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Abstract
A mathematical model, derived from Fick’s second law for planar and spherical coordinates, is presented and solved to obtain
novel equations that satisfactorily predict the charge transfer and peak current observed in cyclic voltammetry of solid
hexacyanoferrates. For a planar geometry, two cases are considered. The first one takes into account the effect of the evolution
of the activities of the oxidized and reduced phases of the hexacyanoferrates on the peak currents, while in the second one, the
activities of both phases were considered as a constant. In the first case, an analysis of charges involved in the reaction is required
to obtain the molar fractions of the oxidized and reduced forms of the hexacyanoferrates. In this case, the solution of the model is
obtained numerically using the lines method. In the second case, the model is analytically solved obtaining a Randles-Ševčík-like
equation. When spherical coordinates are considered, the activities of the solid phase are assumed to be constant and the model is
analytically solved. In this way, other novel equations allowing the calculus of the electroactive electrode area and the diffusion
coefficient of the alkali ions are presented. The advantages of an analytical expression for the peak current as a function of the
square root of the potential scan rate, instead of a numerical solution, are analyzed. The validity of each model is proven by its
comparison with experimental measurements for peak currents in a carbon paste electrode containing nickel hexacyanoferrate
immersed in a 0.5M KNO3 solution.
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Introduction

Transition metal hexacyanoferrates (M ′HCF), written in their
oxidized or reduced state as MM ′ [Fe(III)(CN)6] and M2M
′ [Fe(II)(CN)6] respectively, are materials that possess interest-
ing electrochromic and electrochemical properties as well as
magnetic, zeolitic, and reversible redox behavior [1–3]. These
characteristics make them valuable materials in several tech-
nology areas such as the production of electrochromic screens
[4, 5], catalysis [6], photosensitive devices [7], ion-selective
sensors [8], and energy storage devices [9–11]. Due to their

nature, M ′HCF are natural candidates to be characterized by
electrochemical techniques through the use of modified elec-
trodes elaborated by fixing some crystals of M ′HCF either in
a paste [12] or on composite electrodes of graphite, paraffin,
and M ′HCF [13]. However, in both cases, the crystals are
randomly distributed in the carbon matrix, making determin-
ing the real electroactive area of the electrode difficult,
avoiding a complete physical characterization of this material,
e.g., the calculation of the diffusion coefficient of the alkali
ions inserting in the M ′HCF lattice. Some studies [13–16] try
to overcome this inconvenience using linear or cyclic volt-
ammetry and applying the Randles-Ševčík equation to calcu-
late such parameters. However, it should be highlighted that
the Randles-Ševčík equation, which predicts Ip in linear or
cyclic voltammetry for reversible and diffusion-controlled
electron transfer processes [17], was derived assuming the
following simple reversible reaction [18, 19]:

Oþ ne−⇄R ð1Þ

where the specie O, initially present in bulk solution, diffuses
and subsequently is reduced on the electrode surface to form
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the specie R by accepting n electrons. Once R is formed, it
diffuses into the bulk of the solution. Fick’s second law for this
process is solved with two boundary conditions for each spe-
cies: the first boundary condition describes that at certain dis-
tance from the electrode, x→∞, the concentration of R, or O,
is constant and corresponds to that in the bulk of the solution.
The second boundary condition expresses that the concentra-
tion of R, or O, varies depending on the applied polarization
potential, according with the Nernst equation. Thus, it is pos-
sible to derive a mathematical model that describes the
voltammetric behavior of the reaction (1).

In 1948, Randles [18] and Ševčík [19] independently solved
the model in Cartesian coordinates; later in 1964, Nicholson
and Shain [20] revisited the solution and solved it, not only in
Cartesian but also in spherical coordinates. In both cases, an
analytical solution could not be obtained, so a numerical ap-
proach was necessary. After a numerical analysis, Ip was found
as a function of n, v, DO, T, A, and C*

O for rectangular coordi-
nates; as is observed in the Randles-Ševčík equation,

Ip ¼ 0:4463nFAC*
O DO

nF
RT

v
� �1=2 ð2Þ

A plot of Ip vs. v1/2 gives a straight line with the

slope 0:4463nFAC*
O DO

nF
RT

� �1 2=
and zero intercept.

It should be highlighted that the electrochemical process
involved in (1), where the diffusion of O and R takes place in
liquid phase, is different to the one involved in M ′HCF mod-
ified electrodes, where the diffusion and insertion of alkali ions
into the M ′HCF lattice and the simultaneous oxidation and
reduction occur in the solid phase. The general electrochemical
reaction of a solid M ′HCF can be written as follows [21]:

MM0 Fe IIIð Þ CNð Þ6
h i

sð Þ
þMþ þ e−⇄M2M

0 Fe IIð Þ CNð Þ6
h i

sð Þ
ð3Þ

where M+ is an alkali cation in solution diffusing and inserting
into the M ′HCF lattice and M′ is the nitrogen coordinated
metal ion. In order to simplify the nomenclature,ω and ρ will
be used hereafter instead of MM ′ [Fe(III)(CN)6](s) and
M2M

