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Abstract
Electrochemical double-layer capacitors (EDLCs) have been widely studied due to their high-power densities, despite their low
energy densities compared with those of lithium ion batteries. In particular, there have been numerous studies aiming to
developing high surface area carbonic material to increase EDLCs’ capacitance. However, there have been few studies exam-
ining water-based polymeric binder as an inactive component of the EDLCs’ electrodes. In this study, we introduce a conductive
water-based binder which is synthesized by an in situ two-step polymerization, and use it for EDLC electrodes. Polypyrrole (PPy)
is used as an electrically conducting filler for a water-based polyacrylate binder to enhance the electrochemical performance of
EDLCs. Consequently, the use of the new poly(pyrrole/acrylonitrile-co-butyl acrylate) (PPyANBA) increases the specific
capacitance of the EDLC electrode up to 109.7 F g−1 from the 101.0 F g−1 value of the nonconductive PANBA-containing
EDLC electrode at 10,000 cycles. This is mainly attributed to the better dispersion and lower electrical resistance of the
PPyANBA binder without losing the thermal, ion transport, and binding characteristics of the PANBA.
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Introduction

The recent developments in energy storage systems have attracted
the attention of many researchers due to the transition of fossil
energy to renewable energy [1–3]. For large-scale applications,
such as a hydrogen network, underwater compressed air and solar
cells are commonly used, while rechargeable batteries and
supercapacitors are used for small, middle-scale, and moveable
applications [2, 4, 5]. Among them, supercapacitors, particularly
electrochemical double-layer capacitors (EDLCs), are considered
promising electrochemical energy storage systems due to their fast
charge discharge character, long life expectancy, high power den-
sity, and low maintenance [6–9]. Hence, supercapacitors are pop-
ularly applied in portable devices, wearable devices, memory
backup systems, and braking systems of electric vehicles (EVs)
and hybrid electric vehicles (HEVs) [10–14].

In general, the capacitance of an EDLC is highly correlated
to the surface area of the active materials. Therefore, carbona-
ceous materials which have a large surface area, such as acti-
vated carbon, have mainly been used for EDLCs [15–17]. For
this reason, many researchers focus on increasing the surface
area of the active material [18–20], even though other compo-
nents, such as the conducting agent and the polymer binder,
also play crucial roles. The conducting agent helps form con-
tinuous electron pathways in electrodes for high-power EDLC
[21]. By contrast, the polymeric binder can unite all electrode
ingredients and maintain their integrity on the surface of the
current collector during the charge and discharge processes,
even with a small content of 5–10 wt% compared with the
active material [22, 23]. Instead of traditional polyvinylidene
fluoride (PVdF) dissolved in toxic n-methyl pyrrolidone sol-
vent, water-based binder such as styrene-butadiene rubber
(SBR) is mainly used due to its eco-friendly characteristics
in the electrode manufacturing process and its superior elec-
trochemical performance [24–27]. Water-treatable
polyacrylates are also promising binders because their intrin-
sic low glass transition temperatures (Tg) lead to a flexible
character which can enhance the performance of the
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electrodes [28–30]. However, polyacrylates are still electrical-
ly nonconductive, which can increase the electrical resistance
of EDLCs and ultimately deteriorate their high power charac-
teristics. There are two ways to increase the electrical conduc-
tivity of the binder: the direct use of electronically conducting
polymers and the addition of conductive filler to nonconduct-
ing adhesive polymer.

In previous studies, typical conducting polymers such as
p o l y a n i l i n e , p o l y p y r r o l e ( P P y ) , p o l y ( 3 , 4 -
ethylenedioxythiophene)/poly(styrene sulfonate), and
polythiophene have been applied to EDLCs and lithium ion
batteries (LIBs) as the binder of the electrodes [31–33].
Unfortunately, they were not successful because their low
adhesion did not maintain the mechanical integrity of the elec-
trodes during the repeated cycles. This is why the conducting
polymers are normally combined with adhesive polymer
binders, such as carboxymethyl chitosan [34, 35] and poly-
acrylic acid [29]. Based on the percolation theory, adding
conductive nanocarbon fillers into polymer matrix has also
been widely investigated to enhance polymer conductivity
[36–39]. These conductive composite binders could improve
the electrochemical performance of LIBs [30, 40–42]. In this
study, instead of using the conductive nanocarbons, we use an
electrically conducting polymer, PPy as filler for a water-
based polyacrylate binder to enhance the electrochemical per-
formance of EDLCs. PPy is known for its good environment
stability and easy synthesis process [43, 44]. Water-dispersed
poly(acrylonitrile-co-butyl acrylate) (PANBA) is chosen as a
polyacrylate binder because it exhibits superior binder perfor-
mance for LIB anodes [29, 45]. Based on our previous work
on allocating the optimal ratio between PPy and PANBA [46],
only 1 wt% PPy based on PANBAmonomer weight is used in
this study. A variety of physical and electrochemical EDLC
tests are conducted on the conductive poly(pyrrole/acryloni-
trile-co-butyl acrylate) (PPyANBA) binder, and the results are
compared to those of the nonconductive PANBA binder.

