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Abstract
A new conductive terpolymer/graphene nanosheet hybrid composite has been synthesized by polymerizing pyrrole, chlo-
robenzaldehyde, and heptaldehyde (PPyCB&H), in the presence of graphene nanosheets (GNS), using p-toluene sulfonic 
acid as a catalyst. Fourier transform infrared spectra, proton nuclear magnetic resonance, transmission electron microscopy, 
and X-ray diffraction patterns confirm the formation of PPyCB&H/GNS hybrid nanocomposites. Further, the resultant 
nanocomposite material is coated on ITO to construct an electrochemical sensor for the reliable detection of single-strand 
DNA (tDNA) which is cleaved from the genomic DNA of Escherichia coli. Under optimized conditions, linear detection of 
genomic DNA (tDNA) with concentration ranging from 1.3 ×  10−12 to 1.3 ×  10−23 M is observed and it is repeatable with a 
1.3 ×  10−23 M lowest level detection limit. The present modified electrode of PPyCB&H/GNS may show utility for construct-
ing highly sensitive electrochemical sensors for the detection of E. coli.
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Introduction

Recently, several conducting polymers such as polypyrrole 
and its derivatives have drawn the attention of researchers 
because of its properties like high electrical conductivity, 
environmental stability, and comparative ease of synthe-
sis and redox reversibility. These properties of polypyrrole 
derivatives make it suitable to be applied in the areas of 

secondary batteries, electrocatalysis, electrochromic elec-
tronic device, light-emitting devices, chemical sensors, 
and biosensors [1–5]. However, polypyrrole and other con-
ducting electroactive polymers are constrained in practical 
use due to their fragility and insolubility which give rise 
to processing difficulties [6, 7]. Several approaches have 
been taken to improve the processability of conjugated 
polymers [8–11]. One possible approach is to introduce 
flexible polymeric matrices into the conducting rigid poly-
mer. [12–14]. This is made possible with the help of flex-
ible segments. Copolymerization is a desirable route than 
physical blending, which may lead to phase separation; the 
chemical linkage between the flexible matrix and the con-
jugated polymer enhances the solubility and processability 
[15, 16]. The polypyrrole copolymers with new structural 
architecture display different properties from polypyrrole 
homopolymer which may increase the application of con-
ducting polymer. Several kinds of copolymers containing 
pyrrole and other insulating units, such as styrene, tetrahy-
drofuran, methyl methacrylate, and acryloyl chloride, have 
been studied [17–19]. All the above methods show enhanced 
mechanical and physical properties of polypyrrole. How-
ever, the synthesis of polypyrrole copolymer involves many 
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steps and reaction conditions with diminished electrical 
conductivity leading to limited availability of copolymers 
for electrochemical studies. A simple and alternate tech-
nique is the immediate electrochemical copolymerization 
of monomers present in the mixture in an appropriate solvent 
[20–22]. Montmorillonite clay which is known as Maghnite-
H + (Mag-H +), a nontoxic cationic, is used as a catalyst for 
cationic polymerization for a variety of vinylic and hetero-
cyclic monomers [23–26]. However, using Maghnite-H + is 
expensive; hence, in this research work, para toluene sul-
fonic acid (p-TSA) is employed as a catalyst for the oxi-
dative polymerization of pyrrole, 4-chlorobenzaldehyde, 
and hepataldehyde. The synthesized conducting polymer 
with graphene nanosheets is utilized to fabricate electro-
chemical sensing of DNA, particularly for the genomic DNA 
of Escherichia coli O157: H7.

