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Abstract Sn-doped Li-rich layered oxides of Li; ;Mng s4.
+Nig 13C00.135n,0, have been synthesized via a sol-gel method,
and their microstructure and electrochemical performance have
been studied. The addition of Sn** ions has no distinct influence
on the crystal structure of the materials. After doped with an
appropriate amount of Sn**, the electrochemical performance
of Li; ;Mny s4.,Nig 13C0¢.135n,0, cathode materials is signifi-
cantly enhanced. The optimal electrochemical performance is
obtained at x = 0.01. The Lil.zMn0_53Ni0,13C00,13Sn0_0102 elec-
trode delivers a high initial discharge capacity of
268.9 mAh g ' with an initial coulombic efficiency of 76.5%
and a reversible capacity of 199.8 mAh g ' at 0.1 C with ca-
pacity retention of 75.2% after 100 cycles. In addition, the
Li].2M1'10A53Ni0A13C00_13sl'l0‘0102 electrode exhibits the superior
rate capability with discharge capacities 0f 239.8, 198.6, 164.4,
133.4, and 88.8 mAh gf1 at0.2,0.5, 1,2, and 5 C, respectively,
which are much higher than those of Li; ,Mny 54Nig 13C00.130;
(1962, 153.5,117.5,92.7, and 43.8 mAh g " at 0.2, 0.5, 1, 2,
and 5 C, respectively). The substitution of Sn** for Mn** en-
larges the Li* diffusion channels due to its larger ionic radius
compared to Mn** and enhances the structural stability of Li-
rich oxides, leading to the improved electrochemical perfor-
mance in the Sn—doped Li],2MIl0.54Ni().13C00.1302 cathode
materials.
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Introduction

Lithium-ion batteries (LIBs) have been widely applied in
various fields due to their high energy density, long cycle
life, and environmental friendliness [1, 2], such as infor-
mation, transportation, and military. They are expected to
a large number of promotions in hybrid electric vehicles
(HEVs) and electric vehicles (EVs) in recent years [3, 4].
However, most traditional cathode materials (e.g., LiCoO,
and LiMn,O,4) cannot satisfy the demand of the specific
energy for HEVs and EVs. Therefore, it is a challenge to
develop new cathode materials with high capacity, good
rate capability, and low cost for high-power LIBs.
Li-rich oxides of xLi,MnO3-(1-x)LiMO, (0 < x < 1,
M = Mn, Ni, Co, Fe, Mn;5Ni;3Coys3...) have been widely
studied because they could be operated at high working volt-
ages (4.6~4.8 V vs. Li/Li") with satisfied safety and high spe-
cific capacity (more than 200 mAh g™') [5-7]. Among Li-rich
layered cathodes, Li; ;Mng 54Nig13C00.130, (equivalently
0.5Li2Ml’103'0.5LiMl’11/3Ni1/3CO1/302, or LMNC, for ShOI't)
has attracted considerable attention owing to its high discharge
capacity (~250 mAh g ') and good stability [8, 9]. However,
the LMNC materials suffer from several disadvantages that
limit their practical application, such as large irreversible capac-
ity loss (ICL) in the first cycle [5, 10, 11], poor rate capability
[5, 12, 13], and fast capacity fading during further cycles [11,
14, 15]. The large initial ICL and fast capacity fading mainly
arise from the activation reaction of Li,MnO; component dur-
ing the first charging process. When the charging potential is
above 4.5 V, oxygen is irreversibly released as the form of
“Li,O” along with the generation of oxygen-ion vacancies
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and lithium-ion vacancies [7, 16]. At the end of the initial
charging process, transition metal (TM) ions move into some
of these vacancies. This causes the decrease of Li* insertion
sites during the initial discharging process and thus induces
the large initial ICL [17]. In the subsequent cycles, the rear-
rangement of the TM ions and the removing of vacancies could
be proceed, resulting in a structural instability and fast capacity
fading. The inferior rate capability is related to the poor elec-
tronic conductivity and low Li* diffusion coefficient of
Li,MnOs component [12, 13]. Many approaches have been
taken to improve the electrochemical performance of LMNC
materials, including surface modification [18, 19], mild acidic
treatment [20, 21], structure and morphology controlling [22,
23], and cation doping [24-26]. In these methods, the doping of
simple cations has been proved to be an effective approach to
improve cycle stability and rate performance. Many metal cat-
ions (e.g., Mg [27], Zn [28], Al [29], and Cr [30]) have been
successfully doped into the structure of Li-rich cathode mate-
rials. The doped cations can affect the morphology and micro-
structure, or stabilize the crystalline structure [31]. B. Song et al.
reported that the Li(Lioi19M110_54Ni()A13C00A12RuO401)02 cathode
shows a high discharge capacity of 182 mAh g™' at 5 C
with a capacity fade of 0.06% per cycle in 700 cycles
because the appropriate Ru-doping could improve the Li*
diffusion in LMNC and promote the phase transition
from layered Li(Li;3Mn,/;3)O, to certain spinel-like
phases [32]. X. Jin et al. successfully synthesized Mg-
doped LMNC via a sol-gel method, and the Mg-doping
can enlarge the inter-slap distance of lattices to facilitate
the Li* insertion/extraction and thus improve the cycle
stability and rate performance (160.5 mAh g ' at
1000 mA g ' and remains 127.5 mAh g ' after 50 cy-
cles) of cathode materials [33]. Z. He et al. found that Zr
dopant could stabilize the crystal structure of Li-rich
cathode and improve the Li* diffusion, which effectively
enhances the cycle stability and rate performance of
LMNC [34].

