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Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically
anchored on graphene oxide for high-performance sodium-ion battery
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Abstract
In this work, a novel pyrrolic nitrogen-doped carbon sandwichedmonolayer MoS2 hybrid was prepared. This sandwiched hybrid
vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic
liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this
uniqueMoS2/C-graphene hybrid exhibits reversible specific capacity of 486mAh g−1 after 1000 cycles with a low average fading
capacity of 0.15 mAh g−1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g−1 is remained at the current
densities of 10.0 A g−1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for
energy field and other related applications.
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Introduction

The urgent demands for renewable energy storage systems
require to develop sodium-ion storage technologies [1, 2].
Sodium-ion batteries (SIBs) are regarded as representative
alternatives for replacing the conventional energy sources,
owing to their desirable properties of resource abundance
and cost-effectiveness [3, 4]. Unremitting efforts from world-

wide scientists are searching appropriate anode materials for
achieving high reversibility and long-life SIBs [5]. Despite the
similar mechanism with rechargeable lithium-ion batteries
(LIBs), SIBs suffer from undesirable durability and limited
rate performance [6]. The problems mainly originate from
the larger ionic radius of Na+ (1.06 Å for Na+ via 0.76 Å for
Li+), leading to serious degradation of the electrodes or slug-
gish Na+ kinetics [7].

Among various potential anode materials, molybdenum
disulfide (MoS2) could be considered as a Bshining star,^
due to its graphene-like structure [8]. This unique structure
is in favor of Na+ diffusion kinetics and the conversion reac-
tion (1T-MoS2 to metal Mo and Na2S), which could benefit
high theoretical capacity (Na+ enters the S layer to form Na–S
bonds) [9]. Such sodiation/desodiation mechanism results in
rapid capacity fading, which derived from (a) aggregation,
pulverization, and restack for the nanomaterials (by volume
change and mechanical stress); (b) the electrode degradation
(arising from sluggish Na+ insertion kinetics and poor conduc-
tivity); and (c) dissolved loss of sulfur (via soluble Na2Sn and
shuttle effect) [10, 11].

To overcome these obstacles, the synthetic strategies could
be mainly divided into three categories: ultrathin MoS2 nano-
sheets, wide-interlayer spacing of MoS2, and maximizing the
MoS2/carbon contact [12, 13]. Various as-prepared MoS2-
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based materials are efficacious to enhance the cycling stability
and improve rate capacity [14]. Among these, MoS2/C
sandwiched structure has been attracting attention with the
integrated advantages of the above three strategies [15].
Chen and co-workers have synthesized mesoporous carbon
sandwiched MoS2 hollow microspheres by an aerosol
spraying pyrolysis method, which displays 390 mAh g−1 after
2500 cycles at 0.1 A g−1 [16]. Xu’s group created the carbon
sandwiched monolayer MoS2 assembled hierarchical nano-
tubes, which delivered a capacity as high as 477 mAh g−1 after
200 cycles at 0.2 A g −1 [17].

Atomic interface contact between MoS2 and carbon is sig-
nificant for high-performance anodes for SIBs [18]. Because
of large interface contact between MoS2 and carbon, opti-
mized carbon can well address the key issues on MoS2-based
anode in hybrids [19]. Chen’s group synthesized the flower-
like MoS2 by hydrothermal synthesis assisted with an ionic
liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate
[20]. The electrochemical performances of the electrode were
significantly enhanced. But there is no evidence to show the
carbon or nitrogen-doped carbon composite in the electrode.
Zhao’s group prepared lamellar structure with MoS2 layers
uniformly decorated on graphene sheets. The direct coupling
of edge Mo of MoS2 with the oxygen from functional groups
on graphene oxide (C–O–Mo bond) is proposed [21].
However, they focused on the coupling effect of oxygen on
graphene oxide with molybdenum disulfide rather than incor-
poration of nitrogen atoms. The electrical properties of carbon
can be easily improved by the incorporation of nitrogen
atoms. The chemical and electronic properties of the carbon
host depend on nitrogen doping configurations and nitrogen
content [22].

Different from graphitic N and pyridinic N, pyrrolic N not
only possesses strong Na–N and S–N attraction but also main-
tains high electronic conductivity of carbon matrix. However,
sandwiched MoS2/C hybrid with high pyrrolic N content is
rarely reported and remains a big challenge [23].