Experimental

Synthesis of poly(pyrrole/acrylonitrile-co-butyl
acrylate)

Emulsified PPy was first synthesized by emulsion polymeri-
zation. A certain amount of sodium dodecyl sulfate (SDS,
Tokyo Chemical Industry Co., Japan) emulsifier was added
into distilled deionized (DDI) water placed in a jacket reactor.
Next, 1 wt% of pyrrole monomer (Alfa Aesar, USA) based on
the sum of acrylonitrile (AN, Junsei Chemical Co., Ltd.,
Japan) and butyl acrylate (BA, Samchun Chemical Co., Ltd.,
Korea) monomers was added. The polymerization was initi-
ated by adding potassium persulfate (KPS, Sigma-Aldrich,
USA) when the temperature reached 70 °C, and it was

performed for 2 h at that temperature. Then, the mixture of
AN and BA was added into the emulsified PPy solution to
polymerize PANBA in the PPy emulsion. More details on this
step are available in our previous work [29]. The final product,
called PPyANBA, was cooled down to room temperature.

Manufacture of EDLCs’ electrodes and coin-full cells

Solid in electrode slurry was composed of 91.5 wt% of acti-
vated carbon (YP-50F, Kuraray Chemical Co., Ltd., Japan),
2.5 wt% of super-p (Alfa Aesar, USA) conducting agent,
1.5 wt% of carboxymethyl cellulose (CMC, Daicel Fine
Chem Ltd., Japan) thickener, and 4.5 wt% of emulsified bind-
er. The slurry was mixed in a Thinky mixer (MD BROS Co.,
Ltd., Japan), coated on etching aluminium foil, and dried in a
convection oven (OF-12GW JE10 TECH, Korea) at 60 °C for
30 min. The electrode was dried again in a vacuum oven (OV-
11 JE10 TECH, Korea) at 70 °C for 24 h to remove the re-
maining water just before use. The thickness of the electrodes
was 105 ± 5 μm. The mass loading of the activated carbon on
electrode was 6.45 ± 0.5 mg. Using the electrodes, a symmetry
type of CR2032 coin cell (Wlcos Corporation, Korea) was
assembled in an argon-filled glove box with a polypropylene
film separator (Wlcos Corporation, Korea) placed between the
symmetric electrodes. Here, 1 M tetraethylammonium tetra-
fluoroborate in acetonitrile was used as the electrolyte.

Physical and electrochemical characterization of
binders and electrodes

The physical stability of the binder solution was recorded
using a Turbiscan station (Turbiscan LAB, Formulaction
Co., France). The functional groups of the synthesized poly-
mer were confirmed by Fourier transform infrared spectrosco-
py (FTIR, Nicolet iS5 Thermo Fisher Scientific, USA). The
electrical resistances of the binders were measured using elec-
trochemical impedance spectroscopy (EIS, VSP, BioLogic
Science Instruments, France) at a frequency range from 105

Hz to 10 Hz at 0 V. Thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) were performed by a
Q50 TA Instrument (Discovery TGA35, DSC-PC100,
Canada) with a heating rate of 10 °C min−1 under nitrogen
atmosphere. The zeta potential of the polymer solution was
alsomeasured using a Zetasizer Nano ZS (ZEN3600,Malvern
Instruments Ltd., UK). The wettability of the binder films,
represented by the contact angle of an electrolyte droplet on
binder film, was measured using an optical tensiometer (Theta
Lite, Biolin Scientific, Japan). The adhesion strength of the
electrode was measured by the 180° peel strength of 2-cm-
wide electrode strips in a texture analyzer (TA-Plus, Lloyd
Instruments Ltd., USA) at a propagation speed of 60 mm
min−1. The information on the surface area and pores of the
electrodes was obtained from Brunauer-Emmett-Teller (BET)

