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Abstract
A discrete version of Wiener-Khinchin theorem for Chebyshev’s spectrum of electrochemical noise is developed. Based on the
discrete version of Wiener-Khinchin theorem, the theoretical discrete Chebyshev spectrum for the Markov random process is
calculated. It is characterized by two parameters: the dispersion and the relaxation frequency (or relaxation time). The noise of
corrosion process and the noise of recording equipment are measured. Using the theoretical Chebyshev spectrum, the Markov
parameters were found both for the noise of the corrosion process and for the noise of the measuring equipment.

Keywords Chebyshevelectrochemicalnoisespectroscopy .DiscreteversionofWiener-Khinchin theorem .Markovianparameters
of noise

Introduction

At present, many electrochemical laboratories pay great atten-
tion to the reliability of measurement and interpretation of
electrochemical noise [1]. The reliability of noise data inter-
pretation depends significantly on the method of eliminating
the trend of electrochemical noise [2–7]. To eliminate the ef-
fect of the trend of electrochemical noise, it was proposed to
use Chebyshev’s polynomials of a discrete variable [8–12]. It
was shown that the trend (drift) of electrochemical noise has a
weak effect on the intensity of Chebyshev’s spectral lines with
high numbers (order) [8–12]. However, in contrast to the
Fourier spectroscopy [13–16], no discrete version of the
Wiener-Khinchin theorem, which relates the Chebyshev spec-
trum to the autocorrelation function of random process, is
available from the literature [17, 18]. For this reason, until
now, Chebyshev’s spectroscopy could not be used for the
parametric analysis of electrochemical noise.

The aim of this work is to formulate a discrete version of
the Wiener-Khinchin theorem for the Chebyshev spectrum of
electrochemical noise and use it for the analysis of a specific
case of corrosion system.

Discrete version of the Wiener-Khinchin
theorem

Assume that the electrochemical noise is measured at a sam-
pling frequency fS. Let us take 1/fS as a unit time t. Let the total
observation time for electrochemical noise be N ⋅M, whereM
is the number of non-overlapping observation segments, each
containing N points. The electrochemical noise within a seg-
ment with number m is denoted by y(t,m). It should be noted
that in y(t,m), the dimensionless observation time t runs
through integer values within the range 0 ≤ t ≤N − 1, and the
segment number m falls within the range 0 ≤m ≤M − 1.

Let us represent y(t, m) as the expansion in terms of
Chebyshev’s orthonormal polynomials {Pk(t)} of discrete var-
iable t, where k is the order (number) of discrete polynomial
(0 ≤ k ≤N − 1). According to [19, 20], we obtain:

y t;mð Þ ¼ ∑
N−1

k¼0
Pk tð ÞYk mð Þ ð1Þ

Yk mð Þ ¼ ∑
N−1

t¼0
Pk tð Þy t;mð Þ ð2Þ
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The intensity y 2ð Þ
k N ; f Sð Þ of Chebyshev’s spectral line with

number k depends on the segment length N and sampling
frequency fS by the following equation:

y 2ð Þ
k N ; f Sð Þ ¼ 1

M
∑
M−1

m¼0
Yk mð Þ½ �2 ð3Þ

Substituting (2) into (3), we obtain:

y 2ð Þ
k N ; f Sð Þ ¼ 1

M

� ∑
M−1

m¼0
∑
N−1

t1¼0
∑
N−1

t2¼0
Pk t1ð Þy t1;mð ÞPk t2ð Þy t2;mð Þ

ð4Þ

When the number of segments M tends to infinity, instead
of Eq. (4), we obtain:

y 2ð Þ
k N ; f Sð Þ ¼ ∑

N−1

t1¼0
∑
N−1

t2¼0
Pk t1ð ÞPk t2ð ÞB jt1−t2j= f Sð Þ ð5Þ

(It should be noted that the larger the number of segments
M, the higher the statistical reliability of Chebyshev’s spectra.)