Herein, for the first time, we report a facile synthesis of
MoS2/C-graphene hybrid as high-performance anode for
SIBs. In this hybrid, a novel pyrrolic nitrogen-doped carbon
sandwiches monolayer MoS2. And, these sandwiched hybrids
vertically anchor on graphene oxide. Unlike previously report-
ed MoS2-based SIBs, pyrrolic nitrogen-doped carbon have
adequately contacted with S atoms from monolayer MoS2,
which endowsmore active sites and mitigating the polysulfide
shutting. The sandwiched structure in the hybrids maximizes
the interface contact of MoS2/C and effective isolates inMoS2
phase. The electrochemical performance of hybrid anode
manifests the reversible specific capacity of 486 mAh g−1 after
1000 cycles with a very low capacity decay of ca. 0.003% per
cycle at 0.2 A g−1 (a low average fading capacity of
0.15 mAh g−1 per cycle). A capacity of 330 mAh g−1 is
remained at current densities of 10.0 A g−1.

Experimental

All the regents were purchased from Sigma-Aldrich. The re-
gents were of analytical grade and were used directly without
further purification. We used a modified Hummers method to
synthesize graphene oxide. In the process, we put 120 ml
concentrated sulfuric acid into a round bottom flask, which
was kept at 0 °C using an ice water bath. Then, 1.2 g NaNO3

and 1.2 g graphite powder (400 mesh) were added slowly
while stirring, and 3.0 g KMnO4 was added into the mixture
gradually and reacted for 90 min. The system was then stirred
at room temperature for 3 h. Furthermore, 300 ml deionized
water was added dropwise to the above solution. After that,
240 ml deionized water and 32 ml 30% H2O2 were slowly
added at room temperature sequentially. We used deionized
water and 5% hydrochloric acid to wash the obtained product
three times. Finally, the product was freeze-dried to obtain
graphene oxide powder.

In a typ ica l p rocedure , 3 .0 mmol 1-e thy l -3 -
methylimidazolium chloride ([EMIm]Cl) was dispersed into
15 ml deionized water. The 10 ml graphene oxide (GO) aque-
ous dispersion (0.12 mg l−1) was added dropwise to resultant
solution with vigorous stirring. The mixture was stirred for an
additional 2 h at room temperature, which can make the
positive-charged [EMIm]+ well absorbed on the negative-
charged GO surface. Then, 30 ml oleylamine and 10 mmol
(NH4)2MoS4 were added and sonicated for 20 min to form a
uniform dispersion. The reaction mixture was heated for
60 min at reflux conditions at 360 °C under N2. Finally, the
samples denoted as MGH obtained after annealed at 600 °C
for 2 h in Ar atmosphere. For comparison, the composite
sample was also prepared by a similar route except the use
of [EMIm]Cl or GO, which named MG and ME.

Material characterizations

Scanning electron microscopy (SEM) performed on Hitachi
S-4800 was used to characterize the morphology of as-
synthesized hybrids. Transmission electron microscopic
(TEM), high-resolution transmission electron microscopic
(HRTEM) images, and energy dispersive X-ray spectra
(EDS) were recorded by using a JEOL JEM-2010microscope.
Zetasizer 3000HS was used to characterize the surface zeta
potential of the hybrids. The Raman spectrum was achieved
using a WITec CRM 200 confocal system with a laser wave-
length of 550 nm. The crystallographic information of the
samples was investigated by powder X-ray diffraction
(XRD), which were collected with a Max-2500 with non-
monochromatic Cu-Kα radiation in a 2θ range from 5° to
80° at room temperature. X-ray photoelectron spectroscopy
(XPS) characterization was recorded on a PHI-5000
Versaprobe instrument with a monochromatized Al Kα X-
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ray source (1486.6 eV) scanning a spot size of 700 by 300 μm,
and the mass of the samples is 8.5 mg. The carbon content
analyses in the hybrids were determined by thermogravimetric
(TGA) analysis on PerkinElmer Pyris 6 TG Analyzer in air
atmosphere at a raising rate of 5 °C min−1 from 25 to 800 °C,
and the mass of the samples is 7.5 mg.