964 J Solid State Electrochem (2021) 25:963–972



analysis with N2 adsorption/desorption at − 196 °C on a sur-
face area and porosity analyzer (Micromeritics ASAP 2020,
USA). The degas treatment was maintained at 300 °C for 20 h
before analysis. The Barrett-Joyner-Halenda (BJH) and t-plot
methods were selected to analyze the pore information of the
electrode components. The surface and interface resistivities
of the electrode were obtained using a multipoint probe sys-
tem (RM2610, HIOKI Corp., Japan) at room temperature.

EIS with a frequency range from 106 to 10−2 Hz at E = 0 V
was again used to obtain the kinetic parameters related to the
charge/discharge processes of long-cycled electrodes. Cyclic
voltammetry (CV) testing was also conducted in a battery
cycler (WBCS3000, Wonatech, Korea) at several scan rates
of 5, 20, 50, and 100 mV s−1 between 3.0 V and 0.0 V. The
galvanostatic charge/discharge and rate capability tests were
also characterized in a battery cycler (PEBC 0550.1, PNE
solution Co., Korea) with a constant current and a constant
voltage mood at room temperature. For galvanostatic charge/
discharge performance, the cells were fully charged/
discharged between 2.7 V and 0.1 V at the current of
1.54 mA for the first five cycles. Subsequently, the cells were
charged/discharged between 2.7 V and 1.35 V at
4.0 mA for the next 10,000 cycles. Various charge/
discharge current densities within 0.5–50 mA cm−2 were
applied in the rate capability test.

Results and discussion

From the viewpoint of commercial application, the polymeric
binder should be physically stable during storage for at least a
couple of months. Therefore, above all, it is necessary to
check the physical stability of polymer emulsion before it is
applied to EDLC electrodes. Very similar to the results of our
previous work [30], the Turbiscan station was used for the
long-term stability of the binder solution, and the result is
represented by the turbiscan stability index (TSI) shown in
Fig. S1 of the supplementary information. The low TSI value
of the PPyANBA solution demonstrates that it is more stable
than the PANBA solution and is suitable to be stored for a
couple of months. Additionally, the zeta potentials of the so-
lutions confirm the better stability of the PPyANBA emulsion
than the PANBA emulsion. The zeta potential value of the
PPyANBA is − 52.4 mV, whereas that of the PANBA is −
45.7 mV. Here, the negative values are originated from the
anionic surfactant SDS surrounding the polymer particles.
The larger the absolute value of the zeta potential, the stronger
the electrostatic force among particles. Thus, the PPyANBA
particles are more stabilized in the emulsion due to their strong
electrostatic repulsion.

The particle sizes of the binder solutions were first investi-
gated through a zeta potential analysis, and the results are
shown in Fig. 1. Both PANBA and PPyANBA particles show

single intensity peaks, indicating that the emulsion polymeri-
zation technique is appropriate for synthesizing uniform
nanosized polymer particles. Compared with PANBA, the
PPyANBA polymer has a wider particle size distribution
and a slightly larger average particle size. As shown in Fig.
S2, the PPy sample shows a very narrow size distribution and
an average size of 37 nm. Therefore, the wide and large char-
acteristic of the PPyANBA implies that the polymerization of
PANBA is initiated in PPy micelles and successfully forms
the PPyANBA.

Furthermore, the successful synthesis of PPyANBA is also
confirmed from the FTIR spectra of the PPy, PANBA, and
PPyANBA binder films, as shown in Fig. 2, with those of
polyacrylonitrile (PAN) and polybutylacrylate (PBA). The
characteristic peaks of PPy are visible at 1168 cm–1 and
1644 cm–1 for C=N, at 1464 cm–1 and 1537 cm–1 for C=C,
and at 1300 cm–1 for C–N [47, 48]. As shown in the FT-IR
spectra of PAN and PBA, the characteristic peaks of PANBA
at 1780 cm–1 and 2240 cm–1 are assigned to the stretching
vibrations of carbonyl groups in butyl acrylates and of nitrile
groups in acrylonitrile, respectively [49, 50]. All the above
peaks are present in the PPyANBA spectrum, which implies
that the in situ emulsion polymerization of PPyANBA is suc-
cessfully achieved.