In recent days, the major causes of illness and death 
across the globe is due to foodborne pathogens like Escheri-
chia coli O157: H7, a commonly found bacterium in food 
and water. E. coli is a predominant species of facultative 
anaerobe in the gut of animals which is also found in soil, 
the intestinal tract of animals, fecal matter, marine, and 
estuarine water. E. coli imports profound effects on mam-
mals [27]. E. coli O157: H7 is one of the most dreadful 
bacterium. Nowadays, a few colonies of E. coli O157:H7 is 
enough to cause severe illness, such as hemorrhagic colitis, 
hemolytic uremic syndrome, and fever particularly among 
children [28, 29]. Recently, a variety of novel detection tech-
niques have been brought into under the light of real-time 
detection, showing enhanced sensitivity and reproducibility. 
These techniques have been made portable [30]. As far as 
electrochemical systems are concerned, traditional immuno-
chemical procedures exhibit high specificity and sensitivity. 
Besides, the important steps are immobilization of pDNA 
onto the electrode surface and selection of a suitable elec-
trode for the designing of an electrochemical immunosensor 
[31]. Conducting polymers (CP) are widely used as sens-
ing platforms for the fabrication of practical interfaces and 
sensing surfaces. They combine properties of metallic and 
non-metallic compounds and make it a reasonable material 
for different application such as power devices [32], artificial 
muscles [33], biomedical engineering [34], chemosensors 
[35], biosensors [36] and surfaces for cell stimulation [37], 
and tissue designing and microorganism differentiation [38]. 
For instance, Filiz Kuralay et al. have studied the polypyr-
role/multi-walled carbon nanotube modified graphite elec-
trodes for the detection of (DNA) and polypyrrole/MWCNT 
electrodes exhibited a lowest detection limit of 1.55 ×  10−8 
[39]; polypyrrole-dendrimer hybrids also studied for the 
mRNA detection [40] poly(3,4-ethylenedioxythiophene) 
(PEDOT)-coated chitosan as electrode to study the DNA-
drug interaction [41]. Hydroxyl and carboxyl functionalized 
GNS are used to fabricate DNA sensors with high sensitivity 

due to their excellent electrical properties as well as con-
ductivity [42]. Zinc oxide nanorods and graphene nanoflake 
composite functionalized with ssDNA towards the devel-
opment of impedimetric biosensor show the lowest detec-
tion limit range of  10−16 M to  10−6 M [43]. Filiz Kuralay 
et al. reported a lowest detection limit of 1.25 mg  L−1 for 
double-stranded DNA using a titanium dioxide–coated 
graphene-based nanocomposite electrode [44]. Ida Tiwari 
et al. reported the lowest detection limit of 1 ×  10−16 M 
[45] using graphene oxide/chitosan composite decorated 
with nickel ferrite nanoparticle-based biosensing for E. 
coli through DPV method. In this work, we have proposed 
a new electrochemical sensing platform (PPyCB&H/GNS) 
with an excellent electrical activity that is used to fabricate 
a genosensor by immobilizing probe sequence specific to E. 
coli and incorporating target genomic ssDNA. The hybridi-
zation between E. coli pDNA and tDNA on PPyCB&H/GNS 
modified electrode is detected with DPV measurement. The 
approach is further employed to determine the concentration 
of E. coli. By far, this is the first work that shows the applica-
tion of PPyCB&H/GNS nanocomposite for the fabrication 
of electrochemical DNA biosensor for rapid detection of E. 
coli with high sensitivity and selectivity.

Experimental sections

Materials and methods

Pyrrole, 4-chlorobenzaldehyde, heptaldehyde, para toluene 
sulfonic acid (p-TSA), sodium chloride (NaCl), potassium 
chloride (KCl), disodium hydrogen phosphate  (Na2HPO4), 
and potassium dihydrogen phosphate  (KH2PO4) are of ana-
lytical grade and purchased from SRL, Fischer Scientific and 
Sigma-Aldrich. They are used directly without further puri-
fication. All glassware are cleaned successively with aquar-
egia and Deionized water and then dried before use. Probe 
DNA (pDNA): amine-50-GGT CCG CTT GCT CTC GC-30 
and Target DNA (tDNA): genomic DNA are purchased from 
Synergy Scientific products (India). Oligonucleotide solu-
tion is prepared in Phosphate buffer of pH 7.0 and stored at 
-20 °C before use. (Scheme 1)