′[Fe(II)(CN)6](s)respectively throughout the text.
Despite the significant differences between the reactions

(1) and (3), the Randles-Ševčík equation and its linear depen-
dence of Ip on v1/2 are frequently used to estimate both the
diffusion coefficients of alkali ions in the M ′HCF lattices and
the electroactive area of M ′HCF modified electrodes. An
example is the paper of Kahlert et al. [13], where the
Randles-Ševčík equation is employed to estimate the diffusion
coefficient of K+ ions in copper hexacyanoferrate (CuHCF)
fixed on a composite graphite electrode. There, the concentra-
tion of active centers of solid CuHCF instead of the bulk
concentration of K+ ions in solutionwas considered, accepting
that the Randles-Ševčík equation is valid for solid-phase

reactions. This approach provides diffusion coefficient values
for K+ at around 1 × 10−9 cm2 s−1. These values were corrob-
orated with electrochemical impedance spectroscopy (EIS),
which produced similar results. However, the EIS spectra
were interpreted assuming that a Warburg element, which is
derived for diffusional processes in solution [22], is able to
describe also diffusional processes in the solid phases. In order
to calculate the electroactive area of the electrode, the authors
[13] have carried out chronoamperometric measurements,
which indicated that this area is approximately 80 times small-
er than the geometric electrode area. The difference between
geometrical and real area has been ascribed to the fact that not
all the CuHCF particles are active, as some of them either lack
the contact to graphite or to the electrolyte solution. Once the
area was known, the Randles-Ševčík equation has been used
to calculate the diffusion coefficient.

On the other hand, Heli et al. [14] describe the sensing of N-
acetyl-L cysteine using a transducer of cobalt hexacyanoferrate
(CoHCF) nanoparticles and computed the diffusion coefficient
of Na+ ions in CoHCF using Randles-Ševčík equation. Unlike
Kahlert et al., Heli et al. considered that the adequate concen-
tration is the Na+ bulk concentration; however, even though the
experimental Ip vs. v1/2 lineal plot presents an intercept not
predicted by the Randles-Ševčík equation, it was employed to
calculate the diffusion coefficient, reporting values in the order
of 2 × 10−5 cm2 s−1. No explanation about the intercept was
given. Gholivand and Azadbakht [16] reported similar results.
They obtained non-zero intercept in their experimental Ip vs.
v1/2 plots, and even so, the Randles-Ševčík equation was
employed to calculate the diffusion coefficient of K+ ion in
zirconium hexacyanoferrate (ZrHCF).

Only some papers deal with the charge propagation in solid
M ′HCFs in a more rigorous manner; among which, the pa-
pers of Lovrić et al. [23] and Schröder et al. [24] should be
mentioned. Lovrić et al. have developed a theoretical analysis
for charge transfer reaction at the three-phase junction using a
two-dimensional semi-infinite model, which considers the dif-
fusion of electrons and ions within the crystal lattice. They
conclude that the net current is the sum of both the surface
and the bulk current; however, the former can be negligible in
cases where the bulk reaction is dominating. On the other
hand, Schröder et al. have presented a numerical simulation
for a single crystal potential-step experiment in order to un-
derstand the electrochemical conversion of an immobilized
particle on an electrode. They also evaluated the possibility
to derive geometric parameters or individual diffusion coeffi-
cients from a chronoamperometric curve, concluding that the
electrochemical reduction depends on the crystal geometry,
which in some cases can be simulated using two- or three-
dimensional models. As Schröder et al. claim in [24], it is
mandatory to combine theoretical and experimental efforts to
reach a better understanding of the mechanisms of the inser-
tion in solid-state electrochemical reactions.
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In this work, amodel is presented to predict the peak current Ip
associated with the charge transfer in solid M ′HCFs. The model
provides a Randles-Ševčík-like equation considering the chemi-
cal reaction (3) in which the oxidation and reduction of solid M ′
HCF in conjunction with the insertion of an alkali ion is consid-
ered, instead of reaction (1). The objective of this work is to
contribute a fundamental understanding of the phenomenological
aspects associated with the electrochemical reactions in solid M ′
HCF, providing an explanation of the well-known non-zero in-
tercept in Ip vs. v

1/2 plots. As in the Randles-Ševčík procedure,
here, Fick’s second lawwas solved taking into account the proper
boundary conditions. The resulting model can be solved both
numerically and, under certain considerations, analytically. In
order to validate the model, the peak currents Ip were used which
were experimentallymeasured at several scan rates v, for a carbon
paste electrode containing nickel hexacyanoferrate (NiHCF) im-
mersed in a 0.5-M KNO3 solution.