The thermal characteristic of the synthesized binders is
investigated by DSC and TGA analyses, and the results are
displayed in Fig. 3. Due to the relatively high Tg of PPy rang-
ing between 65 and 95 °C [51], the Tg of PPyANBA slightly
increases to 6.6 °C from 4.5 °C of PANBA. Such a low in-
crease does not substantially change the rubbery state of the
emulsified binders because the electrode works normally at
room temperature, which is much higher than the Tg. In addi-
tion, as shown in Fig. 3b, the thermal stability of the binders is
almost unchanged by the in situ polymerization of PANBA

Fig. 1 Particle size distribution of the PANBA and PPyANBA binders
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within PPy emulsion. Both PANBA and PPyANBA are ther-
mally stable up to 350 °C. By contrast, the PANBA mixed
physically with the same amount of PPy as PPyANBA shows

considerably larger weight loss between 200 and 300 °C com-
pared with those of both PABNA and PPyANBA. The tem-
perature corresponds to the decomposition of PPy [46]. In
summary, this in situ emulsion polymerization is an efficient
way to introduce a conducting polymer into a rubbery non-
conducting polymer without losing its thermal characteristics.

The advantage of introducing conducting PPy into noncon-
ducting PANBA was first observed from EIS, tested at a fre-
quency from 105 to 10 Hz, of separated binder films without
active materials and electrolyte. The binder film was placed in
CR2032 cells with the stainless metal spacer. The EIS analysis
indicates that the cell can be simulated as a resistor and a
capacitor in series, respectively, as illustrated in Fig. 4. The
electrical resistances of the binder samples are determined by
linearly extrapolating the impedance to the x-axis by increas-
ing the frequency up to infinity [52]. From the linear extrap-
olation, the electrical resistances of PANBA and PPyANBA
are 2.35 kΩ and 1.04 kΩ, respectively. This reveals that con-
ductive PPy works well in PPyANBA, even though a very
small amount exists in the PPyANBA sample. Therefore,
when compared with pure PANBA, the PPyANBA is favor-
able for electron transport when applied to the binder for
EDLC electrodes. As expected, on the other hand, almost no
change occurred in the electrolyte wetting of the binder
films, which is closely related to ion transport. The
contact angles between binder films and electrolyte
droplet recorded at 40 s are very close to each other
(Fig. S3 in the supplementary information).

In general, the specific surface area (SSA) and the porosity
characteristic of the electrode affect the electrochemical per-
formance of EDLCs. In particular, a large SSA can provide
more space for charge storage and thus leads to a higher ca-
pacitance [53]. The EDLC electrode powders containing
PANBA or PPyANBA binder have been degassed at 300 °C
for 24 h before BET analysis. The results of nitrogen sorption
isotherms performed at 77 K are shown in Fig. S4(a). Both of

Fig. 3 a DSC and b TGA of the polymer films. Here, PPy+PANBA(phy) indicates the PANBA mixed physically with 1 wt% PPy

Fig. 2 FTIR spectra of PPy, PAN, PBA, PANBA, and PPyANBA binder
films
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the electrodes exhibit mainly type I isotherm curves
combined with type IV behavior. The dramatic increase
in the isotherm curves at a relatively low pressure (P/P0

< 0.1) is attributed to the presence of a large number of
micropores. The H4 hysteresis loops in the range of P/
P0 = 0.4–0.9 indicate the presence of a small number of
mesopores [54]. These are confirmed from Fig. S4(b)
and Table 1. Figure S4(b) exhibits their pore size dis-
tribution measured using the BJH method. The elec-
trodes are mainly composed of both micropores (d < 2
nm) and mesopores (d = 2–50 nm) without any sensible
difference. The majority of mesopores are located be-
tween 3.0 and 4.5 nm regardless of the binders. More
clear data on the SSA of the pores are listed in Table 1.
The PPyANBA-containing electrode powder has higher
SSA than the PANBA-containing electrode, even though
the PPyANBA binder has a slightly larger size than the
PANBA binder, as shown in Fig. 1. In general, bigger
binder particles may block larger amounts of pores in
the electrode powders. Therefore, the higher SSA of the

PPyANBA-containing electrode powder may be attribut-
ed to the improved dispersion of the PPyANBA binder
particles proven by the zeta potential and TSI values
presented in Fig. S1, leading to the homogeneous dis-
persion and less blocking of binder particles in the elec-
trode, and thus, higher SSA.

