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A facile preparation of nano-Ag4Bi2O5/MnOx on wrinkled rGO
as greatly enhanced ternary catalyst for oxygen reduction reaction
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Abstract
Nano-Ag4Bi2O5/MnOx@rGO ternary composite was prepared via a facile coprecipitation method in rGO dispersed concentrated
KOH solution under precisely controlled conditions. Morphology characterizations indicate that the Ag4Bi2O5/MnOx composite
with corncob-like shape of 200 nm in length and 50 nm in width is loaded on the wrinkled rGO. The electrochemical tests find
that the optimized ternary catalyst with 60% rGO contained offers much higher initial potential (0.0799 V vs. Hg/HgO) and
limiting current density (6.164 mA cm−2) than that of the standardized Pt/C (0.017 V and 5.09 mA cm−2) at a rotation rate of
1600 rpm. Furthermore, the catalyst possesses preferable durability and anti-methanol as compared with Pt/C. The Ag4Bi2O5/
MnOx/rGO with surperior ORR properties indicates that it will be a promising catalyst for oxygen reduction reaction in alkaline
electrolyte.
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Introduction

Recently, due to the overuse of fossil energy, energy dilemma
and environmental issue have become serious increasingly.
Hence, the seeking for new projects to deal with the increas-
ingly strained energy dilemma has been one of the most press-
ing challenges [1–3]. The fuel cell has attracted broad atten-
tion as a new type of high-efficient power source because it
not only converts chemical energy into electric energy directly
but also breaks through the limitation of Carnot cycle thermal
efficiency. Compared to the fast anode process on the hydro-
gen electrode, the slow cathode process of oxygen relates to
the breaking of O=O and the four-electron reduction process

[4–7]. It is urgent to develop efficient catalysts to enhance the
speed of oxygen reduction reaction which has a slow kinetic
process with the higher activation energy and to promote the
efficiency and specific power of the fuel cell [8–12].

Although platinum catalyst exhibits unique electrochemi-
cal performance, the scarcity and high cost limit its large-scale
commercialization so that it becomes research focus to devel-
op and improve new platinum free electrocatalysts which can
substitute for platinum-based catalysts [13–20]. Moreover, it
is more significant to exploit new catalyst used in alkaline
electrolyte rather than in acid electrolyte because alkaline elec-
trolyte offers more gentle corrosion to most of the metal oxide
contained in catalysts [21]. At present, some hot materials
have been proposed and researched, such as metal
carbonitride catalysts [22–24], metal nitride catalysts
[25–27], and transition metal oxides catalysts (e.g., MnOx)
[28–33]. Manganese dioxide has aroused much interest as an
alternative catalyst because of its low price, abundant re-
sources, various valence states, and environmental friendli-
ness [28]. Liu Jing et al. have synthesized different morphol-
ogies of Mn3O4 and the comparison of them shows that the
Mn3O4 nanoflakes possess better overall performance (v1/2 of
0.82 V vs. RHE and j of 0.45 mA) than the morphology of
nanoparticles and nanorods [30]. Cheng Fangyi et al. found
that the catalyst activity of ORR of MnO2 followed the order
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of α- > β- > γ-MnO2 and the MnO2 nanowires @Ni nano-
particles compound exhibited great properties with v0 of
0.08 V (vs. Ag/AgCl) and j of 33.5 mA mg−1 [31]. Hazarika
et al. have prepared a material in which mesoporous cubical
Mn2O3 loaded on an active carbon with good ORR properties,
showing a limited current of 4.4 mA cm−2 with high initial
potential at 1600 rpm [32]. Manganese dioxide-based cata-
lysts have shown good electrocatalytic properties for reduc-
tion of oxygen via 4 electron reaction pathways, while
manganese-based catalysts have the disadvantage of being
easy to decay in characteristics and the pure structure has
unsatisfactory property [34].