Synthesis of PPyCB&H copolymer

In a 100-mL beaker, distilled pyrrole (2 mmol), 4-chloro 
benzaldehyde (2 mmol), and heptaldehyde (2 mmol) are 
dissolved in 20 mL of chloroform and 0.5 g of p-toluene 
sulfonic acid (p-TSA) is added. The mixture is placed in a 
microwave oven to be irradiated at full power for 30 min. 
At the end of the reaction, the resulting mixture is filtered 
to remove the impurities and then slowly added to methanol 
with stirring, and then, the polymer is dried under vacuum at 
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room temperature for 24 h. Further, the catalyst is separated 
from the common base and water.

Synthesis of graphene nanosheet

Metallic copper powder (10 g, 99.7% pure) and  CHCl3 
(25 mL) are heated to 200 °C for 10 h in a Teflon lined stain-
less steel autoclave with 55 mL capacity. After the reaction, 
the autoclave is cooled to room temperature. The resulting 
solid is filtered carefully, and the mother liquor is collected 
for further analysis. And then, the product is treated with 
6 M  HNO3 solution at room temperature for 12 h, followed 
by filtration and washed with distilled water several times 
until the filtrate attains a neutral  PH and is chlorine free. 
Finally, the solid mass is air-dried at 100 °C for 10 h. The 
final yield of the carbon product is approximately 0.9 g.

Preparation of PPyCB&H/GNS nanocomposite

A total of 1 mg GNS is dispersed in 10 mL tetrahydrofuran 
(THF) and ultrasonicated for 1 h to get a suspension. Fur-
ther, 1 g of PPyCB&H is added in the THF solution followed 
by ultrasonication for 30 min which results in (PPyCB&H/
GNS) in the formation of nanocomposite.

Modification of PPyCB&H/GNS nanocomposite 
onto ITO electrode

The bare ITO is polished carefully with 0.5 and 0.03 μm 
alumina slurry and cleaned successively with ethanol and 
double-distilled deionized water by sonication. It is finally 
dried in  N2 stream. ITO plates are standardized by measur-
ing conductivity of bare ITO sheets using a multimeter. The 
ITO-coated glass sheet should have a specified surface resis-
tivity in the range of 10 ohms/sq. to 100 ohms per square. 
After cleaning, 1.0 mg of PPyCB&H/GNS is ultrasonically 
dispersed into 1.0 mL THF to form a homogeneous solution. 
A total of 5.0 μLPPyCB&H/GNS solution is placed onto the 
ITO surface and dried. The obtained PPyCB&H/GNS modi-
fied electrode is stored in air at room temperature.

Fabrication of nucleic acid‑functionalized PPyCB&H/
GNS/pDNA ITO electrode

Exactly 20 mL of pDNA is immobilized on the PPyCB&H/
GNS/ITO electrode surface, via oligonucleotide which can 
be used for binding with graphene through van der waals 
forces, π-π stacking, and/or hydrogen bond [46]. Hybridiza-
tion is performed by incubating the prepared PPyCB&H/

Scheme 1  Synthesis of ter-
polymer
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GNS/ITO bioelectrodes in the various concentration of tar-
get DNA solution for 30 min in PBS medium, and the cor-
responding change in current is measured by DPV.

Results and discussion

The conjugated terpolymer based on pyrrole has been syn-
thesized using p-toluenesulfonic acid as catalyst. The syn-
thesized polymer was characterized by FTIR and NMR 
spectroscopy.

