]

HA Silicate
Phosphate

Nb PEO-EPD [112]

Fe3O4
HA-BG- CS

Mg alloy(AZ91) EPD [113]

HA
CS
RuCl3

Mg alloy(AZ91) Pulsed ECD [141]

(Ca2ZnSi2O7) SS 316L EPD [198]
BG CS Mg alloy (AZ91) EPD [3]
Ag CS

Eudragit E 100
Ti (grade 2) EPD [51]

TiO2
ZnO

Ti6Al4V EPD [52]
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Table 2   Improvement of biointegration, osseointegration, and cell proliferation

NPs Additives Substate Method Ref

HA CS
GO

Ti EPD [44]

HA PEI Ti
Ti6Al4V

EPD [196]

HA
ZnHA

SF
CS

Ti EPD [45, 60]

GaHA PDFE
PVK

Ti EPD [49]

HA
TiO2

PLL
Catechol

Ti EPD [93]

HA Triethanolamine 316L SS EPD [105]
HA Tris (tris(hydroxymethyl)aminomethane 316L SS EPD [105]
HA CB 316L SS EPD [82]
HA/CS
BaTiO3/CS

Tri-ethanolamine 316L SS EPD [75]

HA Mg alloy (AZ91) EPD [81]
γ-PGA-g-AMC/HA Mg EPD [197]
HA CS

RuCl3
Mg alloys (AZ91D) Pulsed ECD [141]

HA Ethylene glycol
Triethanolamine

Zr EPD [8]

HA Silicate phosphate Nb PEO-EPD [112]
HA Ti (grade 4) PEO-EPD [54]
HA Ti

Ti6Al4V
ECD [133]

HA Polypyrrole
DEX

Ti ECD [139]

Pd–Ag-HA
TiO2

Ti ECD [200]

HA
TiO2

Ag Ti ECD [56]

SiC
HA

Ti ECD [201]

HA
Ag

L-cysteine
Cysteine acted

Ti Pulsed ECD [145]

HA Polypyrrole
DEX

Ti Pulsed ECD [139]

Table 1   (continued) NPs Additives Substate Method Ref

ZnO Sodium alginate
PVA
CS
BG

SS 316L EPD [71]

ZnO Mg alloy (WE43) EPD [118]
MgSiO3
TaN

Mg alloy EPD [199]

Mn3O4 Ta EPD [7]
Au TNT Ti ECD [55]
CeO2 SF Ti Electrospinning

ECD
[176]

1886 Journal of Solid State Electrochemistry (2022) 26:1871–1896



1 3

Table 2   (continued)

NPs Additives Substate Method Ref

Ca3(PO4)2 Nucleic acids ITO EPD [202]
Ca2ZnSi2O7 316L SS EPD [198]
BG CS Mg alloy (AZ91) EPD [3]
BG CS Ti EPD [126]
BG
Nanodiamond

Alginate 316L SS EPD [203]

Ag nanocluster–silica mesoporous BG PEEK 316L SS EPD [73]
Mesoporous silica nanotube CS

Collagen
Ti EPD [61]

Mesoporous silica DEX
CS

Ti EPD [182]

Silica–gentamicin CS
Gelatin

316L SS EPD [30]

Ag–Sr-doped mesoporous BG CS
Gelatin

SS EPD [69]

Ag–Mn-doped mesoporous BG CS
Gelatin

PEEK/BG
SS

EPD [79]

Ag CS
Vancomycin

Ti EPD [70]

Ag Bone morphology protein-2
HA
CS
Heparin

Ti EPD [132]

Ag BG
Polysaccharide CS

Ti6Al4V EPD [96]

Ag
Ag/Ca3(PO4)2

HA Ti ECD [204]

Ag encapsulated in mesoporous silica  
nanocarriers

CS Ti EPD [124]

Ag PEEK
BG

SS EPD [77]

Ag nanocluster–silica PEEK
BG

SS EPD [72]