Electrochemical measurements

The electrochemical properties were evaluated by assembly of
two-electrode 2016 coin cells in a glove box filled with pure
Ar gas. The working electrodes on the Al foils were composed
of the as-prepared hybrids, conductive carbon black, and
binders in a weight ratio of 70:20:10 by slurring in N-
methylpyrrolidone. In sodium half cells, metallic sodium foil
was used as the counter-electrode. The electrolyte used was
1.0 M NaPF6 in ethylene carbonate/diethyl-carbonate/
fluoroethylene carbonate (EC/DEC/FEC) (1:1:0.05 v/v). The
separator used was glass fiber (GF/D), and the binder was
polyvinylidene fluoride (PVDF). The active material loading
mass was about 2.0–2.5 mg cm−2. The galvanostatic charge/
discharge cycling behavior was tested on a multichannel
NEWARE BTS-610 battery testing system (Newware
Technology Co. Ltd., China) at room temperature. Cyclic
voltammetry (CV) curves were performed in a CHI660E elec-
trochemical workstation (Shanghai Chenhua Co. Ltd., China)
at a scan rate of 0.2 mV s−1.

Results and discussions

Figure 1a graphically illustrates the fabrication protocol of
MGH. Briefly, the MGH precursor was obtained by
[EMIm]Cl-assisted reflux method. Electrostatic attraction at-
tracts the positive-charged [EMIm]+ ion on the negative-
charged GO surface. Subsequently, negative-charged MoS4

2

− mixes with [EMIm]+ ion subsequently hybrid on the modi-
fied GO surface. After annealing, the hybrids were success-
fully obtained. The highly pyrrolic nitrogen-doped carbon de-
rived from the pyrolysis imidazole group. The morphology of
the samples was identified by SEM and TEM. As shown in
Fig. 1b, c, MGH exhibits curved thin flaky structure and wrin-
kled surface, indicating the hybrids successfully homoge-
neously encapsulated on the GO surface. Such attachment to
flexible and stable GO surfaces can mitigate the fracture and
pulverization of MoS2, achieving high reversible capacity of
the electrode. MoS2 particles separated from GO show that
electrostatic repulsion makes the MoS2 isolated growth with-
out the [EMIm]Cl assisted (Fig. 1d). The SEM and TEM
images of the ME are presented in Fig. S1a and b. Totally
different from wrinkled and sheet-like appearance, the ME
shows particle-like morphology without GO addition.

The EDX spectrum discloses the presence of C, N,Mo, and
S elements in this hybrid (Fig. 2a). The obvious N signal in
MGH implies highly doped nitrogen proportion in carbon
matrix. It can be obviously found the monolayer MoS2 and
super wide-interlayer spacing MoS2 in HRTEM image (Fig.
2b). The lattice spacing of MoS2 is sufficiently expanded to
ca. 0.99–1.44 nm (much larger than 0.62 nm of bulk MoS2).
Line profiles of the d-spacing of the MoS2 interlayers reveal
the existence of carbon layers between the adjacent MoS2
layers (Fig. 2c). Agreement with the calculated results, the
interlayer spacing of 0.99 nm presents the insertion of carbon
monolayer and 1.38 nm exhibits the insertion of two carbon
layers [24]. The carbon layer sandwiched MoS2 is suggested
to be vital for maintaining adequate S–C hetero-interface and
reasonable isolated MoS2 phase in the long-term cycles [25].
The EDX elemental mappings further confirmed the complete
coverage of MoS2/C hybrids on GO with homogeneous spa-
tial distributions of C, N,Mo, and S. As observed in Fig. 2d–h,
the EDX spectra of MG show the existence of C, Mo, and S
elements without N element in Fig. 2i. Mo and S signals
disappear on the surface of GO, and the C signal does not
appear in MoS2 nanoparticle. As observed, it further demon-
strates separation of MoS2 and GO without [EMIm]+. Figure
2j shows the HRTEM image of MG, displaying typical
Bgraphene-like^ MoS2 layers. And, the line profiles over
MoS2 interlayers of MG reveal multilayer structure with in-
terlayer spacings of 0.635 nm in Fig. 2k. HRTEM images of
ME show the high crystalline nature of the MoS2 layers and
thin carbon film uniformly coated on MoS2 nanoparticle (Fig.
S1c).

