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Abstract
Polythiophenes are conjugated polymers that are highly promising candidates for use as an active layer in flexible optoelectronic
devices. The β-substitution position in the thiophene ring minimizes the occurrence of couplings during polymerization, pro-
ducing more regular structures and resulting in better properties. The relatively high stability and the possibility of tuning the
properties by molecular engineering make polythiophenes one of the most versatile classes of conjugated polymers. In this study,
we present an investigation of the influence of two types of polythiophenes on their spectroelectrochemical properties: (i)
poly(alcoxythiophenes) (POTs), including poly(3-methoxythiophene) (PMOT) and poly(3,4-ethylenedioxythiophene)
(PEDOT), and (ii) poly(3-alkylthiophenes) (PYTs), including poly(3-hexylthiophene) (P3HT) and poly(3-dodecylthiophene)
(PDDT). The polymers were electrochemically synthesized by cyclic voltammetry and characterized by infrared spectroscopy.
The Bin situ^ simultaneous optical absorption and fluorescence investigation of the solutions showed new energy state polarons
in the redox process. Chronoabsorptometry measurements enabled determination of parameters such as electrochromic efficien-
cy, coulombic efficiency, optical contrast, and switching time of the polymers in the reduced and oxidized states. A switching
time of 2 s and an electrochemical efficiency of almost 90 cm2 C−1 are promising for applying these polymers in electrochromic
devices.
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Introduction

The high global demand for energy production and the urgent
efforts to reduce environmental impact have led to a growing
interest in research related to the use of solar energy with a
lower cost and greater efficiency [1, 2].

Electrochromic devices (EDs) present a good alternative in
this scenario due to their low power consumption [3, 4]. In
addition, electrochromic materials are optically active mate-
rials characterized by reversible changes and optical properties
in response to electrochemical changes [5, 6]. These materials
are also promising because of the good optical contrast be-
tween their different color states, optical memory, stability to
ultraviolet rays, thermal stability over different temperature

ranges, and short switching time for optical changes [7, 8].
EDs have several applications, including intelligent windows
[9], displays [10], and sunglasses [11]. In addition, conjugated
polymers (CPs) have high-performance characteristics for ap-
plication in EDs, such as high optical contrast in a short
switching time [12], high redox stability and low processing
cost [13, 14], and they are considered to be among the most
applicable electrochromic materials due to their multicolor
states in response to an applied potential [15, 16].
Polythiophene, polypyrrole, polyaniline, and their derivatives
are typical examples of remarkable electrochromic CPs re-
ported in the literature [17, 18].

Polythiophene (PT) forms a representative class of CPs
with the potential for ED application due to its high thermal
and environmental stability, organic solvent solubility, ease of
processing, electrochromism, and good electrochemical sta-
bility [11, 13, 19]. β-substituted PTs present more regular
structures and better properties due to the minimization of
couplings between the polymer chains during chemical or
electrochemical synthesis [20].
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In the current study, four β-substituted derivatives of PTs
were synthesized, namely, two poly(3-alkoxythiophenes)
(POTs) of poly(3-methoxythiophene) (PMOT) and poly(3,4-
ethylenedioxythiophene) (PEDOT) and two poly(3-
alkylthiophenes) (PYTs) of poly(3-hexylthiophene) (P3HT)
and poly(3-dodecylthiophene) (PDDT). The synthesis in-
volved electrochemical polymerization with cyclic voltamm-
etry (CV) in acetonitrile with sodium perchlorate (NaClO4) as
the electrolyte. The structural and electrochemical properties
of the polymers were investigated using Fourier transform
infrared spectroscopy (FTIR) and CV, respectively.
Chronoabsorptometry and spectroelectrochemical measure-
ments revealed the potential for ED application of these ma-
terials by determining parameters such as optical contrast,
switching time, and coloration efficiency. The influences of
the thiophene ring substituent groups on these properties were
determined due to the presence of the oxygen atom in the
alkoxythiophenes and the alkyl chain length of the
alkylthiophenes.