Ag Collagen Ti ECD [28]
Ag Ti6Al4V ECD [107]
Ag HA Ti ECD [205]
Ag Dopamine

CS
PLA/Ag Electrospinning

ECD
[168]

Ag Dopamine
Polypyrrole

PLA/HA Electrospinning
ECD

[146]

Ag Lysozyme
CS
HA

Ti Electrospinning
ECD

[206]

MgO PLLA Ti EPD [207]
Mg-doped chitosan/gelatin CS

Gelatin
Ti EPD [62]

MgO Mg EPD [80]
MgSiO3 TaN Mg alloy EPD [199]
Fe3O4 CaCO3

HA
Gentamicin

Ti6Al4V EPD [208]

Fe3O4 Collagen Ti ECD [138]
Fe3O4 HA-BG-CS Mg alloy (AZ91) EPD [113]
CaSi Ti ESD [59]
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Table 3   Improvement of 
antibacterial properties

NPs Additives Substrate Method Ref

Ag Ti EPD [107]
Ag CS Ti EPD [70, 124]
Ag CS

Gelatin
Ti EPD [163]

Ag
TiO2

Ti EPD [209]

Ag Collagen Ti ECD [28]
Ag HA Ti ECD [205]
Ag
ZnO
TiO2

CS
Gelatin

Ti ECD [210]

Ag
HA

Ti ECD [204]

Ag CS
HA

Ti ECD [132, 206]

Ag Polypyrrole PLA/HA/polydo-
pamine

ECD [146]

Ag PEEK
BG

SS EPD [72, 73, 77]

HA Ti EPD [127, 204]
HA CS

Gentamicin
Ti EPD [122, 131]

HA CS
GO

Ti EPD [44]

HA
Cu

Ti EPD [211]

HA
Fe3O4

CS Mg EPD [120]

BG CS
Gentamicin

Ti EPD [63]

BG CS SS EPD [76]

Table 2   (continued)

NPs Additives Substate Method Ref

Au Ti ECD [55]
CeO2 SF Ti Electrospinning

ECD
[176]

GO GO
Gelatin
Methacrylic anhydride
Bovine serum albumin

Ti EPD [123]

Poly(D,L-lactide-co-glycolide) N-nitrosomelatonin
Collagen

SS EPD [192]

SF Ti EPD [94]
Dexamethasone-loaded mesoporous silica Ca3(PO4)2 CS-alginate-gelatin on SS ECD [74]
CS/gelatin/Si-gentamicin Sol–gel

CS
Gelatin
Gentamicin

Ti EPD
ES

[63]

γ-PGA-g-AMC/HA Mg EPD [83]
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Conclusions and perspectives

The field of medical implants is rapidly growing and involves 
mostly orthopedic, dental, and cardiovascular stents. The 
impact of these artificial devices has revolutionized medi-
cine and improved dramatically the life quality of millions 
of patients. Due to the required mechanical properties, most 
implants are still made of metals and in particular stainless 
steel, titanium, magnesium, and other alloys. Yet, the surface 
properties of these metals and alloys do not always provide 
the biocompatibility, osteoinduction, and other essential 
properties that implants should possess. Therefore, the basic 
metal structure is often coated with a proper layer, which 
can be made of nanoparticles and other nanostructures. The 
advantage of nanoparticles is their ability to accommodate 
additional organic and biologically active substances that 
can be released locally. Electrochemistry is ideally suited for 
coating such conductive implants with functionalized nano-
particles. Electrophoresis and electrochemical depositions 
that are carried out at room temperature and under mild con-
ditions do not harm the organic and biological compounds 
and at the same time allow to control very well the thickness 
of the coating on implants having complex geometries.

We believe that only the tip of this iceberg is currently 
seen, and we anticipate that the incorporation of more nano-
structures made of mostly organic and biological polymers 
will further and significantly increase. As such, electrochem-
istry is clearly going to play a major role first in laboratory 
studies and eventually in commercial processes in coating 
medical implants.

Funding  The Israeli Ministry of Science and Technology (MOST) sup-
ported this research (grant 3–15634).
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