In Eq. (5), B(| t1 − t2| /fS) denotes the autocorrelation func-
tion of electrochemical noise. The appearance of time differ-
ence in the argument of the autocorrelation function is due to
the assumption of the steady state electrochemical system.
Equation (5) can be written in a more convenient form:

y 2ð Þ
k f S ;Nð Þ ¼ B 0ð Þ þ 2 ∑

N−1

θ¼1
B θ= f Sð Þ ∑

N−1

t¼θ
Pk tð ÞPk t−θð Þ ð6Þ

In Eq. (6), the discrete time θ varies within the range
(1 ≤ θ ≤N − 1).

Equation (6) is the desired discrete version of the Wiener-
Khinchin theorem [17, 18] written at a given sampling fre-
quency fS for the N-dimensional space, where orthonormal
Chebyshev’s polynomials of a discrete variable are used as
the coordinate vectors. According to (6), the intensity of

Chebyshev’s spectral line y 2ð Þ
k f S ;Nð Þ with number k depends

on the sampling frequency fS and segment lengthN. Using Eq.
(6), the Chebyshev spectrum of electrochemical noise can be
found provided that its autocorrelation function is known.
Based on the discrete version (6) of the Wiener-Khinchin the-
orem, the inverse problem of determining the parameters of
the model autocorrelation function from the Chebyshev ex-
perimental spectrum can be solved. Thus, the discrete version
(6) of the Wiener-Khinchin theorem can serve as the basis for
the parametric analysis [21] of electrochemical noise with a
noticeable drift.

The Wiener-Khinchin theorem (6) can be applied to study
the theoretical properties of the discrete Chebyshev noise
spectrum corresponding to the Markov random process.

Autocorrelation function of Markov noise

Figure 1 shows a linear AC circuit that exhibits the Markov
noise. The circuit consists of capacity C and resistance R. In
the circuit, a white noise generator acts as a random voltage
u(t). The measured noise y(t) is presented by random voltage
fluctuations V(t). The autocorrelation function B(τ) of Markov
random process exponentially decays with increasing delay
time τ [22]:

B τð Þ ¼ B 0ð Þexp −ντð Þ ð7Þ

The Markov autocorrelation function B(τ) is completely
determined by two parameters: the dispersion of Markov ran-
dom process B(0) and the relaxation frequency ν = 1/(RC). In
the electrochemical systems, the capacitance of electrical dou-
ble layer can be considered as capacitanceC and the resistance
of electrochemical reaction can be considered as resistance R.

Discrete Chebyshev’s spectrum for Markov
noise

Let us substitute Eq. (7) into Eq. (6) and calculate the 16-
dimensional Chebyshev spectrum for Markov noise (N = 16).
The dispersion B(0) is taken as a unit intensity of Chebyshev’s
spectral line. Assume that the relaxation frequency ν is 1 Hz.
The following values of sampling frequency fS are used:

f S ¼ 1=32; 1=16; 1=8; 1=4;

1=2; 1; 2; 4; 8; 16; 32 Hz

ð8Þ

Figures 2 and 3 give the calculated results. In Fig. 2, the
sampling frequency fS is used as the parameter, and in Fig. 3,
the number k of Chebyshev’s spectral line is used as the pa-
rameter. From Fig. 2, it is seen that an increase of the sampling
frequency leads to an abrupt decrease of the intensity of spec-
tral lines as their number increases. It is seen (Fig. 3) that at
high sampling frequencies, the intensity of Chebyshev’s spec-
tral lines forms a set of divergent curves. At the same time, as
the sampling frequency decreases, this set of Chebyshev’s
spectral lines intensities gradually turns into a straight line,
and the dependence on the sampling frequency vanishes.

R

C

u(t) 

V(t) 

Fig. 1 AC electric circuit with Markov noise
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Thus, in the low-frequency region, we are dealing with white
noise, for which the intensity of the Chebyshev spectral line
does not depend on either the spectral line number or the
sampling frequency.

This intensity coincides with the dispersion of electrochem-
ical noise. It should be noted that the properties of white noise
corresponding to the resistor are somewhat different. Actually,
the intensity of resistor spectral line is independent of spectral
line number. However, the intensity of resistor spectral line is
directly proportional to the sampling frequency.

The Markov approximation of a random process can be
applied to the parametric analysis of electrochemical noise
of corrosion and the electrical noise of the measuring
equipment.