Sn** has been frequently explored as a dopant for cath-
ode materials (Li3V,(POy4)s; [35], LiFePO4 [36],
Li[Ni;/3C03Mn; 3]0, [37]) of LIBs. Sn** has a larger
jonic radius (0.71 A) than Mn** (0.53 A), and it is elec-
trochemical inactive during the charging-discharging pro-
cess, which cannot be reduced or oxidized. The Sn** dop-
ant can distinctly improve the electrochemical perfor-
mance of cathodes by enhancing the structural stability
[38]. However, to our knowledge, there has no report on
the improvement in the electrochemical performance of
Li-rich Lil_2MH0A54Ni0.13C00A1302 cathode materials by
the doping of Sn ions. In this work, Sn** ions were intro-
duced into the crystal structure of LMNC materials to
partly substitute Mn** via a sol-gel method. The effect
of Sn4+-doping on the structure and electrochemical prop-
erties of the Li; ,Mng s54Nig 13C00.130, was investigated.
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Experimental
Sample preparation and characterizations

Lil.2Ml’10_54_xNi0413COO.13Sl’1x02 (X = 0, 0005, 001, 0015, and
0.02) powders were prepared via a sol-gel method, denoted as
LMNC, LMNCSO0.5, LMNCS1, LMNCSI.5, and LMNCS2,
respectively. Stoichiometric amounts of Mn(CH3;COO),-
4H,0 (99%), Ni(CH3COO),-4H,0 (98%),Co(CH3COO0),:
4H,0 (99.5%), SnCly-SH,0 (99%), Li(CH3CO0),-2H,0
(99%), and C¢HgO7-H,0 (99.5%) were used as the raw mate-
rial. A 5% excess of Li(CH;COQO),-2H,0 was used to com-
pensate for the Li loss during the calcinations. All the raw
materials are purchased from Sinopharm Chemical Reagent
Co., Ltd. The detailed synthesis process was kept consistent
with that in the previous report [39].

The crystalline structure of all the materials were charac-
terized using X-ray diffraction (XRD) analysis with Cu K«
radiation (SmartLab, Rigaku, Tokyo, Japan) at a scan rate of
1° min~" in the 26 range of 10~80°. The X-ray photoelectron
spectroscopy (XPS) analysis of LMNC and LMNCS1 was
taken on a PHI 5000 Versa Probe XPS instrument (Thermo
ESCALAB 250XI). A field-emission scanning electron mi-
croscope (SEM, FEI-Quanta 250) equipped with energy dis-
persive spectrum X-ray detector (EDS) was used for the ob-
servation of the morphologies, element composition and dis-
tribution for all the materials. The microstructures of LMNC
and LMNCSI1 samples were observed via transmission elec-
tron microscopy (TEM, JEM2100). The element composition
of LMNC and LMNCSI1 samples was measured by an induc-
tively coupled plasma emission spectrometry (ICP-AES,
Optima 7000 DV, Pe).