Theoretical framework

A fast electron transfer reaction (3) and equilibrium at the
electrode surface allow to formulate the Nernst equation as
follows:

E ¼ E°þ RT
nF

ln
aωaMþ

aρ

� �
ð4Þ

Since the activity ai is related to the concentrationCi and the
activity coefficient γi, Eq. (4) can be expressed as

E ¼ E°þ RT
nF

ln
γω
γρ

 !
þ RT

nF
ln γMþð Þ þ RT

nF
ln

Cω

Cρ

� �

þ RT
nF

ln CMþ 0; tð Þ½ � ð5Þ

Furthermore, if the concentrations of solid species,ω (MM
′ [Fe(III)(CN)6](s)) and ρ (M2M ′ [Fe(II)(CN)6](s)) for reaction
(3), are written in terms of Xω(t) as Lovrić et al., suggested
[25], then Eq. (5) is given as

E ¼ E°þ RT
nF

ln
γω
γρ

 !
þ RT

nF
ln γMþð Þ

þ RT
nF

ln
Xω tð Þ

1−Xω tð Þ
� �

þ RT
nF

ln CMþ 0; tð Þ½ � ð6Þ

The first three terms in (6) can be regarded as the formal
potential of reaction (3). Subsequently, the Nernst equation for
reaction (3) is expressed as

E ¼ E°
0 þ RT

nF
ln

Xω tð Þ
1−Xω tð Þ
� �

þ RT
nF

ln CMþ 0; tð Þ½ � ð7Þ

Then the formal potential follows as

E°
0 ¼ Eeq−

RT
nF

ln
X eq

ω

1−X eq
ω

� �
−
RT
nF

ln C*
Mþ

� � ð8Þ

At this point, it is necessary to remember that for linear
sweep voltammetry, E will decrease linearly as follows:

E ¼ Eeq−vt ð9Þ

where E can be expressed by substituting (8) in the Nernst
equation (7):

E ¼ Eeq−
RT
nF

ln
X eq

ω

1−X eq
ω

� �
−
RT
nF

ln C*
Mþ

� �
þ RT

nF
ln

Xω tð Þ
1−Xω tð Þ

� �
þ RT

nF
ln CMþ 0; tð Þð Þ ð10Þ

By substituting (9) in (10), the following expression is ob-
tained:

Eeq−vt ¼ Eeq þ RT
nF

ln
1−X eq

ω

X eq
ω

Xω tð Þ
1−Xω tð Þ

� �

þ RT
nF

ln
CMþ 0; tð Þ

C*
Mþ

 !
ð11Þ

Equation (11) establishes, in a thermodynamic way, a rela-
tionship between the concentration of the alkali ion and the
time elapsed in a voltammetric experiment.

Considering reaction (3), assuming unidirectional mass
transport towards the M ′ HCF modified electrode and
neglecting convective and migrational contributions, the tran-
sient M+ concentration can be described by the Fick’s second
law:

∂CMþ x; tð Þ
∂t

¼ DMþ
∂2CMþ x; tð Þ

∂x2
x≥0; t≥0 ð12aÞ

with the following initial and boundary conditions:

CMþ x; 0ð Þ ¼ C*
Mþ ð12bÞ

limx→∞CMþ x; tð Þ ¼ C*
Mþ ð12cÞ

CMþ 0; tð Þ ¼ 1−Xω tð Þ
Xω tð Þ

X eq
ω

1−X eq
ω
C*

Mþexp −btð Þ ð12dÞ

A schematic diagram for the model described by Eq.
(12a,b,c,d) is given in Fig. 1.

Initial condition (12b)describesanelectrolyte solution ini-

tially containing M+ at the bulk concentration C*
Mþ . (12c) re-

latestoaconstantconcentrationofM+atsemi-infinitedistance
from the M ′HCF modified electrode. These two conditions
are quite similar to thoseused forRandles-Ševčík [18, 19] and
Nicholson and Shain [20]. Themain difference between their
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approach and the one presented in this work is the condition
(12d), which is deduced by solving Eq. (11) forCMþ 0; tð Þ:

Once the model described in (12) is numerically solved
CMþ x; tð Þ, its time derivative can be calculated and solved
for x = 0. Then, the current describing the flux of M+ is ob-
tained using Fick’s first law [17]:

I tð Þ ¼ −nFADMþ
∂CMþ x; tð Þ

∂t

����
x¼0

ð13Þ

It should be noticed that, in order to solve the model (12), it
is necessary to know X eq

ω as well as the evolution of the mole
fraction of Xω(t). Since E ° ′ has been reported for several M ′

HCF [26], and Eeq as well as C*
Mþ can be determined experi-

mentally,X eq
ω can be readily obtained fromEq. (8). On the other

hand, there are some methods to compute Xω(t) [27]; one of
them uses the numerical calculus of the transient charge related
to reaction (3), which requires experimental measurements.

In this work, in order to validate the theoretical model (12),
a particular electrochemical interface, namely NiHCF modi-
fied electrode/ KNO3 electrolyte, was experimentally studied
by cyclic voltammetry. The details of the experimental mea-
surements, the calculus of the transient charge, and the
obtaining Xω(t) are presented here. The numerical solution
of the model and the current response provided by Eq. (13)
are described in the following sections.