Hence, some new research has been investigated on the
MnO2 for improving its catalytic performance, and metal
cations as dopants have been introduced to alleviate the
instability of structure during charging and discharging
processes [35–37]. Silver and silver-based catalysts have
not only high electrochemical activity and good methanol
resistance but also strong stability which can support
MnO2 to a certain extent [21, 38–41]. However, the infe-
rior conductivity and dispersibility of nanometal oxide
particles have become the bottleneck limiting their further
application [42]. The reduced graphene oxide (rGO), es-
p e c i a l l y t h e w r i nk l e d rGO she e t s w i t h h i gh
electroconductivity and large surface area, provide numer-
ous nucleation sites to restrain the growth of nanoparti-
cles. The wrinkled rGO as the new carrier can combine
with metal oxide to provide more active sites, which can
significantly improve their electrical conductivity, accel-
erate charge transport, and further reduce the polarization

of ORR process [43–51]. Here, we propose a new ternary
catalyst, Ag4Bi2O5/MnOx (1 ≤ x ≤ 2), grown on wrinkled
rGO. It has remarkably enhanced performance and over-
come the abovementioned drawbacks of simplex catalyst
by means of its better natural dispersibility, improved
electrical conductivity, and new synergistic effect.

Herein, rGO-supported nano-Ag4Bi2O5/MnOx (rGO-AM)
composite was prepared via a facile coprecipitation method in
high concentration of KOH solution with rGO dispersed. The
obtained material demonstrates the equivalent catalytic activ-
ity to that of commercial Pt/C, superior service life, and ex-
cellent anti-methanol performance, so that rGO-AM will be a
promising catalyst in the application of fuel cells.

Experimental

Synthesis of Ag4Bi2O5/MnOx/rGO

Firstly, 0 mg, 0.69 mg, 1.5 mg, 2.5 mg, 4.2 mg, 6.3 mg,
9.4 mg, and 14.3 mg rGO were added into 8 vessels each
containing 100 mL 6.5 M KOH, respectively. Subsequently,
they were dispersed into 8 uniform solutions by ultrasonic for
2 h and labeled as a series of solution A. In regard to each
proton of solution A, 1.15 g Ag2O and 1.17 g Bi2O3 were
reacted with 50 mL 2 M HNO3 to form the acidic Ag+–Bi3+

solution, labeled as solution B. Then the two solutions of A
and B were dropped into a 250-mL flask, separately by two
peristaltic pumps at a rate of 150 mL h−1 under 30 °C, mean-
while the mixture in the flask was stirred at 2000 rpm, and

Fig. 1 Schematic diagram of the
synthetic process of Ag4Bi2O5/
MnOx/rGO
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finally the mixed mother liquor was aged for 1 h. Then 1.0 mL
50% Mn(NO3)2 solution was diluted in deionized water to
prepare 20 mL solution, marked as solution C. The solution
C was pumped into the above mother liquor at a speed of
3 mL min−1 and the mixture was crystallized gradually for
2 h. The 8 portions of solution A were processed the same
way as the above procedure. So, 8 crystallized samples were
obtained. All the reagents and materials used were listed in
Table S1. The schematic diagram of the synthetic process of
Ag4Bi2O5/MnOx/rGO is displayed in Fig. 1.

The crystallized samples were pulpified with 100 mL
DI water separately and filtrated until the pH of filt liquor
< 8. The obtained solids were placed in a vacuum oven at
30 °C overnight. These products were denoted as 0%
rGO-AM, 10% rGO-AM, 20% rGO-AM, 30% rGO-AM,
40% rGO-AM, 50% rGO-AM, 60% rGO-AM, and 70%
rGO-AM, separately.

Physicochemical and electrochemical measurements

All the investigated materials were characterized by SEM,
XRD, EDS, and XPS, and the related information was also
displayed in Table S2.

A three-electrode system containing 0.1 M KOH as elec-
trolyte saturated with O2 or Ar was adopted as follows:

1. Working electrode: a glassy carbon electrode (GCE) coat-
ed with catalyst

2. Auxiliary electrode: a platinum wire
3. Reference electrode: a Hg/HgO electrode

In this research, the Hg/HgO electrode was employed in the
same electrolyte as the working electrode for the electrochem-
ical assessment, so the potential difference (Hg/HgO vs. RHE)
is pH independent, and the relation is as follows:

Fig. 2 SEM images of Ag4Bi2O5/
MnOx/rGO with different
contents of rGO: a pure rGO, b
10% rGO, c 20% rGO, d 30%
rGO, e 40% rGO, f 50% rGO, g
60% rGO, h 70% rGO
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E(RHE) = E(Hg/HgO) + 0.93 V
For preparation of a working electrode, the catalyst ink was

firstly made up with the following components: 8 mg of the
obtained materials as catalyst, 4 mg conductive graphite as
conductive agent, 450 μL (CH3)2CHOH and 630 μL DI water
as dispersing agent, and 55 μL 5% Nafion solution as the raw
material of proton exchange membrane which was formed
after volatilization of solvent. The mixed catalyst ink was
decentralized by ultrasonic for half hour to form a homoge-
nous ink. Whereafter, 5.6 μL ink was applied on the glassy
carbon electrode of 5 mm in diameter and solidified at 30 °C.
The load amount of catalyst on the working electrodes was
approximately 0.2 mg cm−2. Both Pt/C and the obtained ma-
terials were prepared following the process and with the same
load amount.