Electrochemical measurements

The cathodes were fabricated by coating a slurry (80% active
material, 10% acetylene black, and 10% PVDF) onto the Al
current collectors followed by heat treated at 120 °C for 12 h.
The area of the cathode plates was 1.5394 cm”. The CR-2025
coin-type half-cells were made up of prepared cathode plates,
lithium anodes, and Celgard 2400 separators with 1 mol L™
LiPF¢ dissolved in EC-DMC (at a volume ratio of 1:1) as
electrolyte. All the cells were assembled and sealed in an
Ar-filled glove box (MB-Labstar, Germany). The galvanosta-
tic charge and discharge tests were measured using LANHE
CT-2001A instrument (Wuhan, China) between 2.0 and 4.8 V
(vs. Li/Li") at different rates at room temperature. The cyclic
voltammograms (CV) for the cells of sample LMNC and
LMNCSI1 were recorded on an electrochemical station
(CHI660E, Shanghai, China) at a scanning rate of
0.1 mV s ! in the voltage range of 2.0-4.8 V. The values of
OCYV for the LMNC and LMNCSI cells before the cyclic
voltammetry experiments were 2.355 and 2.358 V,
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respectively. Electrochemical impedance spectroscopy (EIS)
measurements were carried out after 10 cycles at 0.2 C and
monitored at the electrochemical station (CHI660E, Shanghai,
China) in the frequency range of 0.01-100,000 Hz at 5 mV
voltage amplitude. The EIS results were simulated by Zview2
software.

Results and discussions
Microstructural characterization

Figure 1 shows the XRD patterns of the LMNC and Sn-doped
LMNC samples. From Fig. 1a, all the samples possess a typ-
ical hexagonal layered a-NaFeO, structure of Li-rich layered
oxides in space group R3m. The XRD patterns of Sn-doped
LMNC samples are almost identical with that of LMNC sam-
ple, indicating that the doping of Sn** has no obvious effect on
the crystal structure of LMNC material. The extra weak dif-
fraction peaks between 20° and 25°, which cannot be indexed
to R3m space group, are not impurity phase and indicate the
LiMng cation arrangement in monoclinic Li,MnO; with C2/m
symmetry [4, 32, 40]. The fully splitting of (006)/(012) and
(118)/(110) peaks proves that all the materials are a well-
layered structure [24, 25]. From Fig. 1b, the (104) and (015)
peaks firstly shift to lower angle with the increasing of Sn**
(LMNCSI1 and LMNCSI1.5) and then move to higher angle
(LMNCS?2) as the amount of Sn** further increases, implying
that the unit cell firstly expands and then slightly shrinks. No
impurity peaks of SnO, can be detected, illustrating that the
Sn** ions have been successfully doped into the lattices of
LMNC.

Lattice parameters of the samples were calculated by the
Rietveld refinement using the R3m hexagonal space group by
the general structure analysis software (GSAS) and the results
are listed in Table 1. For LMNC and LMNCS materials, Mn

Table 1 Lattice parameters of the LMNC, LMNCS0.5, LMNCSI,
LMNCSL1.5, and LMNCS2 samples

Sample alA c/A cla VIA3 Loosyloay Rup (%)
LMNC 2.8532 14.2421 49916 115.94 1.3614 6.73
LMNCS0.5 2.8540 14.2456 4.9915 116.03 1.5322 9.6
LMNCS1  2.8573 14.2586 4.9902 116.41 1.5785 6.82
LMNCS1.5 2.8592 14.2778 4.9936 116.72 1.4111 6.0
LMNCS2 2.8573 14.2586 4.9902 116.41 2.0506 7.51