Experimental

Preparation of NiHCF

NiHCF was prepared by mixing 10 mL of 0.01M NiCl2 solu-
tion (NiCl2 ∙ 6H2O, 99% from Golden Bell) with 10 mL of

0.01M K3[Fe(CN)6] solution (J. T. Baker). The dissolution
was centrifuged at 3000 rpm for 10 min and washed with
distilled water. The precipitates were dried at 40°C under vac-
uum for 12 h and subsequently milled in an agate mortar to
obtain fine crystals of NiHCF.

Preparation of the NiHCF modified electrode

The modified electrode was prepared by using carbon paste,
which incorporates fine crystalline NiHCF. The paste was
made by mixing 0.475 g of graphite powder (Sigma Aldrich)
and 0.025 g of previously synthetized NiHCF with 0.5 mL of
Nujol oil (Sigma Aldrich) to obtain a homogeneous and pasty
material with a resistance value not bigger than 10 Ω for the
assembled electrode. This material was placed inside a syringe;
its piston allowed compacting the material and renewal of the
electrode surface area, which had a diameter around of 5 mm.
The carbon paste was contacted by a copper wire.

Electrochemical measurements

A conventional three-electrode cell was employed. The car-
bon paste modified electrode with the NiHCF was used as
working electrode (0.1963 cm2 geometrical area). A platinum
foil was used as counter electrode, while a saturated calomel
electrode (SCE) was used as reference. KNO3 0.5 M was used
as electrolyte solution.

Cyclic voltammetry measurements were carried out at scan
rates between 20 and 100 V s−1, starting from the open circuit
potential (0.335 V vs. SCE) in anodic direction, in a polarization
range from − 0.4 to 1.1 V vs. SCE, at 25 °C and atmospheric
pressure. In all cases, a potentiostat Autolab PGSTAT 128N was
used. The data were collected using Nova 2.0 software. All peak
currents shown in Table 1 are reported taking into account a

Fig. 1 Representation of a portion of crystalline matrix where both
oxidized and reduced phases of hexacyanoferrate can be seen.

represents the nickel linked with nitrogen atoms and represents the
iron linked with carbon atoms
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baseline correction with the purpose of not considering the con-
tribution of the capacitive current. Base line correction was car-
ried out using the methodology described in [17].

Results and discussion

The electrochemical response of the NiHCF modified
electrode immersed in KNO3 solution and numerical
calculation of Xω(t)

Figure 2 shows the experimental cyclic voltammograms at dif-
ferent scan rates for the NiHCF modified electrode immerse in
the electrolyte solution. Figure 2 clearly depicts the anodic and
cathodic responses associated to the following equilibrium:

KNi Fe IIIð Þ CNð Þ6
h i

sð Þ
þ Kþ

aqð Þ þ e−⇄K2Ni Fe
IIð Þ CNð Þ6

h i
sð Þ

ð14Þ
which is a particular case of reaction (3).

The voltammetric responses illustrated in Fig. 2 allow the
numerical calculation of the charge transferred as a function of
time, which is due to the formation of the mole fraction of
KNi[Fe(III)(CN)6](s) in reaction (14) from right to left side.
Table 1 presents (Qa)v and (Qc)v, for the polarization range
depicted in each cyclic voltammogram shown in Fig. 2. The
linear behavior of 1/|(Qa)v| and 1/|(Qc)v|, generalized as 1/|(Q)v|,
as a function of v1/2 is shown in Fig. 3. The maximum possible
charge for the anodic and cathodic process is determined by
extrapolating 1/(Qa)v or 1/(Qc)v to v = 0 mV s−1. This value
corresponds to 0.021 C and 0.019 C for the anodic and cathod-
ic charge respectively, and it is related to the maximum amount
of mole of KNi[Fe(III)(CN)6](s) or K2Ni[Fe

(II)(CN)6](s) reacting
in (14). Then, Xω at v > 0, for the whole anodic or cathodic
polarization range studied, can be defined as follows:

Xωð Þa ¼
Qað Þv
Qað Þv¼0

ð15aÞ

Xωð Þc ¼
Qcð Þv
Qcð Þv¼0

ð15bÞ

Table 1 summarizes these values for each scan rate.
The evolution of Xω(t) can be computed from Fig. 2 ac-

cording to

Xω tð Þ ¼ Qa tð Þjv
Qað Þv¼0

ð16Þ

Figure 4 shows, as an example, the graphical response of
Qa(t)|v at v=20 mV s−1 and its corresponding Xω(t) value as a
function of the polarization potential.

Table 1 Anodic and cathodic charges defined in (15) for different v

v
mVs‐1

Qað Þv
Cð Þ � 103

Qcð Þv
Cð Þ � 103

(Xω)a (Xω)c

20 2.8 − 2.9 0.13 0.15

30 2.3 − 2.4 0.11 0.12

40 2 − 2.0 0.09 0.1

50 1.8 − 1.8 0.08 0.09

60 1.6 − 1.7 0.07 0.09

70 1.6 − 1.6 0.07 0.08

80 1.5 − 1.5 0.07 0.08

90 1.4 − 1.4 0.06 0.07

100 1.3 − 1.4 0.06 0.07

Fig. 2 Experimental cyclic voltammograms at different scan rates (20–
100 mV s−1) for NiHCF modified electrode in 0.5M KNO3 solution Fig. 3 Reciprocal total anodic (red) and cathodic (blue) charge vs. v1/2
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On the other hand, X eq
ω can be calculated from Eq. (8)

assuming a bulk concentration of KNO3 of 0.5 M, an equilib-
rium potential experimentally measured of 0.335 V vs. SCE,
and the formal potential of 0.522 V vs. SCE as it was reported
in [26]. According to the calculation, the X eq

ω value corre-
sponds to 3.956 × 10−5, indicating that at the equilibrium, the
K2Ni[Fe

(II)(CN)6](s) species is thermodynamically favored, as
it was also found earlier [21].