Before electrochemical tests, the electrolytes were aerated
byO2 or Ar for 30min to ensure being saturated with the filled
gas. Cyclic voltammetry (CV) of the catalyst electrode was
carried out in the range from − 0.3 to 0.3 V (vs. Hg/HgO) with
a scan rate of 50mV s−1. The linear sweep voltammetry (LSV)
of the obtained rGO-AM catalysts was carried out on the

rotating disk electrode at various rotation speeds of 400,
625, 900, 1225, 1600, 2025, 2500 rpm. The limiting current
density (j) was read at − 0.30 V where the reaction was at
equilibrium, the initial potential (v0) was read as the current
density was − 0.02 mA cm−2, and every half-wave potential
(v1/2) value was read while the current density was half of the
corresponding j. The i–t chronoamperometric test was per-
formed in O2 saturated 0.1 mol L−1 KOH solution at −
0.03 V for 10,800 s. The anti-methanol resistance was
checked by chronoamperometric curves test at − 0.03 V for
2000 s in O2 saturated 0.1 mol L−1 KOH solution, and
3.0 mol L−1 methanol provided at about 400 s during the test.

Results and discussion

Morphological and structural characterization

Figure 1 presents the schematic diagram of the synthesis pro-
cess of AM-rGO composite, which undergoes two steps of co-
precipitation in alkaline solution with rGO dispersion. As we

Fig. 3 a SEM images of 60%
rGO-AM; elemental mapping
images of 60% rGO-AM b Ag, c
Bi, d Mn, e O, and f C
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expected, the rod-like Ag4Bi2O5 grows on the surface of wrin-
kled rGO first; afterwards, the nanoparticles are formed on the
rods so as to take the shape of corncob. The catalytic activity
can be greatly improved by the nanoscale composition, large
specific surface area, and numerous exposed active sites.

Figure 2 displays the SEM images of the rGO and AM-
rGO composite with different contents of rGO from 10 to
70%. Figure 2a indicates that rGO has a wrinkled surface
which can be beneficial to enlarge its specific surface area so
as to have more exposed active site to enhance the catalytic
performance. It is clear that the morphology of Ag4Bi2O5/
MnOx is rod-like with a length of 200 nm and width of
50 nm. As shown in Fig. 2b–h, the rGO is coated by
Ag4Bi2O5/MnOx, which is conductive to exerting the syner-
gistic effect of Ag4Bi2O5/MnOx and rGO. In addition, the
special structure not only increases the specific surface area
of the composite and exposes more uniform active sites but
also shortens the transfer pathway for material and electron to
benefit improving the catalytic performance of rGO-AM
composites.

In order to realize the element distributions of rod-like
Ag4Bi2O5/MnOx, rGO-AM with 60% rGO was examined by
mapping method. As clearly displayed in Fig. 3, besides the
inherent element Ag, Bi,Mn, and O, the element C is mixed in
the prepared material successfully. Moreover, the Ag, Bi, Mn,
O, and C elements are uniformly distributed.

EDS analysis was employed to check the chemical compo-
sition, and the results are shown in Fig. 4a. It is proved that the
prepared composite contains Ag, Bi, Mn, O, and C elements,
and the element C is uniformly dispersed, inferring that the
rGO-AM composite has been synthesized successfully.
Meanwhile, it is shown that the atomic ratio of Ag/Bi
(18.56:9.26) is approximately equal to the theoretical ratio of
2:1 in the Ag4Bi2O5, while the atomic ratio of Bi/Mn is 1.25,
which is closed to the theoretical value of 1.33. Besides, atom
C accounts for 1.45% [52].