Markov parameters of corrosion noise
and the noise of measuring equipment

The end-faces of two identical fragments of Steel 3 wire 1 mm
in diameter were used as the working electrodes. The wire
fragments were placed into the plastic tube 6 mm in diameter
at a distance of 3 mm from each other, and were embedded into
the tube using epoxy resin. The end-faces of the electrode cou-
ple were polished with emery paper with gradually decreasing
grain size. Finishing was carried out with P2500 emery paper.
Then, the end-faces were degreased on filter paper with a sus-
pension of Na2CO3 in twice-distilled water, exposed to 1 M
HCl for 5 s, washed 5 times with twice-distilled water, and
immersed into the 3%NaCl solution in the electrochemical cell.
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Fig. 2 Theoretical Chebyshev’s
spectra of Markov noise for the
RC circuit in the 16-dimensional
space of discrete Chebyshev’s
polynomials. The ordinate is the
intensity of Chebyshev’s spectral
line normalized by the Markov
noise dispersion. The ratio of
sampling frequency to the
relaxation frequency of RC circuit
serves as the parameter
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Fig. 3 Theoretical Chebyshev’s
spectra of Markov noise for the
RC circuit in the 16-dimensional
space of discrete Chebyshev’s
polynomials. The abscissa is the
sampling frequency fS normalized
by the relaxation frequency of RC
circuit. The ordinate is the
intensity of Chebyshev’s spectral
line normalized by the Markov
noise dispersion. The upper curve
corresponds to Chebyshev’s
spectral line with number 0. The
lower curve corresponds to the
15th Chebyshev spectral line
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The open-circuit voltage (OCV) between two electrodes of
the working couple was measured and digitized using an eval-
uation board AD7176-2SBZ based on a high-impedance input
amplifier and a 24-bit sigma-delta ADC (analog-to-digital
converters). The sampling frequency fs = 20 Hz. Thus obtain-
ed transient of OCV has 215 = 32,768 samples (1638.4 s) with
the segment length N = 8. The averaging is performed using
4096 segments. Figure 4 shows the Chebyshev spectra of
corrosion noise at two times of electrode exposure to the so-
lution: t1 = 80 min and t2 = 140 min.

The lower curve (Fig. 4) characterizes the noise of measur-
ing equipment at the short-cut input. Spectral lines with num-
bers 0 and 1 are subjected to the influence of electrochemical
noise drift [10]. The intensities of six spectral lines with num-
bers 2–7 can be used to estimate two Markov parameters B(0)
and ν. Solving system of 6 equations for two unknown vari-
ables, we obtain the following Markov estimates for the dis-
persion and relaxation time of corrosion process (arguments t1
and t2) and the measuring equipment (argument A):

B 0; t1ð Þ ¼ 4:4⋅10−9V2 B 0; t2ð Þ ¼ 1:2⋅10−9V2 B 0;Að Þ
¼ 1:8⋅10−13V2 ð9Þ

ν t1ð Þ ¼ 0:016 Hz ν t2ð Þ ¼ 0:017Hz ν Að Þ ¼ 22:7Hz

ð10Þ

Figure 4 contains standard deviations for each spectral line.
Standard deviation for M/Z independent measurements was
calculated by the following equation:

S 2ð Þ
k N ; f Sð Þ ¼ 1ffiffiffiffiffi

M
Z

r y 2ð Þ
k N ; f Sð Þ ð11Þ

In our case, Z = 4. From Table 1, it is seen that each forth
segment can be presented as an independent measurement.

From Eqs. (9–10), it is seen that the dispersion B(0) of
measuring equipment noise is considerably lower than the
dispersion of electrochemical noise, and the relaxation fre-
quency ν of the electrochemical noise is substantially lower
than the relaxation frequency of the measuring equipment. It is
also seen that the dispersion of electrochemical noise de-
creases rather steeply with the time of exposure. However,
the relaxation frequency of the electrochemical noise depends
only slightly on the time of exposure of the electrode system to
the solution. It should be noted that the relaxation frequency of

Fig. 4 Discrete Chebyshev’s
spectra of electrochemical
corrosion noise (t1 = 80 min and
t2 = 140 min) and noise of
measuring equipment (A) with
standard deviations

Table 1 Correlation coefficients
(%) between segments with
number m and number (m + 4)