Once X eq
ω and Xω(t) are determined, the model given in

(12) can be numerically solved and subsequently, the current
as a function of time can be computed.

Numerical solution of the proposed model and its
comparison with the experimental measurements

The numerical solution of Eq. (12a,b,c,d) required its
discretization to produce a system of ordinary differential
equations which were solved by the second-order modified
Rosenbrock method by using MatLab® software.

Figure 5a shows the theoretical cyclic voltammetry obtain-
ed numerically at several scan rates. The linear dependence of
Ip vs. v

1/2could be predicted evaluating (13) at its maximum
for anodic and cathodic branches. Its comparison with the
experimental response of the NiHCF modified electrode/
KNO3 interface is shown in Fig. 5b. In all cases, X eq

ω equals
to 3.956 × 10−5, a diffusion coefficient of K+ of 1.29 ×
10−5 cm2 s−1 [28] and 0.335 V vs. SCE as equilibrium poten-
tial were fixed values, while the electroactive area was con-
sidered as a fitted parameter in the numerical solution. The
optimal electroactive area for several simulations was 2.01 ×
10−3 cm2 which is around of 100 times lower than the geo-
metric area used in the experimental measurements, which is a
common relation reported in literature [13].

As it is observed in Fig. 5a, the numerical solution of the
model adequately predicts the typical shape of cyclic voltam-
mograms. On the other hand, the prediction of Ip adequately
reproduces the linear behavior with non-zero intercept observed
in the experimental measurement as it is shown in Fig. 5b.
Furthermore, a statistical analysis based on Fisher’s least signif-
icance differences for the experimental and theoretical behavior
of cathodic and anodic peak responses reveals that both are
similar within 95% confidence interval. Thus, the model pro-
posed in (12) and its treatment to obtain the current response
given by Eq. (13) adequately describe the electrochemical re-
sponse of solid M ′HCF and support the idea that the non-zero
intercept observed in Fig. 5b cannot be ignored in order to apply
simplified models such as the Randles-Ševčík.

Even though the model successfully describes the peak
current obtained from the voltammograms, its solution by nu-
merical methods limits its practical application. Thus, an ana-
lytical solution that explicitly relates the current as a function
of interfacial parameters such as electroactive area, diffusion
coefficient, bulk concentration, or the number of electrons
included in the reaction is preferred.

The model could be analytically solved if the condition
(12d) is simplified. In order to evaluate this possibility, the
contribution of each term included in the Nernst equation (7)
is evaluated numerically. Figure 6 shows each of these contri-
butions, where potential and time are related by (9). As it is

observed, E ° ′ and RT
nF ln

Xω tð Þ
1−Xω tð Þ
� �

remain practically constant

in the entire evaluated polarization range, while RT
nF ln

CMþ 0; tð Þ½ � shows a linear behavior with a positive slope.
Considering the constant behavior of both E ° ′ and
RT
nF ln

Xω tð Þ
1−Xω tð Þ
� �

, it is possible to combine them into a new pa-

rameter, defined as apparent formal potential E°′′

E°
00 ¼ E°

0 þ RT
nF

ln
Xω tð Þ

1−Xω tð Þ
� �

ð17Þ

If Eq. (17) is considered instead of Eq. (8), and applying a
similar mathematical derivation to the one shown in (9-11),
then condition (12d) can be rewritten as

CMþ 0; tð Þ ¼ C*
Mþexp −btð Þ ð18Þ

Figure 7 shows a graphical concentration profile at x = 0 for
the comparison between the original condition (12d) and the
simplified one in (18), both calculated numerically at 20
mV s−1. The same behavior is noticeable at other studied po-
larization scan rates. As it is observed, slight differences be-
tween both curves are perceived between 2 and 8 s. These

differences are associated to the preexponential term 1−Xω tð Þ
Xω tð Þ �

X eq
ω

1−X eq
ω
presented in condition (12d) that favors a slower decre-

ment of CMþ 0; tð Þ in comparison with the one obtained with
condition (18).

Fig. 4 Cathodic charge (blue) andmolar fraction calculated from Eq. (16)
(black) as a potential function for v = 20 mV s−1
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Equation (12a) with the conditions (12b), (12c), and (18)
constitutes a simplified model describing the electrochemical
response of a M ′HCF modified electrode in an electrolyte
solution. The simplified model can be solved analytically in
planar and spherical coordinates.