Figure 4b shows the XRD patterns of the samples with
different contents of 10–70% rGO. It can be seen that all
samples exhibit sharply characteristic peaks at 2θ = 26.37°,
31.25°, 31.85°, 37.76°, 48.35°, and 56.19°, corresponding to
planes of (112), (411), (312), (600), (314), and (332) of
Ag4Bi2O5, respectively. That well matches the standard card
JCPDS 87-0866 of Ag4Bi2O5. The composite containing rGO
still represents the characteristic peaks of Ag4Bi2O5, demon-
strating its loading process on rGO has not affected the crystal
form and the structure of nano-Ag4Bi2O5. Meanwhile, the
pattern indicates that there is no obvious peak of manganese
dioxide, indicating it is a kind of amorphous MnOx with the x
value of 1–2.

Figure 5 shows the XPS results of the valence state of
the elements in the as-prepared composite. Figure 5a
shows the XPS spectra of elemental carbon, which present
two strong peaks at 288.4 eV and 284.9 eV, indicating the

existence of sp2 carbon [52]. The two peaks at 368.3 eV
and 374.4 eV correspond to the existence of Ag3d5/2 and
Ag3d3/2, respectively, demonstrating element Ag exists in
the valence state of + 1 (Fig. 5b) [53]. As seen from Fig.
5c, two peaks (164.0 eV and 158.7 eV) correspond to
Bi4f5/2 and Bi4f7/2, respectively. These results prove Bi
exists in the valence state of + 3 [53]. Figure 5d shows
the 2p orbit of Mn in GO-AM, and the appearance of two
peaks at 642.6 eV and 654.1 eV corresponding to Mn2p3/2
and Mn2p1/2 respectively proves the existence of Mn4+

[54]. In general, all the four spectra of Fig. 5 prove that
the as-prepared Ag4Bi2O5/MnOx/rGO accords with theory
and our expectation [54].

Electrocatalytic performance

Figure 6a illustrates that there is an obvious peak of oxy-
gen reduction reaction at − 0.06 V of rGO-AM in the
0.1 M KOH saturated with O2. linear sweep voltammetry
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test was conducted via rotating disk electrode (RDE) to
investigate the electrocatalytic ability for ORR of the pre-
pared composites with different contents of rGO.
Figure 6b shows the LSV plots of nano-rGO-AM compos-
ites with different contents of rGO and tested at a rotating
speed of 1600 rpm and a scanning rate of 5 mV s−1. Based
on the former research [55], the Ag4Bi2O5/MnOx compos-
ite without rGO possesses the performance that the initial
potential (vo), half-wave potential (v1/2), and limiting cur-
rent density (j) are 0.089 V, − 0.046 V, and 5.51 mA cm−2,
respectively. With addition of 10% rGO, the initial poten-
tial and half-wave potential of the new composite become
more positive value of 0.093 V and − 0.035 V respectively,
together with a great limiting current density of
5.204 mA cm−2. As the amount of rGO increases, v1/2 of
rGO-AM composite gradually becomes more positive, and
j becomes even higher. When the content of rGO reaches
60%, the half-wave potential attains the most positive val-
ue (− 0.0419 V), the initial potential reaches 0.0799 V, and
j reaches 6.164 mA cm−2. Nevertheless, when the ratio of
rGO is up to 70%, the half-wave potential of rGO-AM
starts to become negative, meaning the synergistic effect
of Ag, Bi, and Mn is weakened and the catalytic property
is decreased due to an excessive amount of rGO. Table S3
exhibits the comparison of vo, v1/2, and j among the rGO-
AMs with different contents of rGO.

Figure 6c shows the LSV plots of 60% rGO-AM composite
at different rotating speeds. In consideration of the probable
side reaction, all of the LSV curves have been treated by
taking out the background current of the bare electrode and
the curves concerning to Ag4Bi2O5 have been taken out the
part of itself (at the same speed but with Ar saturated). The
related curves are shown in Figure S1. According to the anal-
ysis of separate current densities at − 0.35 V, − 0.30 V, −
0.25 V and − 0.20 V, the Koutecky–Levich curves of 60%
rGO-AM are shown in Fig. 6e. The calculations showed the
number of transferring electrons for ORR is 3.84, 3.76, 3.72,
and 3.66 during the catalytic process, respectively, which are
close to four-electron reaction, and the results are shown in
Fig. 6f. The data processing was according to the following
formula:
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KOH, (b) LSV curves of rGO-AM with different ratios of rGO (10% to
70% rGO) in O2-saturated 0.1 mol L−1 KOH, (c) LSV curves of 60%
rGO-AM at different rotational speeds, (d) Tafel curves of 60% rGO-AM
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Here, j is the measured current density, jK and jL are the
kinetic and limiting current densities, ω is the angular velocity
of the disk, n is electron transfer number, F is the Faraday
constant (96,500 C mol−1), C0 is the concentration of O2 in
0.1 mol L−1 KOH solution (1.26 × 10−3 mol L−1), D0 is the
diffusion coefficient of oxygen in 0.1 mol L−1 KOH solution
(1.93 × 10−5 cm2 s−1), and V is the viscosity coefficient of the
solution (0.1 cm2 s−1) [56].