The zeta potential measurement was performed to explore
the assisted function of [EMIm]+ ions (Fig. 3a). Assisted by
[EMIm]+, ions adsorbed on the GO surface the zeta potential
from negative-charged − 28.6 mV to positive-charged
22.4 mV. Electrostatic attraction is dominant in the adsorption
of MoS4

2− groups mixed with residual [EMIm]+ ion subse-
quently. After annealing, zeta potential of the as-prepared hy-
brid is − 25.6 mV, resulting the existence of negative surface
charge MoS2. However, zeta potential of MGH is lower than
related literature information, indicating less exposition of sur-
face sulfur atoms, which are consistent with vertically
sandwiched MoS2 monolayer structure in HRTEM images
[26]. The crystallographic information of as-obtained elec-
trodes is investigated by XRD in Fig. 3b. All the diffraction
peaks match well with the pure phase of standard hexagonal
2H-MoS2 structure (JCPDS No. 37-1492), except diffraction
peaks located at 26° ascribed to N-doped carbon and GO [25].
Compared with MG and ME, MGH exhibits a weaker and
broader (002) diffraction ranging from 5.5° to 12.3° with a
wider d-spacing of 0.78–1.60 nm. The results reveal the more
disordered arrangement of S–Mo–S layers and the enlarged
interlayer spacing between neighboringMoS2 layers, which is
in good agreement with the HRTEM observation.
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The Raman spectroscopy characterization verifies coexis-
tence of MoS2 and C in Fig. S2. The significant characteristic
peaks of D (1375) band and G (1592) band of carbon imply
the disorderly stacked carbon with N incorporation derived
from imidazole derivatives. Figure 3c highlights the presence
of MoS2-related peaks corresponding to in-plane (E12g) and
out-of-plane (A1g) vibration mode [27]. As the two character-
istic peaks of MoS2 are sensitive to intra-layer bonding and
molecule interaction, one of the prominent indicators for
MoS2 layers is the frequency difference (Δ) between the
two peaks [28]. The Raman peaks of ME and MG appear at
409.1 nm−1 (A1g) and 383.4 nm−1 (E12g) with the value of Δ
estimated to be 25.7 cm−1. In comparison with ME and MG,
E1

2g peak of MGH shows a red shift and A1g peak exhibits a
blue shift, suggesting that interlayer coupling increased inter-
layer Van der Waals force and structural strain dominated the
change of vibration [29]. This Δ value is measured to be
20.7 nm−1, supporting the presence of single-layer MoS2
(20.2–21.2 cm −1 of MoS2 single layer). When comparing
the intensity ratio (IE

1
2g/IA1g) of the three electrodes, this ratio

for MGH (0.26) is much lower than those of ME (0.46) and

MG (0.48). The difference verifies that MGE belong to edge-
terminated and vertically aligned [30]. Such vertical edge-
terminated structure with the enlarged MoS2 basal planes
can facilitate electrical conductivity, shorten Na+ diffusion
paths, and migrate soluble polysulfide intermediate shuttling
[31].

The corresponding high-resolved XPS spectra of Mo and S
would be interpreted into two doublets. Observation from the
two characteristic peaks located at 232.5 and 229.3 eV,
assigned toMo 3d5/2 andMo 3d3/2, demonstrates the presence
of Mo4+ in Fig. 3d. The binding energies of spin-orbit doublet
of S 2p3/2 and S 2p1/2 are 162.1 and 163.3 eV, showing the
existence of S2− (Fig. 3e). The atomic percentages of MGH
are Mo of 29.82, S of 59.41, C of 8.29, N of 0.83, and O of
1.75 at%. The stoichiometric ratio of S and Mo can be esti-
mated to be nearly 1.99 based on the peak area, approaching
the theoretical value of MoS2. The C1s peaks at 284.7 eV,
ascribed to C–C/C=C, confirms that amorphous carbon was
formed in the as-prepared samples (Fig. S2). Nitrogen-
bonding configurations in the carbon were then quantitatively
analyzed by high-resolution XPS measurements detailed in

Fig. 1 a Schematic illustration for
the fabrication of MoS2
electrodes. b SEM images of
MGH. c TEM image of MGH. d
SEM images of MG. e TEM
image of MG