(Z = 25), Ni (Z = 27), and Co (Z = 28) atoms have similar
numbers of extranuclear electron (Z), which implies that these
atoms have close f; (the scattering factor of atom ) and similar
contribution on the intensity of diffraction peaks. Thus, it is
difficult to obtain the exact atomic site occupation using XRD
Rietveld refinements in the Mn-Ni-Co ternary cathode mate-
rials. It can be seen from Table 1 that the Sn**-doping
(x = 0.005~0.02) leads to the increasing of lattice dimensions
(a, ¢) and the expansion of unit cell (V), resulting in the en-
larging of Li* diffusion channels [41]. The change in lattice
parameters is owing to the partly substitution of Mn** (ionic
radius = 0.53 A) by the larger Sn** (ionic radius = 0.71 A).
Meanwhile, compared with LMNCS1.5 sample, the values of
a, ¢, and V for LMNCS2 slightly decrease. This may be due to
the replacement of Sn** for some Li*. Since Sn** has a close
jonic radius to Li* (0.76 A), thus partly substitution of Sn** in
the Li sites is highly possible in the case of larger doping
concentration of Sn** and the Li layers doped with Sn** ions
may decrease the inter-slap spacing. Similar result has been
observed in Mg-doped Li[Lig»Nig 13C0¢ 13Mng 54]O, cathode
materials [33]. There may be some electronegative lithium-ion
vacancies generated to balance the electrovalence when some
Sn** substitutes for Li*. In addition, the value of c/a relates to
the cation ordering of hexagonal structure. From Table 1, all
the c¢/a values are larger than 4.899, suggesting that all the
obtained samples are of well-ordered hexagonal structure

Fig. 1 XRD patterns of LMNC qa 2 b
and Sn-doped LMNC in the 26 < g
range of a 10-80° and b 43-50° g <
C2/m g LMNCS2 \\ a
5 =H] el 2 EEE -
o ’_‘_JL_ A A M_X —
} JA LMNCSL.5
B Lonss A A M A ” s e
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[41]. Generally, the extent of cation mixing between Ni** and
Li" in LMNC can be characterized by the value of Zp03y/104
(R) [42]. There is a serious cation mixing in Li-rich cathode
materials when R < 1.2. The value of R increases from 1.3614
for the pristine LMNC to 1.5322, 1.5785, 1.4111, and 2.0506
for LMNCS0.5, LMNCS1, LMNCSI.5, and LMNCS?2, re-
spectively, indicating that the doping of Sn** can lower the
extent of cation mixing. This means that the Sn**-doped
LMNC may have better structural stability during further cy-
cling [43].

The SEM images of the LMNC and Sn-doped LMNC
samples are shown in Fig. 2. All the samples present a well-
defined morphology with good crystallinity. From Fig. 2a, the
pristine LMNC sample exhibits a homogeneous morphology
with loose aggregation, which consists of sphere-like micro-
particles with a diameter of 100~400 nm. From Fig. 2b—d, the
low contents of Sn** have no significant influence on the
morphology of the LMNCSO0.5, LMNCSI and LMNCSI1.5
samples. However, when the content of Sn** increases to
0.02, the LMNCS2 sample shows the morphology of rock-
like grains with larger particle size. The EDS spectrum and
elemental mapping images of the LMNCS]1 sample are pre-
sented in Fig. 3. The EDS spectrum of LMNCSI sample ex-
hibits the peaks of Mn, Ni, Co, O, and Sn, indicating the
presence of Sn in the LMNCSI. The elemental mapping im-
ages show that Mn, Ni, Co, and Sn are uniformly distributed
in LMNCS1, which means that Sn** ions have been success-
fully doped into LMNC. The element composition of the
LMNC and LMNCSI1 samples was measured by ICP-AES.
The relative element content of LMNC and LMNCS1 samples

Fig. 2 SEM images of the LMNC and Sn-doped LMNC samples: a
LMNC, b LMNCS0.5, ¢ LMNCSI1, d LMNCSI.5, and e LMNCS2

@ Springer

is listed in Table 2. It is noted that the element composition of
both samples are close to the target stoichiometry.

