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Abstract
The discovery of highly active and cost-effective materials capable of catalyzing the oxygen evolution reaction (OER) is 
essential for water splitting. In the present study, we developed a new method for producing the structural components of 
advanced non-precious metal electrocatalysts NiS/CeS nanocomposite supported on stainless steel strip (SSS) represented 
as NiS/CeS/SSS that are both innovative and practical. To accomplish a current density of 10 mA cm−2, the NiS/CeS/SSS 
requires OER overpotential of 289 mV, which is smaller than the pure NiS/SSS (319 mV) and CeS/SSS (309 mV), and 
with enhanced stability of 40 h tested in 1.0 M KOH electrolyte. The higher efficiency of OER is due to the strong electri-
cal contacts between NiS/SSS and CeS/SSS, the availability of active centers, and also the lower charge transfer resistance.

Keywords  NiS/CeS/SSS nanocomposite · Stainless steel strip · Synergistic effect · Oxygen evolution reaction · Interface 
stability

Introduction

One of the most important challenges today is finding addi-
tional energy resources with low-cost options for generating 
sustainable energy which is the main focus of the researchers 
[1–3]. Electrochemical water splitting is a low-cost, sim-
ple, and environment-friendly method for producing clean 
energy [4, 5]. In the long run, it can replace fossil fuels, 
making it a successful and necessary strategy. The oxygen 
evolution reaction (OER), which involves the transfer of four 

electrons and the production of different substances, gives 
electrochemical conversion cycles that use chemical fuels 
and renewable electricity the electrons they need. Electrical 
catalysts are important for making and breaking chemical 
bonds because they let electrons pass through [6, 7] due 
to the slow kinetics and simultaneous involvement of four 
electrons [8, 9]. OER catalysts are difficult to design due to 
sluggish kinetics; therefore, the researcher focus on advance, 
inexpensive, highly active electrocatalysts with small over-
potential [10–12]. Hence, electrochemical water splitting 
electrodes were fabricated from various metal oxides and 
metal sulfides to achieve low overpotential and small Tafel 
slope [13–15]. Previously, industrial H2 was produced using 
natural gas, which consumed a large amount of nonrenew-
able energy and released carbon dioxide into the atmos-
phere. In recent years, electrochemical water separation has 
emerged as a feasible promise for low-cost, pollution-free, 
and energy-sustaining H2 generation. As a result, research-
ers worldwide have been attempting to create cost-effective 
and efficient electrochemical water splitting techniques such 
as bipolar water electrolysis, photovoltaic water splitting, 
solar cells, thermoelectric devices, and nano-turboelectric 
generators [16]. The focus of this study was the interaction 
of strongly polarized electronegative sulfur (such as CeS) 
with highly electropositive metals sulfides to achieve better 
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efficiency [16, 17]. It will assist in removing electropositive 
and harmful ion residues during an electrochemical opera-
tion [18, 19]. Nickel- and cerium-based sulfides are inex-
pensive, safe, and effective electrocatalysts [20, 21] but both 
sulfides as individual has low chemical stability as well as 
low conductivity. By combining these two materials, i.e., 
NiS and CeS, it can improve the chemical stability as well as 
the conductivity due to their covalent interaction with sulfide 
and metal. The solvothermal technique, which maintains an 
adequate pressure and temperature balance, produces mate-
rials with exceptional quality having a wide range of mor-
phologies [22–26]. Hence, the electrochemical stability of 
the system could be improved by mixing Ni-based sulfide 
with Ce-based derivatives due to their synergistic effect [27, 
28]. Current research looks at the intriguing possibility of 
morphology-dependent electrochemical activity to increase 
electrochemical performance [29–32]. Hence, these issues 
can be solved by combining transition metal sulfides with 
other appropriate materials to form nanocomposites [33]. 
Zhang et al. [34] created tubular spheres of (Fe0.2Ni0.8)0.96S 
on Ni substrate to explore the complete kinetics of water 
splitting in both HER and OER. While working on iron-
doped NiS nanoarrays, Qi et al. [35] and Sun et al. [36] 
employed this as an effective electrode for water splitting 
and described its long-term durability. Zhang et al. [37] pub-
lished (Ni,Fe)S2@MoS2 electrocatalysts, and recognized the 
role of heterojunction in water splitting. Gong and his co-
workers [38] explored water splitting in the OER and HER 
processes using manganese-doped Cu7.2S4@NiS2@NiS/NF 
electrocatalyst. According to Zheng’s group, the electrocata-
lytic water splitting reaction of nickel sulfide nanostructures 
is phase-dependent. Srinivas et al. [39] and Wang et al. [40] 
developed FeS2/C nanocomposite as a general-purpose water 
splitting nanocomposite. Zhang et al. [41] also performed a 
study on water splitting electrocatalyst with a NiS2 nanowire 
shape. To make thin Ni0.8Fe0.2 films, Nakayasu et al. [42] 
and Jing et al. [43] used hydrothermal electrodeposition 
and explained the process of OER. All the above-mentioned 
metal sulfide composites showed excellent stability as well 
as remarkable efficiency. From the above motivating con-
cerns, we decided to prepare a one-step solvothermal synthe-
sis for Ni- and Ce-based sulfide nanocomposite and compare 
the OER activity of NiS/SSS, CeS/SSS, and their nanocom-
posite electrodes already reported in literature.