2804 J Solid State Electrochem (2018) 22:2801–2809



Fig. 3f. Fitted high-resolution N 1s spectra indicate that the
MGH is dominated by pyrrolic-type nitrogen (400.1 eV,
61.6%), comparison with pyridinic-type nitrogen (398.4 eV,
13.7%), and graphitic-type nitrogen (401.7 eV, 24.7%) in car-
bon materials. Therefore, by calculating the integral peak area
of N and C, the nitrogen contents in carbon matrix are about
10.10%. Pyrrolic N not only possesses strong Na–N and S–N
attraction but also maintains high electronic conductivity of
carbon matrix [32]. Pyrrolic nitrogen-doped carbon can ben-
efit Na+ diffusion and mitigate intermediate Na2S/Na2Sn [33].
The mass percentage of MoS2 can be determined by the
weight loss of TGA curves from 100 to 760 °C in air, related
to the oxidation of MoS2 and the combustion of carbon (Fig.
S4). The retained weight percentages of MGH, MG, and ME
maintain at 78.7, 85.6, and 83.1% in 760 °C, and the MoS2
contents are calculated to be 89.4, 97.1, and 94.4%,
respectively.

The electrochemical performances of MGH, ME, and MG
were investigated using half cells versus Na/Na+ in Fig. 4. The
capacity is calculated based on the total mass of the hybrid.
The initial three CV curves of MGE are detailed in Fig. 4a at a
sweep rate of 0.2 mV s−1 between 0.01 and 3.0 V (Na vs.
Na+). There are three obvious reduction peaks at 1.04, 0.49,
and 0.19 V in the first cathodic sweep. The first cathodic peak
at 1.04 V could be associated with the intercalation of Na+ in
enlarged 2H-MoS2 lattice to form 2H-NaxMoS2 (0 < x < 0.5)
and the induced irreversible structural transition (2H-
NaxMoS2 to 1T-NaxMoS2) [34]. The reduction peak at
0.48 V could be assigned to the decomposition of electrolyte
and the formation of the solid electrolyte interphase (SEI)
layer on the electrode surface, which dominates the major
irreversible capacity loss in the initial cycle [35]. The peak
below 0.19 V is attributed to decomposed reaction from 1T-
NaxMoS2 to Na2S and metallic Mo [36]. The broad oxidation

Fig. 2 a TEM image ofMGH and EDX line scan profile ofMo (green), S
(orange), C (gray), and N (blue). b High-resolution HRTEM image of
MGH. c Line profiles of the d-spacing of the MoS2 interlayers of MGH
by the purple line in b. d–h Molybdenum, sulfur carbon, and nitrogen

elemental mapping of a selected area of MGH. i TEM image of MG and
EDX line scan profile ofMo (green), S (orange), C (black), andN (blue). j
High-resolution HRTEM image of MG. k Line profiles of the d-spacing
of the MoS2 interlayers of MGH by the green line in j
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peak center at 1.75 V shows the conversion reaction of the
metallic Mo nanograins reversing to MoS2 [37]. The
discharge/charge curves of MGH, ME, and MG are gained
further insight into the reversibility of the electrodes. The fol-
lowing galvanotactic cycling profiles are almost overlapped,
demonstrating excellent reversibility. A high initial discharge
capacity about 776 mAh g−1 is delivered with a high initial
coulombic efficiency of 82.2%. The reversible discharge ca-
pacity of the MGE is 486 mAh g−1, and the coulombic effi-
ciency remains above 99% in the 1000th cycle. Unlike MGH,
ME andMG presented undesirable capacity retention capabil-
ity and reversibility shown in Fig. S5. Whereas the initial
capacity of ME and MG are about 802 and 731 mAh g−1 with
a lower initial coulombic efficiency of 76.1 and 74.9%, re-
spectively. The prominently superior reversibility and high
initial coulombic efficiency of MGH can be ascribed to high
material utilization from unique structure and the enhance-
ment from nitrogen doped.

The long-term cycling performance of as-fabricated elec-
trodes is listed in Figs. 4c and S6 for comparison. MGH could
still reach the reversible capacity about 486 mAh g−1 and
capacity retention of 76.5% (based on the second cycle) after
1000 cycles, corresponding to a low fading capacity about
0.15 mAh g−1 and fading cyclic rate of ca. 0.03% per cycle
(Figs. 4c and S6a). In sharp contrast with MGE exhibiting
superior long-term cyclability, ME delivers a gradually de-
creased reversible capacity merely remaining 31 mAh g−1 af-
ter 1000 cycles (Figs. 4c and S6b), while MG shows an ex-
tremely lower capacity retention and rapidly decreases to
21 mAh g−1 after 336 cycles (Figs. 4c and S6c). Another
attractive property for MGH is its outstanding rate behavior.
Detailed in Fig. 4d, the capacities of MGH at various current
densities of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 0.2, 0.5, 1.0, 2.0, 5.0,
and 10.0 A g−1 are 600, 574, 520, 463, 405, 330, 556, 505,
443, 379, 316, and 246mAh g−1, respectively. Compared with
the MGH electrode, the ME andMG show lower rate capacity