Experimental

Materials

The monomers 3-metoxythiophene (MOT), 3 ,4-
ethylenedioxythiophene (EDOT), 3-hexylthiophene (3HT),
and 3-dodecylthiophene (DDT) were purchased from
Sigma-Aldrich Co. and used as received. Sodium perchlorate
(NaClO4, electrochemical grade) and tetrabutylammonium
perchlorate (TBAP, electrochemical grade) were obtained
from Aldrich and Fluka Co., respectively. The acetonitrile
(AN) (99.8%) solvent was dried in a previously activated
[21] molecular sieve of 3 Å (10% m/v). Tetrahydrofuran
(THF) was purchased from Vetec. All measurements were
conducted in a nitrogen atmosphere (N2).

Glass recovered with indium tin oxide (ITO)-doped sub-
strate was obtained from Delta Technologies (8–12 Ω;
7.0 mm× 50.0 mm× 0.7 mm).

Instrumentation

FTIR spectra were recorded for all samples in powder form on
a Thermo Scientific Nicolet 380 spectrometer using attenuated
total reflectance (ATR, ZnSe crystals). The emission and ab-
sorption spectra were recorded on a Varian Cary Eclipse spec-
trofluorimeter and a UV-Vis Cary 100 Bio spectrophotometer,
respectively.

The surface morphology of the polymer films was studied
via scanning electron microscopy (SEM) on a Superscan
Schimadzu SSX-550 instrument.

The electrochemical experiments were performed using a
Palmsens potentiostat. These experiments were performed at
room temperature.

Computer-controlled spectroelectrochemical measure-
ments were performed using a UV-Visible Cary 100 Bio spec-
trometer connected to an Autolab PGSTAT204 instrument.

Electrochemical experiments

The electrochemical experiments were conducted in a typical
three-electrode cell (~ 2 mL). A disk platinum electrode (a =
1.13 10−2 cm2) was used as the working electrode (WE), a
platinumwire was used as the counter electrode (CE), and Ag/
Ag+ was used as the quasi-reference electrode (RE). The elec-
trochemical experiments were conducted using a potentiostat
Palm Sens. All measurements were performed under an inert
nitrogen (N2) atmosphere.

Firstly, CV measurements were recorded at a scan rate of
50 mV s−1 us ing a low monomer concentra t ion
(2.0 mmol L−1) to avoid polymer formation. The redox profile
of POT was studied in distilled water/acetonitrile (3:1) con-
taining 0.1 mol L−1 of NaClO4 and that of PYT in AN con-
taining 0.1 mol L−1 of NaClO4.

Polymeric POT films were obtained by CVusing a solution
of 35 mmol L−1 of the monomer in water/acetonitrile (3:1) in
the range of − 0.5 to 1.5 V vs Ag/Ag+. Polymeric PYT films
were obtained by CV using a solution of 0.1 mol L−1 of the
monomer in AN in the range of 0.5 to 1.6 V vs Ag/Ag+. After
polymerization, the films were rinsed with AN, and the elec-
trode was transferred to one of the cells containing the corre-
sponding electrolyte solution free monomer for which the re-
dox profile of the polymeric film was submitted to different
scanning speeds (10, 20, 50, 75, 100, and 150 mV s−1).

Spectroelectrochemical experiments

The polymer films were obtained on ITO-coated glass (Delta
Technolog ies ; 7 × 50 × 50 mm, 8 ≤ R ≥ 12 Ω ) by
chronopotentiometry deposition (2 mA cm−2, 20 s for POT
and 40 s for PYT) using monomer solutions 0.1 mol L−1 in
nitrobenzene (ØNO2) containing tetrabutylammonium tetra-
fluoroborate (Bu4NBF4) (0.1 mol L−1). After the deposition,
the films were rinsed with distilled water and inserted in an
electrochemical cell. The higher ITO resistance compared to
Pt implied the electrolyte change and a more rigorous kinetic
control (low temperature ~ 5 °C) to obtain homogeneous thin
films.