Here in the present work, the used SSS is a common 
chemical engineering substrate due to its exceptional physi-
cal and chemical endurance in both basic and acidic environ-
ments making it a suitable choice for the present investiga-
tion. Additionally, such type of material has an extremely 
low electrical resistivity. The synthesized NiS/CeS/SSS was 
examined using XRD, SEM, TEM, BET, and XPS to deter-
mine its structure, morphology, surface area, and chemical 
composition, respectively. The cyclic voltammetry (CV), lin- 

ear sweep voltammetry (LSV), electrochemical impedance 
spectroscopy (EIS), and chronoamperometric techniques 
were employed to evaluate the catalytic characteristics of 
the materials, and also the mechanism was studied using 
Tafel plots.

Experimental section

Materials

The stainless steel strip (SSS) was provided by Kunshan 
Jiayisheng Electronics Co., Ltd. (thickness: 2000 mm, bulk 
density). Acetone, ethyl alcohol, nitric acid (HNO3), cerium 
nitrate hexahydrate Ce(NO3)3.6H2O, nickel nitrate, hydro-
chloric acid (HCl), and thiourea (H2NCSNH2) were provided 
by Sigma-Aldrich and Alfa Aesar. All chemicals were of 
interpretive grade, and the water utilized in sample prepara-
tion was ultrapure (deionized water) to ensure the quality of 
the produced materials.

Synthesis of NiS/CeS/SSS nanocomposite

The stainless steel strip (1*2 cm2) pieces were ultrasonically 
cleaned with acetone and hydrochloric acid, and it was nec-
essary to rinse with an ethanol–water solution three times. A 
hydrothermal technique was used to fabricate NiS/CeS/SSS 
samples to achieve good morphology. For this purpose, the 
precursors like 0.5 mM Ce(NO3)3.6H2O, 0.5 mM Ni(NO3)2, 
6H2O, and 0.7 mM thiourea in 35 ml of deionized water 
were prepared and then stirred for 30 min. The resultant 
mixture and the pretreated SSS pieces were then poured into 
a 100 mL Teflon-lined stainless steel autoclave and reserved 
for heating at 160 °C for 12 h. After 12 h of treatment, the 
resulting system’s temperature was naturally reduced to nor-
mal levels. It was continuously washed with deionized water 
and dehydrated in an oven overnight.