Fig. 3 a Zeta potentials of GO,
GO via [EMIN]+, and GO/
[EMIN]+/MoS4

2− before and after
calcination. b XRD patterns of
MGH, MG, and ME. c The
magnified Raman spectrum of the
composites, showing the peaks of
MGH, MG, and ME. d XPS S1s
and Mo 3d spectrum of MGH,
MG, and ME. e XPS S 2p
spectrum of MGH, MG, and ME.
f XPS N and Mo3p spectrum of
MGH, MG, and ME
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and rapider capacity decay. After the deep charge and dis-
charge for 10 cycles at 10.0 A g−1, the capacity of MGH can
be covered and increased to 550 mAh g−1, which it even
remains very stable in extended rate cycling and performs
excellent stability in the following cycles at 0.2 A g−1.

As illustrated in Fig. 4e, the high reversible capacity, supe-
rior rate performance, and outstanding long-term durability
could be ascribed to the unique vertically sandwiched struc-
ture and pyrrolic nitrogen-doped carbon, which can summa-
rize as the following factors. First, flexible GO sheets service
as a strain-relaxed conductive substrate for alleviating the
MoS2 aggregation or stacking/restacking in the long-term cy-
cles. Second, vertical aligned monolayer MoS2 with edge-
terminated structure can facilitate electrical conductivity,
shorten Na+ diffusion paths, and migrate soluble polysulfide
intermediate shuttling. These should be beneficial for mini-
mized exposure of S atoms and maximized exposure of Van
der Waals gaps. It is essential for excellent reversibility. Third,
monolayer MoS2 sandwiched by N-doped carbon layers

exhibits the large MoS2/C heterogeneous interface areas.
The improvement of electrochemical performance can be at-
tributable to reasonable isolate MoS2 phase, which ensures its
structural stability against conversion reaction (1T-MoS2 to
metal Mo and Na2S). Finally, pyrrolic nitrogen-doped carbon
can enhance the surface adsorption of intermediate Na2S/
Na2Sn, achieving stable long-term cycling [38]. Therefore,
rational structure and pyrrolic nitrogen-incorporative en-
hancement synergistic effect achieves the electrochemical per-
formance of the MGE anode.

Conclusions

In summary, we have designed and synthesized a novelMoS2-
based hybrid via a facile ionic liquid-assisted reflux and an-
nealing methods. In this hybrid, pyrrolic nitrogen-doped car-
bon sandwichesmonolayerMoS2, and these hybrids vertically
anchor on graphene oxides. Compared with the electrode

Fig. 4 a CV curves of the first
3 cycles of the MGH electrode at
scan rates of 0.2 mV s−1 as anode
material for lithium ion battery. b
The first three galvanostatic
charge-discharge profiles of the
MGH electrode at a current den-
sity of 0.2 A g−1 in the voltage
range of 0.01–3.0 V vs. Na+/Na. c
Cycling performance of MGH,
MG, and ME electrodes at a cur-
rent density of 0.2 A g−1. dMulti-
rate testing of MGH, MG, and
ME at discharge current densities
of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 0.2,
0.5, 1.0, 2.0, 5.0, 10.0, and
0.2 A g−1. e Schematic of the
electrolyte ion diffusion and fast
electron transport in MGH
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without ionic liquid-assisted synthesis, the hybrid electrode
yields significant enhancement, especially in reversible capac-
ity, rate performance, and capacity retention in the long cycles.
This performance can be attributed to structural advantages
and pyrrolic nitrogen modified. The as-prepared MoS2/C-
graphene hybrids exhibit an initial capacity up to
776 mAh g−1 with a high first columbic efficiency of 82.2%
for BILs at 200 mA g−1. And, the electrodes display a high
reversible capacity of 486 mAh g−1 with a very low capacity
decay of 0.15 mAh g−1 per cycle at 0.2 A g −1. Our work also
provides an enlightening design and methodology for other
related frontiers.
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