Analytical solution for a simplified model: planar
coordinates

Using the Laplace transform method and applying the condi-
tions (12b), (12c), and (18), the solution of Eq. (12a) in planar
coordinates gives

gCMþ x; sð Þ ¼ C*
Mþ

s
þ C*

Mþ

sþ b
−
C*

Mþ

s

� �
exp −

ffiffiffiffiffiffiffiffiffiffi
s

DMþ

r
x

� �
ð19Þ

Then, transforming Eq. (13) and by inserting it in Eq. (19),

it is possible to predict the diffusion current gI sð Þ at the elec-
trode surface in the Laplace domain:

gI sð Þ ¼ nFADMþ
∂gCMþ x; sð Þ

∂x

" #
x¼0

¼ nFAC*
Mþ

ffiffiffiffiffiffiffiffiffiffi
DMþ

s

r
−nFAC*

Mþ
ffiffiffiffiffiffiffiffiffi
DMþ

p ffiffi
s

p
sþ b

ð20Þ

Equation (20) was inversely transformed using
WolframAlpha® allowing to obtain the current expression in
the time domain:

I tð Þ ¼ nFAC*
Mþ DMþbð Þ1=2σ btð Þ ð21aÞ

σ btð Þ ¼ exp −btð Þerfi
ffiffiffiffi
bt

p� �
ð21bÞ

Fig. 7 Comparison between concentration profiles provided by (12d)
(blue) and considering ideal planar diffusion (18) (red)

Fig. 5 a Theoretical
voltammograms obtained by
model (12) at v=20, 50, and
100mV s−1 in blue, red, and black
lines, respectively. b Ipa, Ipc vs.
v1/2: experimental data (black),
theoretical planar diffusion (blue),
solving model (12) considering
molar fraction as a function of
time (red)

Fig. 6 Potential contribution of each term in Eq. (7), E°′ (cyan), RT
nF ln

Xω tð Þ
1−Xω tð Þ
� �

(blue), RTnF ln CMþ 0; tð Þ½ � (red), total potential E (black)
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where erfi is the imaginary error function defined as

erfi zð Þ ¼ 2ffiffiffi
π

p ∫z0exp y2
� �

dy ¼ − j ∙ erf jzð Þ ð22Þ

where j is the imaginary unit,
ffiffiffiffiffiffi
−1

p
.

As it is noticed, the mathematical structure of expression
(21a) is similar to the one obtained by Randles [18], Ševčík
[19], and Nicholson and Shain [20], then (21b) is strongly
related to Dawson’s function, Daw(z), [29] defined as follows:

Daw zð Þ ¼ exp −z2
� �

∫z0exp y2
� �

dy ¼
ffiffiffi
π

p
2
exp −x2
� �

erfi zð Þ ð23Þ

and it is analogous to the current function proposed in [20].
Figure 8 shows the behavior of the σ(bt) function.

As it is observed, σ(bt) reaches its maximum value at 0.6105
and bt = 0.8540 which is 1.37 times bigger than the one pre-
dicted by the current function in the Randles-Ševčík model
corresponding to 0.4463 [20], so the differences by considering
reaction (1) instead of reaction (3) are considerable.

If Eq. (21b) is solved for its maximum, it is possible to
obtain an expression for Ip:

Ip ¼ 0:6105nFAC*
Mþ DMþ

nF
RT

v
� �1=2 ð24Þ

Despite its similarity, Eq. (24) should not be confused with
the Randles-Ševčík equation. Equation (24) is more appropri-
ate than the Randles-Ševčík equation when reaction (3) is
considered instead of reaction (1).

On the other hand, the Ep corresponding to (24) can be ob-
tained by expressing the Nernst equation at the equilibriums as

Eeq ¼ E°
00 þ RT

nF
ln C*

Mþ
� � ð25Þ

Then, substituting (25) in (9) gives

E ¼ E°
0 0 þ RT

nF
ln C*

Mþ
� �

−vt ð26Þ

Finally, the evaluation of (26) at the vt value where σ(bt)
reaches its maximum corresponds to

vt ¼ 0:8540
RT
nF

ð27Þ

Generating an expression for Ep gives

Ep ¼ E°
00 þ RT

nF
ln C*

Mþ
� �

−0:8540
RT
nF

ð28Þ

Equations (24) and (28) are useful because they show the
explicit relationship between electrical properties, Ip and Ep,
and experimental variables such asC*

Mþ , n, A,DMþ ; and T. For
instance, Eq. (24) shows the linear behavior of Ip as a function

of v1/2, with a slope equals to 0:6105nFAC*
Mþ DMþ nF

RT

� �1=2 .

This behavior is useful in practical or analytical applications
to determine either n, A, or DMþ. However, it should be no-
ticed that Eq. (24) predicts an intercept equal to zero, which
does not correspond to the experimental data (Fig. 5b). This
deviation is caused by the changes of mole fraction of the

oxidized and reduced species given by the term 1−Xω tð Þ
Xω tð Þ

X eq
ω

1−X eq
ω
,

which was assumed equals to one in the simplified model, as it
can be seen in condition (18).