Physical analysis

The PANanalytical X’Pert Pro device using Cu-Kα radia-
tions was used to characterize the crystalline state and for- 
mation of the required phase of the synthesized nanostruc-
tured material. The morphology and size of the synthesized 
materials were studied using scanning electron microscopy 
with JSM-5600LV equipment at an accelerating voltage 
of about 80 kV. The electrochemical performance of the 
fabricated product was evaluated using a Mtrohm Auto-
lab (PGSTAT-204) with a three-electrode cell setup. The 
working electrode was a synthesized material deposited on 
a stainless steel strip (SSS), with the counter and reference 
electrodes being an Ag/AgCl and a Pt filament, accordingly.  
The working electrode substrate was cleansed via micro- 
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cloth pads to remove the impurities present on the surface of 
the stainless steel strip, and then the SSS was subsequently 
cleaned with water and ethanol. The cleaned electrode 
was dried at 60 °C in a drying oven for 20 min, fabricated 
directly during hydrothermal treatment, and then employed 
for electrochemical experiments. The production, fabrica-
tion, and application of the nanocomposite nanostructure 
are depicted in Scheme 1.

All electrochemical studies, including linear sweep vol-
tammetry (LSV), electrochemical impedance spectroscopy 
(EIS), cyclic voltammetry (CV), and chronopotentiometry, 
were executed by using a three-electrode electrochemical 
setup. The reference and counter electrodes for the catalyst-
coated SSS working electrode were Ag/AgCl and platinum  
wire, respectively. We employed 1.0 M of potassium hydrox- 
ide (KOH) as an electrolyte during all electrochemical  
performances. A reversible hydrogen electrode with 
V = 0.197 + 0.059 × pH was used to set all potentials. At 
scanning rates of 5 mV s−1, all the polarization curves of the 
electrocatalysts were investigated. The CV and LSV scans 
were used to calculate the Tafel slope by plotting the log of 
current density (j) versus overpotential (η). EIS was done 
between 100 kHz and 100 MHz at an applied potential of 
0.5 V via a three-electrode system using Metrohm PGSTAT 
AUTOLAB-204.

Result and discussion

Structural, morphological, and textural analysis

Figure 1 represents the X-ray diffraction pattern of NiS, 
CeS, and NiS/CeS nanocomposite. Three strong peaks of 
NiS (Fig. 1) at around 2θ = 30.192°, 37.87°, and 69.80° 
were observed, which corresponds to the (300), (220), and 
(511) crystals plane indexed with the standard card JCPDS# 

00–001-1286. Cell software was utilized to calculate the lat-
tice parameters and found as a = 9.815 Å and c = 2.853 Å. 
The XRD pattern of the CeS has been well indexed with 
the standard card JCPDS # 00–004-0688, representing 
the diffraction peaks at 26.062°, 34.134°, 44.70°, 53.21°, 
56.73°, 64.19°, and 73.74° that corresponds to the (111), 

Scheme 1   Schematic illustra-
tion of the experimental setup

Fig. 1   XRD pattern of all the synthesized products

2109Journal of Solid State Electrochemistry (2022) 26:2107–2118



1 3

(200), (311), (222), (400), and (420) planes. On the other 
hand, the NiS/CeS composite has diffraction peaks of NiS 
and CeS with smaller fluctuations in intensity and 2-theta 
which may be due to the interaction between CeS and NiS, 
demonstrating that the composite material was synthesized 
successfully.