Number of spectral line

Sample 1 2 3 4 5 6 7

A − 3.577 4.276 − 1.261 − 1.317 − 3.692 − 5.073 1.976

t1 2.66 − 0.294 0.502 − 3.236 − 1.705 − 4.8 0.672

t2 28.379 − 1.886 1.804 2.997 −1.183 3.929 − 6.201
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Markov process ν = 1/(RC) is also the relaxation frequency of
RC` circuit. Therefore, we can state that the discrete version
(6) of the Wiener-Khinchin theorem is a kind of a bridge that
connects the noise and impedance measurements. In accor-
dance with the meaning of the fluctuation-dissipation theorem
[23, 24], we can state that a decrease in the dispersion of
electrochemical noise means a decrease in the electrode
resistance.

The Voigt circuit [38, 39] adequately presents the impedance
properties of electrochemical systems. Therefore, the noise
Voigt circuit will also reflect properly the properties of electro-
chemical noise. Each element of noise Voigt circuit (Fig. 1)
contains an electric capacitance, electric resistance, and a
source of white noise. Eventually, Markov noise arises in each
Voigt element. Therefore, as a whole, the electrochemical noise

is presented by the superposition of Markov random processes.
This fact substantially facilitates the stochastic analysis of elec-
trochemical noise. At the first step, we characterize the corro-
sion noise with a single-element noise Voigt circuit (Fig. 1). If
necessary, we can perform the second and third steps and char-
acterize the noise of corrosion process by two-element or three-
element noise Voigt circuit.

In order to demonstrate unique ability of Chebyshev’s
spectroscopy to eliminate the effect of trend, a strong
artificial trend (Fig. 5) was added to the original
(experimental) trend (Fig. 6):

Tr
t
fs

� �
¼ 10−1V ⋅sin

π⋅t
215

� �
; t ¼ 0… 215−1

� � ð12Þ
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Fig. 6 Corrosion noise signal (curve 1) and corrosion noise signal with
drift signal (curve 2)
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Fig. 7 Chebyshev spectra’s of voltage corrosion noise signal and
corrosion noise signal with drift signal

J Solid State Electrochem (2018) 22:1661–1667 1665



We calculated the Chebyshev spectrum for original corro-
sion noise and for the superposition of original corrosion noise
and artificial trend (Fig. 7). A similar calculation was per-
formed by the method of Fourier spectroscopy (Fig. 8) with-
out eliminating the trend. From Fig. 7, it is seen that the in-
tensity of any Chebyshev’s spectral line from no. 2 to no. 7
remains unchanged also in the presence of strong trend (12).
Quite different situation is observed for the Fourier spectros-
copy: the intensity of all spectral lines from no. 2 to no. 7
changes by almost an order of magnitude (Fig. 8) under the
effect of strong trend (12).

Conclusions

Equation (6) is the main result of this work. Equation (6) is a
discrete version of the Wiener-Khinchin theorem for the
Chebyshev spectrum. Using (6), we can calculate the theoreti-
cal Chebyshev spectrum corresponding to any known autocor-
relation function of electrochemical noise in any chosen
N-dimensional space and at any chosen sampling frequency
fS. The discrete version of the Wiener-Khinchin theorem shows
that the intensity of Chebyshev’s spectral line in the N-
dimensional Chebyshev spectrum depends not only on the
number k of this spectral line, but also on the sampling frequen-
cy fS. In other words, the intensity of Chebyshev’s spectral line
is a function of three variables: the spectral line number k, the
dimensionality N of linear space, where the analysis is per-
formed, and the sampling frequency of electrochemical noise fS.

The discrete version (6) of the Wiener-Khinchin theorem
for the Chebyshev spectrum enabled us to develop a method
of the parametric analysis of electrochemical noise, which is
stable with respect to the trend of electrochemical noise.

The application of discrete version of the Wiener-Khinchin
theorem to the analysis of corrosion process showed that the

dispersion of electrochemical noise decreases rather steeply
with the time of exposure of the electrode system to the solu-
tion, whereas the relaxation frequency remains approximately
constant.

The theory of stochastic processes is of interdisciplinary
character. The problem of trend (drift) elimination is important
for studying the noise of many non-electrochemical systems
[25–37]. It can be expected that the discrete version (6) of the
Wiener-Khinchin theorem will be useful also in these cases.
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