The electrochemical cell was assembled in a standard
quartz cuvette (1 cm × 1 cm) using ITO as the WE, a Pt wire
as the counter electrode, and a Pt wire as a quasi-reference.
The cuvette was filled with the supporting electrolyte solution
(0.1 mol L−1 Bu4NBF4 in AN solution). Spectroelectrochem-
ical experiments were performed on the electrochemical cell that

1508 J Solid State Electrochem (2018) 22:1507–1515



was inserted in the spectrophotometer UV Cary 100 Bio con-
nected to an Autolab Potentiostat/Galvanostat (PGSTAT 204).
The films were stabilized in the electroactivity range of each
material at increasingly positive potentials with increments of
0.1V, and after each current signal was stabilized, one absorption
spectrum was recorded. The absorbance was measured between
300 and 800 nm at a constant potential while a stable current was
achieved (constant E value for 60 s).

The chronoabsorptometry experiments were performed
using the same experimental apparatus as that described for
spectrolectrochemical examination. The film was subjected to
ten potential jumps between the states of oxidation and reduc-
tion by chronoamperometry accompanied by UV-Vis trans-
mittance measurement.

Optical experiments

The polymer solution was prepared by dissolving 1 mg of
polymer into 3 mL of THF solvent and stirring for more than
4 h. Absorption spectra were recorded for each sample.
Fluorescence spectra were obtained with excitation at the
maximum absorption of each polymer. Both measurements
were performed in solution in a quartz cuvette (1 cm × 1 cm).

Results and discussion

FTIR-ATR spectroscopy

The FTIR-ATR spectra obtained for POT and PYT are shown
in Fig. 1. All of the obtained spectra present bands character-
istic of the expected structures for the prepared polymers.

The absorptions for the asymmetric and symmetric
stretching modes of the methylene groups are shown in the
infrared spectra, respectively, at 2928 and 2857 cm−1 for
PMOT; 2925 and 2851 cm−1 for PEDOT; 2916 and
2856 cm−1 for P3HT; and 2916 and 2843 cm−1 for PEDOT.
This region of the spectrum has an –C–S asymmetric
stretching contribution. The higher intensity of these signals
for the PYTs is attributed to the alkyl substituent chain on the
thiophene ring [22]. The bands at 1355 cm−1 (PMOT),
1358 cm−1 (PEDOT), 1348 cm−1 (P3HT), and 1339 cm−1

(PDDT) were attributed to bending deformations of the –C–
H groups. The absorptions at 1086 cm−1 (PMOT) and
1094 cm−1 (PEDOT) were attributed to C–O–C stretching
with a contribution from the =Cβ–H band. The out-of-plane
stretching of the alkyl chain (CH2) of PYT appears around
1077 cm−1. The characteristic C–S stretching peak of the PT
ring appeared for PMOT, PEDOT, P3HT, and PDDT at 810,
840, 824, and 818 cm−1, respectively, providing evidence of
the polymer formation [23].

Electrochemical characterization

Figure 2 shows the voltammograms obtained for the samples
at different scanning speeds. All of the polymers showed
quasi-reversible behavior at the speeds studied. PYT and
POT exhibited a well-defined oxidation peak and reduction
peak, at minimum.

The CV curves for the polymers in Fig. 2 show only a
redox peak, indicating that the capacitance of these materials
primarily results from the double-layer capacitance. The
PEDOT presented capacitive behavior that was attributed to
the high electronic density present in its structure, which was
associated with the direct attachment of oxygen to the thio-
phene ring. The PMOT polymer exhibited a considerably
higher oxidation potential (0.4 V greater, Fig. 2b) than
PEDOT, possibly attributed to a large torsion angle between
the repeated units in the electroneutral polymer chain [24].

From the voltammetric curves obtained at 20 mV s−1, the
thermodynamic variables are presented in Table 1. The het-
eroatom plays an important role in the electrochemical behav-
ior of the CPs through p-π * and π-π *type transitions, caus-
ing a reduction in the oxidation potential. Therefore, the po-
lymerization conditions become gentler, which favors the for-
mation of polymers with better regioregularity properties [25].
This behavior was observed for POT, PMOT, and PEDOT,
which presented lower values than PYT, P3HT, and PDDT
of anode peak potential (Epa).