The valance states of the nanocomposite were evaluated 
using the XPS technique. The resultant nanocomposites sur-
vey spectrum revealed typical peaks for Ce, S, C, O, and Ni 
components as shown in Fig. 2a, demonstrating that there 
is no other elemental impurity. At 248.7 eV, there was a 
clear C1s peak used to calibrate the position of the peaks 
present in the nanocomposite as shown in Fig. 2b. Figure 2c 
represents the O1s XPS spectrum where the peaks appeared 
at 533 and 531.5 eV which confirmed that it is the envi-
ronmental oxygen which was adsorbed on the surface of 
the material from the environment. The XPS S2p spectrum 
is given in Fig. 2d and the peak that appeared at 169.7 eV 
confirmed that the sulfer is in a − 2 oxidation state. Figure 2e 
depicts the bonding states of Ce3+ and Ce4+ coexist in this 
high-resolution spectrum. There are two deconvoluted peaks 
present in Ce3d5/2 at 886.7 eV and 905.01 eV confirming 
the Ce3+, and the convolution peaks with binding energies at 
900.1 eV, 906.9 eV, and 888.8 eV are used to represent the 
Ce4+ states. The XPS Ni 2p spectrum has a good fit with the 
Ni2+ valence state which is confirmed by their spin-orbital 
doublets (854.2, 873.3, and 879.1 eV) and shake-up satel-
lites (860.9 and 879.78 eV). Deconvoluted Ni2p3/2 XPS 

reveals nickel peaks in two distinct chemical states. There 
is a small peak at 852.79 eV, which corresponds to metallic 
Ni, while the two larger peaks at 855.5 and 856.7 eV, respec-
tively, represent Ni2+ as shown in Fig. 2f.

Scanning electron microscopy revealed a wide diversity 
of morphologies and architectures of all the synthesized 
products. Figure 3a depicts the morphological structures 
of CeS, indicating self-assembled nanowires. Figure 3b 
shows the NiS morphological architecture which is folded 
into two-dimensional sheets during the hydrothermal treat-
ment. Finally, Fig. 3c represents the flower-like features with 
enhanced active sites and solid polyhedral nanostructures 
of the NiS/CeS nanocomposite. Figure 3d represents the 
transmission electron microscopy (TEM) to confirm the 
analysis for the internal textural formation of the nanocom-
posite (NiS/CeS), indicating that both phases were present 
in the prepared nanocomposite. The improved flower-like 
morphology with abundant active sites was responsible for 
the remarkable oxygen evolution reaction efficiency.

Nitrogen adsorption/desorption analysis was used to 
determine the surface area of the NiS, CeS, and NiS/CeS 
nanocomposites, as depicted in Fig. 3e–g. The specific 
surface areas of NiS, CeS, and NiS/CeS nanocomposite 
were computed using desorption curves and found to be 
12.2 m2 g−1, 8.9 m2 g−1, and 18.14 m2 g−1, respectively. 
The higher the BET surface area of the nanocomposite 
responses, the greater efficiency of the synthesized materials 
due to enhanced surface-active sites of the electrocatalyst.

Fig. 2   XPS. (a) Survey spectrum of composite, (b) = C 1 s, (c) = O 1 s, (d) = S 2p, (e) = Ce 3d, and f = Ni 2p

2110 Journal of Solid State Electrochemistry (2022) 26:2107–2118



1 3

Fig. 3   SEM images of a CeS, b NiS, c NiS/CeS, d TEM images of NiS/CeS, and e–g BET isotherm of NiS, CeS, and NiS/CeS nanocomposite
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Electrochemical performance

For electrochemical oxygen evolution reaction (OER) per-
formance, the electrocatalytic efficiency of all the synthe-
sized products has been investigated, and found that the com-
posite materials worked exceptionally well. The best results 
were obtained with a 1:1 molar ratio of NiS/SSS and CeS/
SSS in (1.0 M KOH) basic media at a scan rate of 5 mV s−1. 
The cyclic voltammetry (CV) and linear sweep voltamme-
try (LSV) curves are shown in Fig. 4a, b. The sweep scans 
from numerous tries were collected to guarantee that the 
performed data was reproducible in 1.0 M KOH electrolyte 
in the potential range of 1 to − 1 V vs. RHE. The synthe-
sized NiS/CeS/SSS electrocatalyst performed well with the 
lowest overpotential of 289 mV at 10 mA cm−2, confirmed 
via cyclic and linear sweep voltammetry. Hence, the NiS/
CeS/SSS electrocatalyst was better than the NiS (319 mV) 

