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Abstract
Single-chamber solid oxide fuel cell (SC-SOFC) stacks with different angles between the gas flow direction and the electrode
were fabricated and tested in a diluted methane-oxygen mixture. The gas tubes with separated gas vents were used for transmis-
sion of the reactant gasses. Experimental results showed that the performance of the two-cell stack at a gas flow angle (θ) of 45°
was greatly enhanced compared with that at 0 and 90°. At a furnace temperature of 700 °C and a CH4/O2 ratio of 2, the maximum
output power of the anode-first configuration was 154 mW at θ = 45°, which was 51% higher than that obtained at θ = 90°.
Additionally, the maximum power of the anode-first stack was higher than that of the cathode-first one at θ = 45°, which was
contrary to the results obtained at θ= 90°. The stack with an angled configuration of θ= 45° will generate a more attractive power
for portable power applications.
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Introduction

Solid oxide fuel cells (SOFCs) have attracted particular atten-
tions recently because of their environmental friendliness, fuel
flexibility, and high overall efficiency [1–3]. Fuel-rich gas is
transported to the anode and oxygen-rich gas to the cathode in
conventional dual-chamber SOFCs. Any mixing of the two
reactant gasses is prohibited. The need for gas separation and
sealing imposes several challenges on the reliability and long-
term stability of these fuel cells. In comparison with the con-
ventional SOFCs, single-chamber SOFCs (SC-SOFCs) are
operated in a diluted gas mixture of fuel and oxygen with only
one gas chamber [4–6]. The sealing process is thus completely
eliminated and the gas-tight electrolytes are non-essential. The
operation mechanism of SC-SOFCs is based on the selectivity

properties of the anode and cathode towards the fuel and ox-
ygen mixture [7, 8]. The anode must be catalytically active for
partial oxidation of the fuel and electrochemically active for
fuel oxidation, whereas the cathode should catalyze the reduc-
tion of oxygen, thus generating an electromotive force be-
tween the electrodes.

The simple structure of the SC-SOFCs is more flexible for
bulky cell designs and stack build-up. Considerable efforts
have been devoted to the development of SC-SOFC stacks.
Shao et al. [9] proposed a thermally self-sustaining micro-
SOFC stack consisting of two cells with an anode-facing-
anode configuration. High power output and rapid start-up
were demonstrated by using single-chamber operation. The
catalytic oxidation reactions supplied sufficient thermal ener-
gy to maintain the cells at 500–600 °C. A micro-stack with
two single cells arranged in an anode-facing-cathode config-
uration was fabricated and operated by Liu et al. [10]. The
open-circuit voltage (OCV) of the stack was larger than
2.0 V at 700 °C, and a maximum power output of about 371
mW was obtained. For the micro-stack with three cells, a
maximum power output of 282 mW was generated at 800
°C [11]. The cell in the middle place produced a higher power
than the others. They found that the heat effect and flow ge-
ometry were the main factors in inducing the difference
among the cells. A cell-array stack of five anode-supported
cells connected in series was also studied [12]. Three single
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cells were arranged in the upstream portion and two cells were
arranged in the downstream portion. The additional two cells
can increase the fuel utilization of the stack. However, the
traditional gas supply method severely restricts the formation
of a longer stack module in space. The downstream portion of
the stack is exposed to the products resulting from fuel oxida-
tion in the upstream portion of the stack, which will lead to a
performance drop by reforming the gasses over the electrodes.
The stack design plays a significant role with respect to
cell performance. The gas flow geometry should allow
uniform, continuous flow of the fuel-air mixture to anode and
cathode [4].