Spectral studies

The polymer nanocomposites prepared from PPyCB&H/
GNS is analyzed using FT-IR spectra. Figure 1 shows the 
FT-IR spectra of GNS, PPyCB&H, and PPyCB&H/GNS. 
The peak at 3420  cm−1 is due to the vibration of N–H in 
pyrrole, the peak at 3059–2687   cm−1 is due to the aro-
matic C-H stretching in 4-chloro benzaldehyde, the peak 
at 1924  cm−1 corresponds to the aromatic C-H bending in 
4-chloro benzaldehyde, the peak at 1445  cm−1 is attributed 
to the aliphatic C-H stretching in heptaldehyde, the peak at 
1317  cm−1 is due to the aliphatic C-H bending, the vibration 
of the phenylene conjugated C = C in pyrrole ring appeared 
at 1628  cm−1, and aromatic C = C stretching peak of pyrrole 
ring and 4-chloro benzaldehyde appeared at 1596  cm−1. The 
aromatic C-N stretching peak that appears at 1148  cm−1 and 
halogen stretching peak that appears at 748  cm−1 correspond 

to C–Cl bond in 4-chlorobenzaldehyde. GNS, the peaks 
that correspond to C = O stretching, appears at 1724  cm−1, 
C–O–C stretching at 1376  cm−1, and the broadband observes 
at ~ 3253  cm−1 is due to the hydroxyl group (-OH) stretch-
ing. Interestingly, the band at 3454  cm−1 is slightly shifted, 
the peak attributes to the aromatic C-H stretching slightly 
shifted to 2950–2823  cm−1, and after the functionalization 
of PPyCB&H/GNS, the C = O group is shifted to 1695  cm−1 
which confirms the formation PPyCB&H/GNS polymer 
nanocomposites.

1H-NMR spectrum of poly [(pyrrole-2, 5-diyl)-co-
(benzylidene) and (heptaldehyde)] is shown in Fig. 2, which 
indicates the characteristic of aliphatic hydrogen resonance 
at about (e) 1.18 to 2.93 ppm in multiple signals; the aro-
matic protons of pyrrole ring (a) appears at 6.37 ppm, the 
aromatic protons of 4-chlorobenzaldehyde (d) proton 
appears at 7.46 to 7.44 ppm then conjugates the neighbor-
ing protons (c) which appears at 7.48 to 7.79 ppm and the 
NH- protons of polypyrrole (b) which appears at 9.28 ppm 
as a singlet.

Morphological studies

Figure 3 displays the XRD patterns of GNS, PPyCB&H, 
and PPyCB&H/GNS. As it can be seen in the case of GNS, 
the diffraction peak centered at 2θ = 24.8° corresponding to 
(002) plane which indicates the monolayer structure of GNS. 
Moreover, in case of pure conducting polymer PPyCB&H, 
a broad peak is found at 2θ = 19.5° representing the 

Fig. 1  FTIR spectrum of GNS 
PPyCB&H and PPyCB&H/
GNS
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characteristic peak of amorphous structure, and the peak is 
shifted to 2θ = 21.2° for the prepared PPyCB&H/GNS com-
posite. This suggests that PPyCB&H and GNS are blended 
well to form PPyCB&H/GNS, while the π-π stacking inter-
action between PPyCB&H chains and GNSnanosheets is 
responsible for the diffraction peak shift. Figure 3b repre-
sents the Raman spectra of GNS. The Raman spectra of 
GNS displayed intense bands corresponding to G-band at 
1580  cm−1 and the D-band at 1350  cm−1 credited to the E2g 
vibrational mode of sp2 hybridized C–C and A1g mode in 
the disordered edge region of the nanosheets, respectively.

The morphology of the pristine components and the 
composite samples are analyzed with scanning electron 
microscopy. Figure 4a–d represent a typical FESEM image 
of GNS and PPyCB&H/GNS. The images show (Fig. 4a–b) 
more sheet structure of graphene. In Fig. 4c–d, sheet layers 
of GNS are wrapped by the polymer matrix; see that the 
morphology to PPyCB&H/GNS in white line corresponds 
to the GNS and red line corresponded to the PPyCB&H 
indicating the formation of a graphene sheet coating of 
PPyCB&H on the surface of the GNS. The TEM images 
of GNS are presented in Fig. 5a–c. The TEM images indi-
cate that the samples are in nanosheet-like structure with a 

smooth surface. It is observed that nanosheets are ultra-thin 
and highly transparent, crumpled with folds at edges.