and CeS (309 mV), and the recently reported materials. The 
comparative study of the previously reported results has 
been tabulated in Table 1. Tafel plots obtained from CV and 
LSV curves were used to explore the kinetics and processes 
of OER for all the synthesized materials like NiS/SSS, CeS/
SSS, and NiS/CeS/SSS nanocomposite. All the materials 
have different kinetic rates, i.e., the pure sample having the 
dynamic rates of 78 mV dec−1 (NiS), 72 mV dec−1 (CeS), 
and the nanocomposite having the highest kinetic rates of 
44 mV dec−1 as shown in Fig. 4c. In OER processes with 
four electrons, theoretical Tafel slopes of 40 mV dec−1 cor-
respond to a third charge transfer rate regulating phase. The 
decrease in the Tafel slope indicates that the OER surface-
adsorbed species are still dominating, while the rise in the 
Tafel slope presents that the surface species formed in the 
step immediately preceding the rate-determining phase is 
decreasing. NiS/CeS/SSS nanocomposite has a lower Tafel 

Fig. 4   a CV, b LSV curves, c Tafel slope, and d comparison of overpotential of all the synthesized electrocatalysts
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slope (44 mV dec−1), indicating that the reactant (OH) is 
more readily adsorbed, implying a higher OER rate. The 
decrease in the Tafel slope and the overpotential values 
could be due to the synergistic effect between NiS/SSS and 
CeS/SSS. Figure 4d represents the overpotential comparison 
study of all the synthesized products. The four-step mecha-
nism for the electrochemical OER process was discussed as:

Cyclic voltammetry curves were used to assess the elec-
trochemically active surface area of electrocatalysts to inves-
tigate their improved water oxidation activity, as depicted in 
Fig. 5a–c. A rough surface and many active sites influence 
the reaction’s catalytic activity, resulting in an enhanced 
electrochemically active surface area (ECSA). The calcu-
lated Cdl values for all the fabricated materials such as pure 
NiS/SSS, CeS/SSS, and NiS/CeS/SSS nanocomposite were 
64 mF cm−2, 50 mF cm−2, and 77.5 mF cm−2, respectively, 

(1)OH
−
+ ∗→ OH ∗ +e

−

(2)OH ∗ +OH− → O ∗ +H
2
O + e

−

(3)O ∗ +OH− → OOH ∗ +e
−

(4)OOH ∗ +OH
−
→∗ +O

2
+ H

2
O + e

−

as shown in Fig. 5d–f. To calculate the ECSA, we normal-
ized the Cdl to the previously used specific capacitance (Cs) 
of 0.04 mF cm−2 for a flat surface [62]. According to this 
study, the flower looks of the nanocomposite aids in the 
creation of a large number of active sites, which boosts the 
OER efficiency.

To better understand the charge transport process within 
the electrodes, electrochemical impedance spectra (EIS) 
were employed to analyze the synthesized samples. A 
semicircle follows a near-linear line in the high-frequency 
domain while in the low-frequency domain that bends 
toward the x-axis, as seen in Fig. 6a–d. Figure 6a represents  
the combined Nyquist plot of all the synthesized products. 
As shown in Fig. 6 (inset of b and d), an equivalent circuit 
can handle these designs. In most applications, the series 
resistance, abbreviated as Rs, is created by combining  
the contact resistance and the electrolyte resistance.  
The resistance to charge transfer (Rct) at the electrode/
electrolyte interface in the OER process is referred to as 
Rct. Due to the unequal distribution of active catalytic 
sites on the surface, constant phase elements are favored 
over the simple electrochemical process in actual EIS 
modeling circumstances. The resultant Nyquist plots with 
Rs and Rct values are depicted in Fig. 6b–d. Among all 
products, the nanocomposite has a more negligible charge 