The effect of using a conducting PPyANBA binder on the
electrical conductivity of the electrode was investigated
through 46 multipoint probes connected to an electrode resis-
tance measurement system (RM2610, HIOKI). This system
can remove the geometric correction factors required for typ-
ical four-point probe systems, such as a significantly larger
sample than the probe spacing and a sample thinner than
40% of the probe spacing. Additionally, this system can mea-
sure the interface resistance between the electrode composite
and the current collector as well as the volume and surface
resistivities of the electrode composite. These values of the
EDLC electrodes are summarized in Table 2. It is clear that
the addition of the conductive PPy to the PANBA binder also
improves the electronic conductions of the electrodes and of

Fig. 4 Nyquist plot of the
polymer films to estimate their
electrical resistance

Table 1 BET surface areas and
pore volumes of EDLC electrode
powders.

SBET (m
2 g−1) Smicro (m

2 g−1) Smeso (m
2 g−1) Pore Vtotal (cm

3 g−1)

PANBA 1517 1222 295 0.70

PPyANBA 1585 1280 305 0.72
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the binder itself. Furthermore, the use of the conductive
PPyANBA binder diminishes the interface resistance com-
pared with the nonconductive PANBA binder.

The CV was applied to the EDLC electrodes to observe
changes in the basic electrochemical characteristics according
to the binder before investigating their cyclic performance.
The cyclic voltammetry (CV) test was performed in the range
of 0 V to 3 V at the scan rates of 5 mV s−1, 20 mV s−1, 50 mV
s−1, and 100 mV s−1, respectively, and the results are shown in
Fig. S5. As expected, all voltammograms show typical rect-
angular shapes with no faradaic peak, indicating capacitive
behaviors of the EDLCs regardless of the scan rates. This also
indicates that the charges exchange freely in the electrolyte
during the positive/negative sweep signals [55].

The cyclic performance of the EDLCs containing different
binders was performed with a 4.0 mA current for up to 10,000
cycles, and the results are shown in Fig. 5. The initial and the
10,000th-cycled specific capacitances of the EDLC electrode
containing the conductive PPyANBA binder are 133.7 F g−1

and 109.7 F g−1, respectively, which are both considerably
larger than those for the electrode containing the nonconduc-
tive PANBA binder (122.2 F g−1 for the 1st and 101.0 F g−1

for the 10,000th cycles). This must contribute to the increase
in SSA, particularly in the mesopores, and the decrease in the

electrical resistance due to the use of the conductive binder, as
summarized in Tables 1 and 2. Additionally, the advantage of
using the conductive PPy component in the binder was also
confirmed through EIS measurement, as shown in Fig. 5b.
Though a simple comparison on the cyclic performance of
EDLCs may not be appropriate due to its dependence on var-
ious factors, the results are compared with previous results
reported recently in literature. As shown in Table 3, the
PPyANBA binder-containing EDLC has higher cyclic capac-
itance with considerably good cyclic capacitance retention.

Although there are multiple interpretations of the Nyquist
plots of EDLCs, with some even being controversial, EIS
analysis can provide information on the resistances of the
electrodes. Figure 5b illustrates the effect of the binder on
the impedance of EDLC electrodes. R1 and R2 are the first
and second x-intercepts of the Nyquist plot, respectively, and
the resistance R2 is the sum of the resistance R1 at a high
frequency and the resistance of the semicircle at the middle
frequency range. Despite the existence of multiple interpreta-
tions, it is generally accepted that the resistance R2, the so-
called internal resistance, is the sum of the bulk electrolyte
resistance, the contact resistances between the active materials
in the electrode as well as between the electrode and current
collector, and the electrolyte resistance in the pores of the

Table 2 Volume and surface
resistivities of the electrode
composite and the resistance of
the interface between the
composite and the current
collector

Binder-containing electrodes PANBA PPyANBA

Composite surface resistivity (mΩ cm2) 28.2 18.4

Composite volume resistivity (Ω cm) 3.32 2.17

Interface resistance (Ω cm2) 1.26 0.81

Fig. 5 aCycling performances of EDLC electrodes and bNyquist plots of the EDLCs containing different binders. Here, the 5-cycled EDLCswere used
for EIS experiments for the Nyquist plot
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electrode. The equivalent series resistance (ESR) and the
charge transfer resistance are often used to cover the above
resistances [60]. As shown in Fig. 5b, the internal resistance of
the EDLC cell containing the conductive PPy component in
the binder decreases by nearly 33% from 10.6 Ω for the sam-
ple without PPy to 7.15 Ω.