Electrochemical studies

Cyclic voltometry

The cyclic voltammetry curves of the GNS, PPyCB&H, 
PPyCB&H/GNS, and PPyCB&H/GNS/ssDNA recorded 
in the presence of 0.1 M of PBS solution at a scan rate of 
100 mV/s are represented in Fig. 6. The electrode modified 
with PPyCB&H composite shows a slightly lower redox 
peak which may be due to inhibition of electron trans-
fer. The GNS exhibited good redox peak potential when 
compared with PPyCB&H, and the oxidation potential of 
GNS appeared at − 0.4 V, and the corresponding reduction 
potential appeared at 0.52 V. However, the nanocomposite 
PPyCB&H/GNS electrode is found to have high redox peak 
which may be due to the fact that the intrinsic conductivity 
of GNS may aid the electron transfer to PPyCB&H com-
posite leading to superior conductivity. The immobilization 
of ssDNA slightly increases the oxidation and reduction 
potential.

Fig. 2  1H-NMR spectrum of poly[(pyrrole-2,5-diyl)-co-(benzylidene) and (heptaldehyde)] (PPyCB&H)
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Fig. 3  (a) XRD studies of GNS, 
PPyCB&H, and PPyCB&H/
GNS nanocomposites and (b) 
Raman studies of GNS
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EIS and Bode plot studies

EIS is employed to characterize the interface properties 
of the modified electrodes. In EIS measurement shown in 
Fig. 7, the semicircle diameter at higher frequencies in the 
Nyquist diagram of impedance spectroscopy equals the 
interfacial electron transfer resistance (Ret), which controls 
the electron transfer of the redox probe at the electrode sur-
face. Figure 8a shows Nyquist diagrams of 0.1 M PBS at 
different electrodes. The electron transfer resistance (Ret) 
of PPyCB&H electrode is very large as compared to that of 

the GNS modified electrode due to the enhanced conduc-
tivity and electrochemical activity of composites film. The 
composites of PPyCB&H/GNS have less resistance value 
and good electrical conductivity. The electrode is immobi-
lized with pDNA, and the electron transfer resistance value 
decreases due to the reason  that the immobilized DNA 
generates a large number of negative charge which could 
interact with the polymer nanocomposite, resulting in the 
enhanced conductivity of the electrode. The change in the 
phase angle in the Bode plot is chosen as a prominent EIS 
element in the frequency region of 0–40,000 Hz as shown in 

Fig. 4  SEM images of synthe-
sized GNS and PPyCB&H/GNS 
composite

Fig. 5  TEM images of synthesized graphene nanosheets (GNS)
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Fig. 8b. The PPyCB&H electrode shows the phase angle at 
67.19° at ~ 2 Hz. These phase angle of the GNS PPyCB&H/
GNS and PPyCB/GNS/pDNA is shifted to 48°, 46.3°, and 
43.4° at a lower frequency of ~ 1 Hz.

Scan rate

Cyclic voltammetry is performed with the modified 
PPyCB&H/GNS/ITO electrode at various scan rates in 

the range 10–100 mV  s−1 and presented in Fig. 8a–b. It 
is observed from Fig. 8a that increase in scan rate results 
in the increase of anodic peak current (Ipa) and cathodic 
peak current (Ipc). It is due to the reason that the high 
electrical charged PPyCB&H/GNS promotes the elec-
tron transfer to the analyte solution. Figure 8b describes 
the plot of peak currents (Ip) as a function of the square 
root of scan rate which exhibits linear behavior which 
further increases linearly as a function of scan rate for 

Fig. 7  (a) EIS and (b) Bode plots of GNS, PPyCB&H, PPyCB&H/GNS, and PPyCB&H/GNS/pDNA

Fig. 6  Cyclic voltometry of 
GNS, PPyCB&H, PPyCB&H/
GNS, and PPyCB&H/
GNS/ssDNA
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PPyCB&H/GNS/ITO bioelectrode. Based on the above 
result, it can be concluded that the prepared bioelectrode 
has good electron transfer due to the synergistic effect 
of large surface area and conductivity of graphene and 
PPyCB&H nanocomposites.