Table 1   Comparative study of already reported results with the present study

Sr. no Electrocatalyst Overpotential
(mV)

Tafel slope
(mVdec−1)

Electrode material Reference

1 Fe0.95−xNixS1.05 228 53 [44]
2 CoSx/Ni3S2@NF 440@100 mAcm−2 105.4 Nickel foam (NF) [45]
3 Ni/NiS 340 109 NF [46]
4 Ni3S2 110 108 NF [47]
5 Fe0.9Ni2.1S2 252@100 mAcm−2 NF [48]
6 Fe0.95−xNixS1.05 228 53 NF [44]
7 Co3Fe7@CNSs 301 38.59 Glassy carbon electrode (GCE) [49]
8 Bi2S3/Ni3S2/NF 268 82 NF [50]
9 Ni/g-C3N4@CuS 600@15.5 68 Indium tin oxide (ITO)–coated 

glass electrode
[51]

10 Ni3Se 290 79.5 - [52]
11 CoSe2 ultrathin nanosheets 320 44 - [53]
12 Ag-CoSe2 320 56 - [54]
13 Ni0.5Mo0.5Se 340 - [55]
14 NiCo2Se4 295 53 - [56]
15 NiO/NiS 209 mV 60 mV dec−1 -
16 VOx/NiS/NF 330 mV, 50 mA cm−2 121 mV dec−1 NF [57]
17 NiS@SLS 297 mV 47 mVdec−1 SLS (stainless steel) [58]
18 NiS/Fe3O4@CNT 243 mV 44.2 mVdec−1 NF [59]
19 NiS/CoS 170 mV 71 mVdec−1 NF [60]
20 Ni3S2/NiS 298 mV 58.6 mV∙dec−1 NF [61]
21 NiS/CeS/SSS 289 44 SSS Present study
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Fig. 5   a–c CV curves, d–f linear plot of change in current density vs. scan rate, respectively
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transfer resistance. The smaller the Rct value, the higher 
will be the conductivity of the electrocatalyst.

Figure 7 depicts the stability tests of the NiS/CeS/SSS  
nanocomposite confirmed via cyclic voltammetry cycles 
(Fig. 7a) and chronoamperometry (Fig. 7b). After 1500 
cycles, the CV curves show little change in the current 
density between the 1st and 1500th cycles, confirming  
the long-term stability. The chronoamperometr ic  
experiment also tested the electrocatalyst enduring.  
The electrode system that catalyzes the electrolysis of  

water undergoes a 40-h stability test. The electrode’s 
excellent catalytic stability, which shows its superior  
anti-corrosion qualities, allows it to be used during  
water electrolysis. Finally, the XRD pattern of the 
used electrocatalyst was also performed, to confirm 
the stability in the structure of the NiS/CeS/SSS 
nanocomposite as shown in Fig.  7c. The resultant  
pattern showed that there are no phase changes after 
long-term stability in alkaline media which again  
confirmed its stability in terms of its structure.

Fig. 6   a Combined Nyquist plot, b–d Nyquist plot with their fitted circuit for NiS/SSS, CeS/SSS, and NiS/CeS/SSS nanocomposite
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Conclusion

A simple hydrothermal procedure was used to successfully 
create NiS/SSS, CeS/SSS, and NiS/CeS/SSS nanocomposite. 
All the fabricated materials are analyzed via different analyti-
cal techniques to confirm their formation. The present study 
describes an oxygen evolution reaction using all the synthe-
sized materials as working electrodes performing effectively 
in alkaline media. To attain a current density of 10 mA cm−2, 
a low overpotential of 289 mV is needed with a low Tafel 
slope of 44 mV dec−1 for easy electron transfer reaction. The 
extraordinary performance of water electrolysis is due to the 
flower-like morphology, high surface area, and enhanced elec-
trochemical surface-active sites of the samples.
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