The values forΔEp/2 were determined by the average value
of the anodic and cathodic peak potentials. The value ofΔEp/2

is related to the existence of an anodic residual current in the
voltammograms, which is generally attributed to the double-
layer charge in the oxidized conductive polymer.

The reaction scheme of the redox process can be described
as follows:

P þ X�  !E
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PþX� þ e�

4000 3000 2000 1000

(d) PDDT
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Fig. 1 Spectra in the infrared region (FTIR-ATR) for the following: a
PMOT, b PEDOT, c P3HT, and d PDDT
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where P is approximately equal to 3 monomeric units.
Considering the values obtained at 20mV s−1, it was observed
that E0′ is higher for alkyl than for alkoxy substituents. The E0′
value for PEDOT is lower than that for PMOT because of the
mesomeric and inductive donor effects of the two oxygenated
substituents [25]. For PYT, the value of E0′ increases as the
size of the alkyl substituent chain increases due to the steric
effect of the alpha helix. In addition, the length of the polymer
chain also influences the value of E0′. A more CP has a lower
redox potential value, so that its electrons become more
delocalized and more easily oxidized. According to the results
obtained, PEDOT presents a greater extent of conjugation,
followed by PMOT, P3HT, and PDDT.

All polymers showed an anodic potential dependence on
the scan rate, which denoted a quasi-reversible profile, as
displayed in Fig. 3. Small variations of the anodic peak po-
tential as a function of the scanning velocity can be related to
the ohmic drop due to the ionic conductivity as the solvent
decreased with increasing speed.

Plots of the anodic peak current as a function of scan rate
for POTand PYTwere nearly linear, denoting redox reactions
with superficial reactions and negligible mass transport [26,
27] (Fig. 3). The experimental data do not pass through the
origin, indicating the presence of residual current.

Optical characterization

When the material is excited, the absorbed photon has more
energy than the forbidden band of the semiconductor, thus
tending to enter into an energy balance with the solution;
due to this effect, the minimum energy is reached through
the emission of phonons [28]. From the curves shown in
Fig. 4, it can be observed that all of the reduced materials
possess an absorption band due to a transition from the va-
lence band to the conduction band (VB→CB) near 400 nm
(3.1 eV).

The optical absorption of PMOT (Fig. 4a) presented two
absorption bands of violet and blue at 289 nm (4.29 eV) and
486 nm (2.55 eV), respectively, which could be attributed to
n→π* transitions associated with the presence of the oxygen
heteroatom in its structure and the π→π* of the thiophene
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Fig. 2 Cyclic voltammogram for
a PMOT, b PEDOT, c P3HT, and
d PDDT at different scanning
speeds. WE =CE= Pt, RE =Ag/
Ag+. Electrolyte: NaClO4

0.1 mol L−1/AN

Table 1 Summary of voltammetric data for the curves obtained at
20 mV s−1

Polymer Epa/
V

Epc/
V

Ipa/μA E0′/
V

ΔEP/2/
V

PMOT 0.55 0.46 27.50 0.50 0.09

PEDOT 0.15 0.29 11.56 0.22 0.14

P3HT 1.07 0.97 2.41 1.02 0.10

PDDT 1.49 1.01 144.22 1.25 0.45

WE =CE= Pt, RE =Ag/Ag+ . Electrolyte 0.1 mol L−1 NaClO4/AN

Anodic (Epa) and cathodic (Epc) peak potentials; anodic (Ipa) peak current;
formal redox potential (E0 ’ = Epa + Epc)/2; width at half height of normal
peak (ΔEp/2 = |Epa −Epc|)
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ring. For this sample, a maximum emission was identified in
orange at 568 nm (2.18 eV). In Fig. 4b, PEDOT presented an
optical absorption at 529 nm (2.34 eV) and a maximum emis-
sion at 647 nm (1.92 eV). The polymers P3HT (Fig. 4c) and
PDDT (Fig. 4d) presented similar spectra with absorptions
and emissions in the same region, which are associated with
the similarity of the structures. These samples presented an
absorption of violet with a maximum near 412 nm (3.01 eV)
and an emission of orange at ~ 568 nm (2.18 eV). For PDDT, a
bathochromic shift (displacement for a longer wavelength-red
region of the electromagnetic spectrum) was expected com-
pared with P3HT due to the inductive effect of the polymer
chain increase, but this displacement was not detected.