DPV response of various electrodes

The electrochemical responses of pDNA of E. coli for a 
100 μL in PBS (pH = 5.0) using PPyCB&H/ITO, GNS/
ITO, and PPyCB&H/GNS/ITO electrodes are investigated 
through DPV. As shown in Fig. 9a, a small oxidation peak 
is observed at the bare ITO. GNS-coated ITO electrode 

shows a significant increase in oxidation peak current. As 
observed from the figure, the oxidation peak current is fur-
ther enhanced for the composite PPyCB&H/GNS/ITO elec-
trode. The GNS and PPyCB&H hybrid system promotes 
the electron transfer between the solution and electrode 
surface due to the synergistic amplification effect of GNS 
with PPyCB&H. The comparison of the various modified 
electrode with their DPV responses are plotted as a bar 
diagram in Fig. 9b, which clearly indicates the enhanced 
response from the PPyCB&H/GNS/ITO electrode in Fig. 9. 
The specificity of the electrode setup has been conducted 
by hybridizing tDNA of other pathogens and found that 
there is no change in peak current of the DPV analysis.

Fig. 8  Cyclic voltammetric variation of (a) PPyCB&H/GNS/ITO electrode with scan rate in PBS 0.1 M, pH 7.4. (b) The variation of current 
with square root of scan rate

Fig. 9  Electrochemical properties of the fabricated electrodes. The DPV studies of various electrode in (a) bare ITO, GNS, PPyCB&H, and 
PPyCB&H/GNS in 0.1 M PBS (pH 7.0) at 100 mV  s−1 scan rate. (b) Sensitivity of the electrodes
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Sensor test

The detection procedure for the detection of single strand 
genomic DNA of E. coli, tDNA, using the oligonucleo-
tide modified PPyCB&H/GNS/ITO electrode, is presented 
schematically in Fig. 10. The electrochemical detection 
ability of the PPyCB&H/GNS polymer nanocompos-
ite is studied by exposing the oligonucleotide modified 
PPyCB&H/GNS/ITO electrode to the tDNA of E. coli 
within the wide concentration range of 1.3 ×  10−12 to 
1.3 ×  10−23 M. The sensing studies are repeated three times 
with three different ITO slides, and there is not much dif-
ference in the results obtained in all the three slides. Fig-
ure 11a shows an increase in current density with increas-
ing concentrations of tDNA. The response of GNS and 

PPyCB&H/GNS on ITO is determined by the DPV studies 
at 0.01  mVs−1 scan rate. The largest oxidation peak of the 
PPyCB&H/GNS nanocomposite electrode has obtained 
the potential of − 0.7 V due to high electron transfer abil-
ity and electrical conductivity. After incubation of tDNA, 
a larger increase in oxidation current density of tDNA/
PPyCB&H/GNS/ITO is seen in the voltammogram. This 
is due to the charge transfer as a result of enhanced elec-
tron transfer and the binding of tDNA on the PPyCB&H/
GNS surface. In the presence of tDNA, the oxidation peak 
current increases proportionally with the concentration of 
genomic DNA. When the pathogenic tDNA concentra-
tion increases, the current density also increases due to 
the kinetics of interfacial electron-transfer and decrease 
in the electron-transfer resistance from the medium to the 

Fig. 11  (a) DPV response of pDNA/PPyCB&H/GNS/ITO bioelectrode as a function of tDNA concentration (1.3 ×  10−12 to 1.3 ×  10−23 M) in 
PBS solution (pH 7) and (b) plot of the DPV response of tDNA/PPyCB&H/GNS/ITO bioelectrode vs. the concentration of E. coli 