In our previous study of SC-SOFCmicro-stack, a novel gas
supply method with separated gas vents in the gas tubes was
proposed to ensure the identical gas distribution over the elec-
trodes [13]. Two gas tubes flanking the stacks were used as
gas channels of methane and oxygen for anodes and cathodes,
respectively. An OCVof 1.8 Vand a maximum power output
of 276 mW were produced by a two-cell stack. The separated
gas supply mode is more flexible to form an enlarged stack
module in three-dimensional space. A scaled-up stack with six
cells in series generated an OCV of 6.4 V and a maximum
power output of 8.18 W by using the separated gas supply
method with two gas tubes [14]. Additionally, the effect of
the separated gas supply mode and the traditional gas supply
method on the performance of the micro-stack and single cells
were compared [15]. Results showed that the single cells
could obtain a uniform OCV and power output by using the

separated gas supply method. The tubes with evenly arranged
vents created a uniform mixing and distribution of the gas
mixture over the single cells. For the traditional gas supply
method, the cells at the outlet position yielded inferior perfor-
mance compared with that of the inlet cells. Eventually, a
higher performance was produced by the separated gas supply
method.

In this study, we are thus continuing our investigation of
SC-SOFC micro-stacks by using the separated gas supply
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Fig. 2 SEM micrograph of the cell structure after reduction of the anode
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method. The performance of the stacks with different config-
urations was investigated at various fuel-to-oxygen ratios. The
influence of the angle between the gas flow direction and the
electrode on the performance of the stacks and the single cells
was evaluated and analyzed in details.

Experimental

The single cells were purchased from Ningbo SOFCMAN
Energy Technology Co., Ltd. A conventional 50 wt% NiO/
50 wt% yttria-stabilized zirconia (YSZ) anode was fabricated
using tape casting method as the support of the SOFC. The
YSZ electrolyte films with a thickness of 10 μm were pre-
pared by a spraying method. (La0.75Sr0.25)0.95MnO3 (LSM)
was then coated onto the YSZ films as the cathode. Figure 1
a shows the schematic diagram of the cell configuration. The
size of the cells was 1 × 1 cm2, and the active cathode area was
0.7 × 0.7 cm2. NiO in anode substrate was reduced to metallic
Ni at 700 °C in hydrogen atmosphere for about 2 h before
assembling to avoid the reduction of the cathodes [16].

The schematic diagram of the two-cell stack is shown in
Fig. 1 b. Two half-open ceramic tubes, marked as Tube-1 and

Tube-2, were used to transport the reactant gasses consisting
of nitrogen, methane, and oxygen. Each of the tube had an
inner diameter of 2 mm and an outer diameter of 3.4 mm.
Small gas vents were arranged at the side of the gas tubes
for the transport of the gas mixture to the electrodes. Both
the width and the depth of the gas inlets were 1 mm. Gas flow
directions of the gas vents were shown in Fig. 1 b. The angle
between the gas flow direction and the electrode was indicated
as θ. For a certain angle, the two gas tubes were switched by a
ball valve during the testing process. The two cells in the stack
were connected in serial by silver wires. Silver paste was
coated on the electrode surfaces for current collection and
silver wires connection.

The stacks were assembled in a quartz tube with an open
end. The inner and outer diameters of the quartz tube were 25
and 30 mm, respectively. The flow rates of nitrogen, methane,
and oxygen were controlled by mass flow controllers (MFCs,
D08 - 4D / 2M , S ev en - S t a r Hua chuang , Ch i n a ) .
Electrochemical properties of the stacks and single cells were
measured by a BiStat potentiostat (VSP, Bio-logic SAS) using

Fig. 4 Impedance spectra of the single cells at R = 2 and θ = 0°.
Performed with the graphic program of Origin 8.0

Fig. 5 The I-Vand I-P curves of the stack at R = 2 and θ = 90°. Performed
with the graphic program of Origin 8.0

Fig. 3 The I-Vand I-P curves of the stack and the single cells at R = 2 and
θ = 0°: a stack and b single cells. Performed with the graphic program of
Origin 8.0
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the four-terminal method at a furnace temperature of 700 °C.
The voltage ramp rate used with the potentiostat was 20mV/s.
The impedance spectra were measured under open-circuit
condition from 0.1 Hz to 91 kHz with a signal amplitude of
10 mV.