A difference in the absorption region between the
poly(alkoxythiophenes) and poly(3-alkylthiophenes) associat-
ed with the substituents is noted. The possibility of combining
colors between the two classes is a technological advantage
because it increases the range of possible colors for construct-
ing EDs.

Morphological characterization

Morphological analyses of the thin films/ITO were performed
using SEM, as shown in Fig. 5. A lower roughness was ob-
served in the PMOTand P3HT films than in the other films [29].
ThefilmsofthePMOTandPEDOTpolymers(Fig.5a,b)havea
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smoothsurfacewiththepresenceoftypicalgranules,whichcan
beattributedtothepresenceofpolymeragglomeratesinselect-
edregionsof thefilm[30–32].

The P3HT film showed greater homogeneity in the sub-
strate compared with the PDDT film because P3HT formed a
flatter surface on the ITO [33–35].

Spectroelectrochemical characterization

Toinvestigate theeffectsof thedepositionmethodon theaverage
conjugation length of the POT and PYT films, the

spectroelectrochemical properties (chemical and electrochemi-
cal) of these polymers in the undoped (reduction) and doped
(oxides) states were analyzed. In this study, the electron transfer
reaction was considered sufficiently fast so that the kinetic limi-
tation during the redox processes can be attributed to the diffu-
sional transport within the film (the kinetics will be limited by
mass transport).Thus, lowering the temperatureandusingamore
viscous solvent (nitrobenzene) during electropolymerization
was essential for obtaining homogeneous films.

The spectroelectrochemical profile obtained for the poly-
mers is shown in Fig. 6, and the inset in the figure shows the

(a) (b)

(c) (d)

Fig. 5 SEM images from of a
PMOT, b PEDOT, c P3HT, and d
PDDT obtained on a glass/ITO
substrate
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absorbance curve for two wavelengths (λ), with the first one
attributed to the reduced state (λ ∼ 480 nm for PYT and λ ~
550 nm for POT), and the second attributed to the oxidized state
(λ ∼ 600 nm for PMOT, λ ∼ 900 nm for PEDOT, and
λ ∼ 800 nm for PYT) as a function of the potential. A greater
bathochromic shift of λmax occurs for PEDOT than for PMOT,
which arises from the increase in the number of oxygen groups
in its structure. This phenomenon powerfully demonstrates the
contribution of these substituents to increasing the electronic
conduction in the polymer chain and favors the bathochromic
shift (towards red). The PYTs are influenced by the size of the
alkyl substituent chain at the β-position of the thiophene ring,
and the increase in the substituent chain contributes to a de-
crease in energy and the consequent red shift.

The right-hand side of the figures shows the color spectrum
of each sample during the potential variation. A gradual de-
crease of the absorption band at the higher energy and an

increase of the absorption band at the lower energy were noted
with increasing applied voltage, which was associated with the
new intra-gap energy levels of the polaronic state and
bipolaronic state formation [35–37]. As expected, all of the
films showed a color change from the oxidized state to the
reduced state, and this changewas reversible in all samples [38].
From the oxidized to the reduced state, the PMOT film changed
from blue to orange, PEDOT changed from light blue to dark
blue, and P3HT and PDDT changed from dark blue to black.

The values of the energies listed in Table 2 were deter-
mined relative to the absorption maximum in the oxidized
state, the onset value, and the inversion point. The onset of
the polaron–bipolaron transitions in the polymers, as deter-
mined by tracing a tangent on the low-energy side of the
absorption curve, occurs at 1.74, 1.57, 1.70, and 1.60 eV for
PMOT, PEDOT, P3HT, and PDDT, respectively.