In this manner, Ip as a function of v1/2 will reach higher
values than those obtained in experimental measurements;
however, the same slope will be attained in both cases, as
observed in Fig. 5b.

Analytical solution for the simplified model: spherical
coordinates

Fick’s second law given in (12a) in spherical coordinates is
written as follows:

∂CMþ r; tð Þ
∂t

¼ DMþ
∂2CMþ r; tð Þ

∂r2
þ 2

r
∂CMþ r; tð Þ

∂r


 �
ð29Þ

Solving Eq. (29) is useful to understand the alkali cation
concentration and insertion into the M ′HCF lattice on spher-
ical modified electrodes of r0 radius.

By performing a variable substitution, Eq. (29) becomes in
planar coordinates:

CMþ r; tð Þ ¼ w r; tð Þ
r

ð30Þ

Fig. 8 Current function for an ideal planar electrode according to Eq.
(21b)
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where w(r, t) is an auxiliary function to be determined.
Substituting (30) in (29) and using the conditions (12b),
(12d), and (18) lead to the next boundary problem, which
has to be solved:

∂w r; tð Þ
∂t

¼ DMþ
∂2w r; tð Þ

∂r2
ð31aÞ

w r; 0ð Þ ¼ rC*
Mþ ð31bÞ

limr→∞w r; tð Þ ¼ rC*
Mþ ð31cÞ

w r0; tð Þ ¼ rC*
Mþexp −btð Þ ð31dÞ

By applying a similar strategy to the one presented for the
planar coordinates and inverting the change of variable de-
scribed in (30), the following current-time expression in spher-
ical coordinates is obtained:

I tð Þ ¼ nFAC*
Mþ DMþbð Þ1=2σ btð Þ þ nFADMþC*

Mþ

r0
ð32Þ

Equation (32) includes two terms: the first one corresponds
to the solution of the problem for a planar electrode, Eq. (21a),
while the second one is known as the spherical correction and
it is similar to that obtained by Nicholson and Shain [20] and
Frankenthal [30] for reaction (1) occurring on spherical
electrodes.

When Eq. (32) is solved for σ(bt) reaching its maximum
value, 0.6105, the peak current is predicted as follows:

Ip ¼ 0:6105nFAC*
Mþ DMþ

nF
RT

v
� �1=2 þ nFADMþC*

Mþ

r0
ð33Þ

On the other hand, the Ep is expressed by Eq. (28).
Unlike (24), Eq. (33) possesses a linear behavior with a

slope m and intercept i0 defined as

m ¼ 0:6105nFAC*
Mþ DMþ

nF
RT

� �1=2 ð34Þ

i0 ¼ nFADMþC*
Mþ

r0
ð35Þ

Thus, the simplified model in spherical coordinates predicts
higher Ip values than those predicted in planar coordinates and
a non-zero intercept. Furthermore, from a graphical analysis of
experimental Ip values measured at several v values, it is pos-
sible to obtain the slopem and intercept i0 by using least square
method. Then, from the simultaneous solving of (34) and (35),
the diffusion coefficient of the alkali ions and electroactive
area can be calculated as follows:

DMþ ¼ 0:6105

4πnFC*
Mþm

i02
ffiffiffiffiffiffiffi
nF
RT

r !2=3

ð36Þ

A ¼ 4π

0:6105ð Þ24πnFC*
Mþ

m2
nF
RT

� �
i0

� �2=3
ð37Þ

Some comments concerning the simplified model
and the experimental response for NiHCF

According to Fig. 5b, the behavior of experimental data of Ip
vs. v1/2 is linear with non-zero intercept, in good agreement to
previous researches [13–16]. This behavior is nearly described
by Eq. (24) for a planar electrode, as the one depicted in Fig.
9a, matching adequately in the slope, but differing in the in-
tercept. From an inspection of Eq. (33), it is evident that a non-
zero intercept is obtained when spherical diffusion is consid-
ered. Diffusion in a spherical geometry is shown in Fig. 9b.
Thus, the deviation observed between the experimental data
and Eq. (24) is related, in an empirical manner, to two different
phenomena: the own nature of the NiHCF modified electrode
and the variation of its electroactive area with time. Regarding
the nature of the electrode, the distribution of the NiHCF crys-
tals on the carbon paste surface is not perfect, but random,
which modifies the geometry of the interface and the diffusion
profile as it is depicted, as a first empirical hypothesis, in Fig.
9c. On the other hand, the variation of the electroactive area is
a function of time, which is induced by the variation of the

mole fraction required in the term 1−Xω tð Þ
Xω tð Þ presented in (6),

which was considered as constant in (17) to simplify the orig-
inal model (12) and solved analytically. In this manner, the
geometry of the interface formed by the M ′HCF crystal and
the electrolyte is a preponderant factor in the current response,
as was pointed out in [24].