Results and discussion

SEM image of the cell structure after reduction of the anode is
shown in Fig. 2. The YSZ electrolyte film was uniform and
dense enough with a thickness of approximately 10 μm and
adhered well to both the porous anode and cathode layers
without showing any cracking or delamination, indicating a
good match between the electrolyte and the electrodes. The
thicknesses of the anode and cathode were about 400 and 25
μm, respectively. The pores in the anode substrate were
caused by the burnout of the binder. Also, the reduction of
nickel oxide to nickel can increase both the gas-transport path
and the three-phase boundary for reaction. The porosity of the
anode was 31% and the pore size was 0.5~1.1 μm. For pure
cathode, LSM particles were well-contacted and these grains
were homogeneous with a particle size of about 0.4 μm. The
pore size of the cathode was obviously decreased compared
with that of the anode, which was about 0.2~0.6 μm. The
porosity of the cathode was 27%.

The performance of the stacks operated under different gas
flow angles (θ) was tested in CH4-O2-N2 mixtures at 700 °C.
Figure 3 shows the current-voltage (I-V) and current-power (I-
P) curves of the stack and the single cells at θ = 0° for the CH4/
O2 ratio (R) of 2 using Tube-1 as the gas transmission pipeline.
The flow rate of N2 was fixed at 200 sccm and the total flow
rate of CH4 and O2 was 200 sccm. The stack owned a parallel
configuration at θ = 0° where the gas flow direction was par-
allel to the electrode surface. The OCVof the stack was 1.93 V
and the maximum power output was 112 mW. The perfor-
mance of Cell-1 was higher than that of Cell-2. According to
Liu et al. [17], the cell whose cathode was located between the
two cells showed lower performance due to the insufficient
reactive gas for the cathode.

The AC impedance spectra of the single cells measured
under open-circuit voltage condition are shown in Fig. 4.

The semicircle at higher frequency is mainly attributed to
the charge-transfer polarization of the cathode and the one at
a lower frequency is mainly due to the gas dissociative ad-
sorption and/or surface diffusion resistance of the anode, as
discussed in the previous study [18]. As can be seen, the high-
frequency semicircle of Cell-2 was much higher than that of
Cell-1, indicating that the cathode faced the inner side of the
stack was distinctly influenced by the gas flow geometry. The
gas composition was modified by catalytic oxidation over the
anode of Cell-1, which resulted in the decrease of oxygen
content at the cathode of Cell-2. The ohmic resistance, which
was determined by the actual temperature of the cells [19],
also showed a small difference between the two cells. The
lower ohmic resistance of Cell-1 presented a direct evidence
of its higher temperature. Also, the low-frequency semicircle
of Cell-1 was higher than that of Cell-2. The anode of Cell-1
was located in the middle of the stack, whichwas conducive to
heat accumulation but unfavorable to gas diffusion for the
anode.

Figure 5 shows the I-Vand I-P curves of the stack at θ = 90°
for the CH4/O2 ratio of 2. The stack owned a cathode-first
configuration when Tube-1 was used as the gas transmission
pipeline. The gas flow direction was perpendicular to the cath-
odes of the cells. The gas mixture first reached the cathodes
for the dissociative adsorption of oxygen and then the remain-
ing gas diffused to the anodes to participate in the reaction.