In the sequence, measurement of the switching time (τ) for
the polymers (shown in Fig. 7) was performed using
chronoabsorptometry (simultaneous measures of the double
step of potential and transmittance as a function of time (s))
[37]. This approach is a relevant method used to evaluate
important parameters that supply information for application
in EDs, such as coloration efficiency (η):

η ¼
log

%Tre

%Tox
Q

where %Tre is the transmittance in the reduced state, %Tox is
the transmittance in the oxidized state, and Q is the total
charge. Other parameters are the optical contrast (Δ%T), for
whichΔ%T is the variation of percentage transmittance (%T)

Table 2 Summary of spectroelectrochemical data for the polymers

Polymer Maximum absorption BOnset^ Inversion point

Econd/
V

λmax/
nm

Emax/
eV

λtg/
nm

Eπ-π/
eV

λin/
nm

Emax/
eV

PMOT − 0.6 497 2.49 709 1.74 551 2.25

PEDOT − 0.1 589 2.10 787 1.57 710 1.74

P3HT 0.4 435 2.85 729 1.70 605 2.05

PDDT 0.2 441 2.81 774 1.60 617 2.00

Econd. = conditioning potential; λtg = wavelength associated with the onset
of the BV- > BC as determined by the tangent line to the low-energy
region
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Fig. 7 Optical switching studies
for polymers monitored at λ =
600 or 750 nm (solid line,
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between the reduced and oxidized state [39], and the
electrochromic switching time (τ), which is the time required
for the material to change color between the redox states.
Table 3 shows the electrochromic parameters obtained for the
polymers. POT presented better results for the electrochromic
properties than PYT. Measurements for the transitions between
the reduced and oxidized states showed switching times of 4.9 s
(PMOT) and 3.1 s (PEDOT). When the process is reversed
between the oxidized and reduced states, the response time in-
creases to 2.2 s for PMOTand 1.8 s for PEDOT. PYT presented
a similar switching time for the reduced and oxidized states,
namely, ~ 9.0 s (P3HT) and ~ 6.5 s (PDDT).

Interestingly, the polymer with the highest optical contrast
(Δ%T) was PMOT at 28.5%, which is in agreement with the
optical and spectroelectrochemical study presented in this
work. PMOT also presented variation from red to blue for
the change from the oxidized to reduced state. The other poly-
mers presented Δ%T values of 10–20%, which indicates a
useful system for application in energy-saving windows. The
coloration efficiency measurement values for POT are
86.3 cm2 C−1 (PMOT) and 13.0 cm2 C−1 (PEDOT). The col-
oration efficiency results are influenced by the homogeneity
of the deposited films (morphological study, SEM).
Compared with the other films, PMOT presented greater ho-
mogeneity of the deposited film on the ITO substrate, reveal-
ing its effective potential for coloration efficiency. The
PEDOT film and the P3HTand PDDT films presented rough-
ness due to the kinetic difficulties of CV deposition, thus
influencing the process of load reinjection in the electrochem-
ical reduction process. The electrochromic properties ana-
lyzed in this study are promising, and all electrosynthesized
polymers are potential candidates for energy-saving window
applications [39].

The Coulomb efficiency is defined as Qa/Qc × 100%,
where Qa and Qc are the anodic and cathodic charges, respec-
tively, determined by the mathematical integration of the an-
odic and cathodic regions of the chronoamperometry curves
(Fig. 7). The values found for the polymers were near 100%
for several cycles, indicating that the load consumed in the
oxidation process is nearly identical to the load consumption
of the reduction process. These data indicate that the redox

process occurs virtually completely, and consequently, the
color variation occurs reversibly.

Conclusions

In conclusion, we showed that four β-substituted thiophenes
(POT and PYT) with electron-withdrawing groups could be
easily electrochemically polymerized by CV in a single step
from commercially available starting monomers, resulting in
the formation of an electroactive conjugated film on the WE.
The infrared spectra of the polymers and the electrochemical
profiles corroborate these claims.

All of the monomers formed an electroactive polymer film
on the ITO-coated glass electrode. These films showed revers-
ible color variation from the reduced state to the oxidized
state, namely, from red to blue for the PMOT film, from dark
blue to light blue for the PEDOT film, and from dark blue to
black for poly(3-alkylthiophenes) films. The polymers exhibit
high contrast in the visible region and the formation of new
polaronic and bipolaronic energy states. The results show in-
teresting perspectives regarding the use of POT and PYT de-
posited on ITO/glass electrodes in technological applications.
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