Under the assumption that the interface is represented by
Fig. 9c, Eq. (33) was fitted to the experimental data for
NiHCF/KNO3 interface and, with them and i0 values obtained,
Eqs. (34) and (35) were simultaneously solved to obtain a
mean electroactive area of 7.01 × 10−3 cm2 and a mean diffu-
sion coefficient of 1.05 × 10−6 cm2/s. The diffusion coefficient
of the alkali ion estimated using the spherical coordinate dif-
fers by one order of magnitude from that reported in the liter-
ature as 1.29 × 10−5 cm2 s−1 [28] and the electroactive area is
3.5 times greater than the one obtained by means of the simu-
lations shown in Section 4.2 with a value of 2.01 × 10−3 cm2.
Thus, the parameters estimated by Eqs. (36) and (37) should be
used with suspicion when the geometry is not strictly spheri-
cal; however, they can give a first approximation to the real
values for systems described by Fig. 9c.

Therefore, the simplified model given in (31) is a coarse
approximation and a practical strategy which avoids the nu-
merical solution of model (12) to obtain, on one hand, an
analytical expression of Ip as a function of v

1/2 describing the
typical non-zero intercept observed for the charge transfer in
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solid M ′HCF and on the other hand, allows, in a simple
way, the calculus of attractive useful parameters namely
electroactive area and diffusion coefficient of alkali ions.

Conclusions

A thorough revision concerning the Randles-Ševčík theory to
understand the electrochemical processes of M ′HCF modi-
fied electrodes is presented. According to the revision, a rig-
orous model in planar coordinates to predict the peak currents
was proposed, numerically solved, and compared with exper-
imental measurements for NiHCF/ KNO3 interface. A com-
parison between the experimental and theoretical Ip as a func-
tion of v1/2 shows a correlation of 95%, allowing the calculus
of the electroactive area of the electrode or the diffusion coef-
ficient of alkali ions in solution using Eq. (24).

Based on experimental evidence, the non-appreciable

changes in the term 1−Xω tð Þ
Xω tð Þ

X eq
ω

1−X eq
ω
allowed simplifying the pro-

posed model to obtain one, which was solved analytically in
planar and spherical coordinates by the Laplace transform
method. For both coordinates, the analytical expression for
Ip as function of v1/2 predicted a linear behavior; however, in
the planar coordinates, an intercept equal to zerowas obtained,
differing to the experimental measurements, while in spherical
coordinates, a given intercept was determined. Then, the in-
tercept observed in experimental measurements was associat-
ed to the changes in the electroactive area as a function of
time, generated by the variations of the mole fraction of the
M ′HCF, which in turn could favor a radial-like diffusion
rather than a planar one.

It is shown that, even with the simplifications, the analyti-
cal solution is useful to calculate, in a simple way and as a first

approximation, parameters such as the electrode electroactive
area and diffusion coefficient of a particular ion inserting into
the M ′HCF lattice, since it predicts the behavior of the slope
that is obtained experimentally when Ip as a function of v

1/2 is
plotted.

Although this paper presents the theory for the example of
solid hexacyanoferrates, it is highly probable that the theory is
equally applicable for all other insertion electrochemical sys-
tems, where the solid electroactive material is dispersed on an
electrode surface

Fig. 9 Schematic representation
of a NiHCF modified electrode
where the reaction (14) takes
place. a Planar diffusion of Kþ

aqð Þ
from bulk to electrode surface. b
Spherical diffusion of Kþ

aqð Þ. c
Hypothetical diffusion of Kþ

aqð Þ

Glossary

Symbol Meaning Units

A Area cm2

ai Activity of specie i None

b nF
RT v s−1

Ci Concentration of species i mol cm−3

C*
i Bulk concentration of species i mol cm−3eCi x; sð Þ Laplace-transformed concentration mol s cm−3

Di Diffusion coefficient of species i cm2 s−1

e− Electron None

E Potential of an electrode versus a reference V

E° Standard potential of an electrode V

E°′ Formal potential of an electrode V

E°′′ Apparent formal potential of an electrode V

Eeq Equilibrium potential of an electrode V

Ep Peak potential V

F Faraday’s constant C mol−1

γi Activity coefficient for species i none

i0 Straight line intercept in (33)
nFADMþC*

Mþ
r0

A

I Current A

Ip Peak current A
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Ipa Anodic peak current A

Ipc Cathodic peak current AgI sð Þ Laplace-transformed current A s

m Straight line slope in (33) A s1/2 V−1/2

n Stoichiometric number of electrons involved
in the electrode reaction

None

(Qa)v Total anodic charge, experimentally
obtained, for a scan rate v

C

Qa(t)|v Total anodic charge, experimentally obtained, for
a scan rate v as a time function

(Qc)v Total cathodic charge, experimentally obtained,
for a scan rate v

C

Qc(t)|v Cathodic charge, experimentally obtained, for a
scan rate v as a time function

r Radial distance from the center of the electrode cm

r0 Radius of an spherical electrode cm

R Gas constant J mol−1 K−1

s Laplace’s variable s−1

t Time s

T Absolute temperature K

v Linear potential scan rate V s−1

w(r, t) Auxiliary function mol cm−2

x Coordinate away from the electrode cm

Xi Molar fraction of species i None

Xi(t) Molar fraction of species i as a time function None

X eq
i Molar fraction of species i at equilibrium None
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