Table 1 Effect of methane-
oxygen ratio on the output
performance of the stacks
at θ = 0° and θ = 90°

700 °C, N2 = 200 sccm R = 1 R = 1.5 R = 2

θ = 0° OCV (V) 1.79 1.86 1.93

Parallel Maximum power (mW) 85 107 112

θ = 90° OCV (V) 1.81 1.86 1.93

Cathode-first configuration Maximum power (mW) 87.8 109 110

θ = 90° OCV (V) 1.76 1.81 1.91

Anode-first configuration Maximum power (mW) 77 102 102

Fig. 6 The I-Vand I-P curves of the stack at R = 2 and θ = 45°. Performed
with the graphic program of Origin 8.0
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Conversely, the stack owned an anode-first configuration
when Tube-2 was used. The gas mixture reached the anodes
firstly and the gas flow direction was perpendicular to the
anodes. The stack with cathode-first configuration achieved
an OCV of 1.93 V and a maximum power of 110 mW. The
anode-first configuration had a lower output power of 102
mW. Table 1 shows the effect of methane-oxygen ratio on
OCV and maximum power of the stacks at θ = 0° and θ =
90°. The oxygen concentration gradient across the cells
showed a strong dependence on the fuel-oxygen ratio. Both
OCV and maximum power of the stacks increased with the
methane-oxygen ratio. The parallel and the cathode-first con-
figurations achieved almost the same performance while the
OCV and maximum power of the anode-first stack were

slightly decreased. Stefan et al. [20] presented similar results
using an electrolyte-supported cell in propane-air mixtures.
The lower performance obtained in the anode-first configura-
tion was due to the catalytic activity of the anode for the fuel
oxidation, which promotes oxygen consumption before the
gas mixture reaches the cathode.

According to the operation mechanism of SC-SOFCs, the
anode and cathode have different catalytic activities towards
the fuel-oxygen mixture. The relative positioning of the elec-
trodes in regard to the incoming gas should be optimized for
both electrodes. Therefore, an angle of 45° between the gas
flow direction and the electrode was proposed. Figure 6 shows
the I-V and I-P curves of the stacks at the gas flow angle of
45°. The performance of the stack was obviously improved
compared with that at θ = 0° and θ = 90°. Both the anode and
cathode of the cells could obtain reaction gasses expeditiously
under the angled configuration. When θ = 90°, although it was
beneficial to the electrodes directly relative to the gas flow, it
was not conducive to the performance of the electrodes on the
opposite side of the gas vents. While at θ = 45°, the gas mix-
ture flowed through the two cells, which could provide reac-
tion gasses for both of the adjacent electrodes. Compared with
the parallel configuration at θ = 0°, the angle between the gas
flow direction and the electrode could increase the residence
time of the reaction gasses on the surface of the electrodes,
which made the reaction gasses of the electrodes more abun-
dant. The gas flow angle of 45° was also helpful to heat accu-
mulation around the cells. As a result, the anode-first config-
uration obtained a maximum power of 154 mW at θ = 45°,
which was 51% higher than that at θ = 90°.

The performances of the stack using Tube-1 and Tube-2 for
gas transmission were also different at θ = 45°. The gas mix-
ture first reached the cathodes when Tube-1 was used.

Table 2 Effect of methane-
oxygen ratio on OCVand
maximum power of the
stack at θ = 45°

700 °C, N2 = 200 sccm R = 1 R = 1.5 R = 2

θ = 45° OCV (V) 1.84 1.96 1.97

Cathode-first configuration Maximum power (mW) 131 143 148

θ = 45° OCV (V) 1.82 1.94 1.96

Anode-first configuration Maximum power (mW) 143 152 154

Fig. 7 The temperature of the stack at θ = 45° with various CH4/O2 ratios.
Performed with the graphic program of Origin 8.0
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Therefore, sufficient reaction gas could be provided for the
cathodes. Meanwhile, the gas mixture reached the anodes
firstly when Tube-2 was used. The downstream cathodes were
exposed to the gas composition modified by fuel oxidation of
the upstream anodes. The two configurations had different
reaction processes; therefore, different cell performances were
obtained. Table 2 shows the effect of methane-oxygen ratio on
OCVandmaximum power of the stack at θ = 45°. The OCVof
the stack was apparently higher than that at θ = 0° and θ = 90°.
Both the OCV and maximum power increased with the in-
creasing gas flow ratio. The cathode-first stack showed a
higher OCV than the anode-first configuration. Figure 7
shows the actual temperature of the stack at θ = 45° with
various CH4/O2 ratios. The temperature of the anode-first con-
figuration was relatively high, which was beneficial to the cell
performance. As a result, the maximum power of the anode-
first stack was higher than that of the cathode-first one, as
shown in Table 2, which was opposite to the experimental
results obtained at θ = 90°.