Fig. 10  A schematic diagram of the modification process of ITO. (a) Spin coating of PPyCB&H/GNS on ITO, (b) PPyCB&H/GNS/ITO modi-
fied with pDNA, (c) PPyCB&H/GNS/pDNA incubate with the tDNA, and (d) detection technique of DPV
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electrode’s surface. The plot of current density vs. the log-
arithm of the concentration of E. coli as shown in Fig. 11b 
indicates a linear relationship with a correlation coefficient 
of 0.9859. The limit of detection of this sensor is found 
to be 1.3 ×  10−12 to 1.3 ×  10−23 M, the lowest detection 
limits are 1.3 ×  10–23 M. The electrochemical detection of 
DNA using various polypyrrole nanocomposite materials 
are tabulated in Table 1 and in Fig. 11.

Reliability and stability properties of the biosensor

Under the experimental conditions, the electrochemical 
reproducibility and stability of PPyCB&H/GNS poly-
mer nanocomposite (Fig. 12) are analyzed by continual 

20 cycling procedure. The redox curves indicate that 
the change is insignificant with respect to peak current. 
In addition, pDNA/PPyCB&H/GNS/ITO are stored for 
20 days in distilled water at 4 °C and the reduced current 
displayed excellent stability. The slight decrease in signal 
is noted at 10 days, and therefore, the biosensor has good 
storage stability.

Conclusion

In summary, an electrochemical biosensor PPyCB&H/
GNS/pDNA polymer nanocomposite for the detection of E. 
coli is successfully developed. The polymer nanocompos-
ite and the probe DNA immobilized PPyCB&H/GNS are 

Table 1  Comparison of 
different electrodes for the 
electrochemical determination 
of pathogens involving DNA 
hybridization

Materials Methods Linearity range  
(concentration)

Detection limit References

GO-GNP/PPY/ITO DPV 1 ×  10−–1 ×  10−15 M 1 ×  10−15 M [47]
PPY-Ag LSV 3.0 ×  10–4–5.0 ×  10−4 μM 5.0 ×  10−4 μM [48]
2,5bis(2-Thienyl)-N-

(3-Phosphorylpropyl)
Pyrrole

CV/LSV 1.8 ×  10−12–1.8 ×  10−21 M 1.8 ×  10−21 nM [49]

PPy/MWCNTs CV/EIS 1.0 ×  10−6–1.0 ×  10−11 nM 1.0 ×  10−11 nM [50]
PPy-Polyaniline-Au EIS 1.0 ×  10−6–1.0 ×  10−13 M 1.0 ×  10−13 M [51]
PPy-Poly(3,4-

ethylenedioxythiophene)-
Ag

EIS 1.0 ×  10−11–1.0 ×  10–14 M 1.0 ×  10−14 M [52]

PPyCB&H/GNS DPV 1.3 ×  10−12–1.3 ×  10−23 M 1.3 ×  10−23 M Present work

Fig. 12  Stability of the DNA 
biosensor under successive CV 
scans for 20 cycles after incu-
bating with 1.3 ×  10−12 M tDNA
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characterized by physicochemical methods to show the 
dispersion of GNS in PPyCB&H. The fabricated pDNA/
PPyCB&H/GNS/ITO working electrode demonstrated sen-
sitivity current peaks for E. coli tDNA proportional to the 
concentration ranging from 1.3 ×  10−12 to 1.3 ×  10−23 M with 
a LOD value of 1.3 ×  10−23 M. The overall results indicate 
that PPyCB&H/GNS polymer nanocomposite exhibits good 
electrochemical activity which attributes to the presence of 
graphene nanosheets and synergistically improves elec-
tron transfer. Moreover, the conducting polymer provides a 
large specific surface area for pathogen immobilization and 
aids the conducting network formation. Thus, the designed 
pDNA/PPyCB&H/GNS/ITO demonstrate sensitivity for 
pathogen detection.
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