As the final investigation of the binder, rate capability tests
of the EDLC cells were conducted at a series of current den-
sities (0.5 mA cm−2, 1.0 mA cm−2, 5.0 mA cm−2, 10 mA
cm−2, and 50 mA cm−2), and the results are shown in Fig. 6.
Twenty cycles per each current density of charge and dis-
charge were carried out between 0.1 and 2.7 V. As expected
from the cyclic performance shown in Fig. 5a, the PPyANBA
binder increased the specific capacitance of the EDLC at mod-
erate current densities below 10 mA cm−2. However, the
highest current density of 50 mA cm−2 made the capacitance
lower when the conductive PPy component was added
in the binder, even though the difference is not so big.
This was unexpected because the conductive binder was
thought to be more favorable at such a high current
density than at low current densities due to its easier

electron transport in EDLC. One possible explanation
on this phenomenon may be related to the electrode
adhesion shown in Fig. 6b. Due to the rapid ion and
electron transport, the electrodes are damaged when
they are exposed to high current charge/discharge; this
damage is more severe in low adhesive electrodes. The
introduction of PPy to the PANBA binder lowered the
adhesion slightly, thus leading to smaller capacitance of
the EDLC only at the high current density when com-
pared with PANBA itself. However, the worse high-rate
performance of PPyANBA may not be simply explained
by the difference in the electrode adhesion. This could
be also affected by other factors such as electrolyte
wetting, ionic transport, distribution of binder particles,
and so on. Nevertheless, it should be noted that the
excess decrease in binder adhesion as a basic character-
istic of the binder cannot be compromised with any
other binder properties. The use of 1 wt% of PPy in
the PANBA binder was able to improve the perfor-
mance of EDLCs without considerable loss of the bind-
ing properties of the PANBA.

Fig. 6 a Rate capability performances of the EDLCs at various current densities. bAdhesion strength measured by 180° peel of the electrodes with error
bars

Table 3 Comparation with previous results in literature. Here, all of the EDLCs used the same active material, YP-50F

Binder Cycle number Final cyclic capacitance (F g−1) Capacitance retention (%) Energy density (Wh kg−1) Reference

PTFE 2000 90.0 96.0 19.5 [56]

PVDF 10,000 ≈ 73.0 91.9 15.8 [57]

PTFE 5000 ≈ 80.0 94.7 ∼ 18.8 [58]

CMC + SBR 5000 < 60.0 78.0 ∼ 10.0 [59]

PANBA 10,000 101.0 89.6 25.6 This work

PPyANBA 10,000 109.7 88.5 27.8 This work
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Conclusion

The conductive polymer composite poly(pyrrole/acrylonitrile-
co-butyl acrylate) (PPyANBA) has been successfully synthe-
sized by an in situ two-step emulsion polymerization with PPy
as a conductive filler and PANBA as a main polymer matrix,
as well as applied to EDLCs as the water-based binder, where
it has shown promising electrochemical performance. The
first step is to polymerize pyrrole in water medium, followed
by the emulsion polymerization of poly(acrylonitrile-co-butyl
acrylate) using the water-dispersed polypyrrole. The emulsion
polymerization is a good way to polymerize the conductive
polymer composite, because the continuous stirring force is
able to form uniform polymer particles and a long-term stable
polymer solution without sacrificing thermal stability. These
polymer particles have a good distribution as well as less
electrode pore blocking, which is beneficial for EDLCs cy-
cling performance. The conductive polymer composite binder
PPyANBA decreases not only the electrodes resistance but
also the interface resistance between the electrode and the
current collector. Furthermore, charges can be also moved
easier in electrode pores with the PPyANBA binder when
alternative current is applied. Overall, the EDLCs containing
the conductive PPyANBA binder are superior to those con-
taining the nonconductive PANBA binder in long-term cycles
at moderate current densities up to 10 mA cm−2.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10008-020-04864-z.
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