Figure 8 shows the I-Vand I-P curves of the single cells at θ
= 45° and R = 2. The OCV and maximum power density of
Cell-1 were higher than that of Cell-2 under the two configu-
rations. The same to the parallel configuration at θ = 0°, the
oxygen consumption over the anode would affect the perfor-
mance of the cathode located between the two cells. Results
showed less diversity between the two cells of the cathode-
first configuration than that of the anode-first configuration. In
the anode-first stack, the gas mixture first reached the anode of
Cell-1 for fuel oxidation, then the remaining gas diffused to
the cathode of Cell-2. Therefore, a stronger influence of the
gas flow geometry on the performance of Cell-2 existed. The
performances of the single cells of the anode-first stack were
higher than that of the cathode-first one, which was caused by
the exothermic reaction over the anodes and the effect of gas
flow geometry on heat accumulation.

Figure 9 shows the performance of Cell-1 using different
gas tubes with various gas flow ratios. The I-V and I-P curves
of Cell-1 with different configurations were well coincident at
R = 1. However, serious concentration polarization was ob-
served at high current density, because, with increased oxygen
concentration, more non-electrochemical active products
(CO2 and H2O) are generated from the complete oxidation
reaction, which are deleterious to the electrochemical oxida-
tions of H2 and CO. The concentration overpotential at the
high current part severely limits the output performance of
the cell. With the increase of the fuel-oxygen ratio, the cell
performances of both the configurations were improved. The
catalytic reaction of methane partial oxidation produces H2

and CO, which are effective electrochemical reaction gasses.
The performance diversity of Cell-1 among the different con-
figurations was becoming obvious with the increasing gas
flow ratio. The same tendency was observed in the perfor-
mance of Cell-2 at 650 °C (Fig. S1). The methane-oxygen

ratio of 2 is the stoichiometric value for the partial oxidation
of methane. With the partial oxidation reaction becoming the
dominant reaction at R = 2, the performance of the cells with
the anode-first configuration was obviously higher than that of
the cathode-first configuration.

The residence time of the reaction gas on the electrode
surface can be increased when the gas flow direction is at an
angle with the electrode. The heat released from partial oxi-
dation of methane could also be usedmore rationally. Besides,
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both of the adjacent electrodes could obtain reaction gasses
expeditiously. As a result, the output performance of the an-
gled stack is much better than that of the parallel and vertical
configurations. Also, the traditional gas supply method se-
verely restricts the formation of a longer stack module in
space, where the downstream portion of the stack is exposed
to by-products resulting from fuel oxidation in the upstream
portion of the stack. The separated gas supply method offers
greater potential for portable power generation. It is expected
to further improve the output performance of the SC-SOFCs
with more cells by using the angled configuration.

Conclusion

Micro-stacks consisted of two cells were fabricated and oper-
ated under single-chamber conditions. A novel gas supply
method with separated gas vents in the gas tubes was used
for the gas transmission. The influence of the angle between
the direction of the gas flow and the surface of the electrodes
on the performance of the stacks was investigated in details.
The stack at θ = 45° showed remarkably enhanced OCV and
output power than that at θ = 0° and θ = 90°. The maximum
power of the anode-first stack at θ = 45° was higher than that
of the cathode-first configuration, which was contrary to the
results obtained at θ = 90°. The micro-stack with an angled
configuration is helpful to increase the residence time of the
reaction gas on the electrode surface and also beneficial to
heat accumulation around the cells.
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