Figure 6d shows that the Tafel slope of 60% rGO-AM is
73 mV dec−1, close to that of Pt/C (68 mV dec−1), demonstrat-
ing the catalytic activity of 60% rGO-AM approximates to
that of commercial Pt/C [57].

As shown in Fig. 6g, the initial potential of commercial Pt/
C is 0.017 V, half-wave potential is − 0.03 V, and limiting
current density (at − 0.30 V) is − 5.09 mA cm−2. By compar-
ison, the half-wave potential of 60% rGO-AM is 11 mV lower
than that of Pt/C, while the initial potential of 60% rGO-AM is
62 mVmore positive than that of Pt/C and j is higher than that
of commercial Pt/C. Figure 6h shows that the ternary catalyst
possesses much huger kinetic current density (jK) than the
single and binary materials. The kinetic current density of
60% rGO-AM is 6.06 A g−1, while that of the other three
materials is about 1–2.2 A g−1. There are three advantages
of adding rGO to the Ag4Bi2O5/MnOx composites: the first
is to enhance the electrical conductivity of the composite; the
second is to realize a synergistic effect of metallic elements
Ag, Bi, and Mn to catalyze ORR process; and the last is to
provide large specific surface area to improve the catalytic
activity. Combined with the above observations, the
Ag4Bi2O5/MnOx/rGO composite achieves such an outstand-
ing ORR catalytic performance.

Figure 7a exhibits the i–t chronoamperometric curves of
60% rGO-AM and commercial Pt/C to explore their long-
term stability. After the continuous test of 10,800 s, the 60%
rGO-AM sample reserves about 86% of its initial performance
while the commercial Pt/C undergoes a larger decay of 42% in
ORR catalytic activity, which explains that the prepared ma-
terial possesses greater durability as compared with Pt/C. In
addition, Fig. 7b shows the methanol tolerance of Pt/C and
60% rGO-AM by adding 3.0 mol L−1 CH3OH to 0.1 M KOH
saturated with O2. It can be seen that the catalytic current of Pt/
C drops rapidly while the current of the as-prepared 60% rGO
composite almost has no change after the adding process,
which reveals 60% rGO-AM has superior methanol tolerance
than that of Pt/C catalyst. These experiments prove that 60%
rGO-AM is an excellent catalyst for ORR with long durability
and great methanol tolerance.

Furthermore, the composite was contrasted to other related
catalysts, and their relevant performance parameters of ORR
are listed in Table S4. It can be seen that the prepared catalyst
possesses higher ORR catalytic performance than the others.

Conclusions

The rGO-AM composite was synthesized by coprecipitation
on the base of rod-like nano-Ag4Bi2O5/MnOx. By the inves-
tigation on the content of rGO, it is found that the composite of
60% rGO exhibits the highest catalytic performance for ORR.
Besides, the composite with 60% rGO displaysmore excellent
long-term stability and methanol tolerance than that of com-
mercial Pt/C. Its excellent ORR catalytic performance is at-
tributed to the synergistic effect of Ag, Bi, Mn, and C. That
behaves as follows: the combination of Ag and Mn increases
the catalytic activity for ORR, and the synergy effect of Bi and
Mn and the corncob-like structure of Ag4Bi2O5/MnOx
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Fig. 7 a i–t chronoamperometric curves of 60% rGO-AM and commer-
cial Pt/C. bMethanol tolerance of 60% rGO-AM and commercial Pt/C by
the chronoamperometric response with adding 3.0 mol L−1 CH3OH at
about 400 s. (Test conditions: in O2-saturated KOH solution, at − 0.03 V
and 1600 rpm)
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composite enhances the stability of the prepared material. In
addition, the wrinkle morphology of rGO is beneficial to in-
crease the specific surface area and conductivity of the com-
posite so that more active sites are exposed and short transfer
pathway for electron is created. Consequently, the catalytic
property is improved. In conclusion, rGO-AMwill be a prom-
ising high-efficient catalyst for the oxygen reduction reaction.
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