TEM, high-resolution TEM (HRTEM), and fast Fourier
transform (FFT) pattern images of the LMNC and LMNCS1
samples are shown in Fig. 4. From Fig. 4a and b, the LMNC
and LMNCS1 samples are made of sphere-like microparticles
without any obvious difference in micromorphology.
Figure 4c and d present clear parallel lattice fringes, suggest-
ing that both samples have a good crystallinity. The
interplanar distances of about 0.47 and 0.24 nm for the
LMNC and LMNCSI1 samples, respectively, are indexed to
the (003) and (101) planes of the layered R3m phase, respec-
tively. These results match well with the embedded FFTs.

Figure 5 shows the XPS spectra of Co 2p, Ni 2p, Mn 2p, and
Sn 3d for LMNC and LMNCSI. The observed peak positions
and peak shapes of Co 2p, Ni 2p, and Mn 2p for LMNC and
LMNCSI are remarkably similar, which are also in accordance
with the previous reported values [44, 45]. From Fig. 5a, the
main peaks of Co 2ps,, and Co 2py, are at 779.9 and 794.8 eV,
respectively, with a satellite peak at 789.7 eV, implying the
presence of Co*. In the Ni 2p spectra (Fig. 5b), the Ni 2ps»
main peak is at 854.6 eV and the Ni 2p,, main peak is at
872.2 eV, with two satellite peaks located at 561.0 and
578.5 eV, respectively. This proves that the main oxidation state
of Ni is 4+2. In Fig. 5¢, the 2p3,, and 2p;, main peaks for Mn
located at 642.1 and 653.8 eV, respectively, are corresponding
to the existence of Mn** in the LMNC and LMNCS]1 samples.
For the LMNCS1 sample, the major peaks of Sn 3ds,, and Sn
3d;, are at 486.1 and 494.4 eV (Fig. 5d), respectively, indicat-
ing that the valance of Sn in LMNCSI is +4 [38].

Electrochemical performance

The initial charge/discharge curves of the LMNC and LMNCS
electrodes at 0.1 C between 2.0 and 4.8 V are shown in Fig. 6a.
It can be clearly observed from Fig. 6a that all the initial charge
curves have two voltage plateaus. The first one (~4.0 V) is
related to the extraction of Li* from LiNij 33Cog 33Mng 330,
structure accompanied with the oxidation of TM ions (Ni**/
Co>* — Ni**/Co™) and another one at 4.5 V is connected with
the irreversibly removal of Li,O from Li,MnQO3, leading to the
formation of [MnO,] and the corresponding electrochemical
activity [6, 7, 16, 17, 46]. The discharge profiles of
LMNCSO0.5 and LMNCSI lie above that of LMNC, implying
the low-level doping can elevate the discharge voltage plateau
[47]. This is attributed to the increased Li* ion diffusion caused
by a small doping amount of Sn** [47, 48]. The fast Li* ion
diffusion is beneficial to the decrease of electrochemical polar-
ization, resulting in the elevation of discharge voltage plateau
for LMNCSO0.5 and LMNCSI. The pristine LMNC electrode
delivers the charge/discharge capacity of 337.3/251.6 mAh g
in the first cycle with an initial coulombic efficiency of 74.59%.
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Fig. 3 EDS spectrum and
elemental mapping images of
LMNCSI1
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After doped with Sn**, the initial charge/discharge capacities of
the LMNCSO0.5, LMNCS1, LMNCSI1.5, and LMNCS2 elec-
trodes are 340.2/252.1, 351.5/268.9, 307.9/195.1, and 305.1/
193.1 mAh gfl, with initial coulombic efficiencies of 74.1,
76.5, 63.36, and 63.29%, respectively. The ICL values for all
electrodes are larger than 80 mAh g, which are ascribed to the
side reactions of electrolyte at high operating voltages and the
decrease of oxygen-ion vacancies and Li* insertion sites [47]. It
is obviously noted that LMNCSI exhibits the enhanced initial
discharge capacity and coulombic efficiency compared with the

Table 2 The element composition of analysis for LMNC and
LMNCS1 measured by ICP

Sample Li Mn Ni Co Sn
LMNC 1.136 0.540 0.132 0.129 0
LMNCSI1 1.222 0.530 0.136 0.139 0.011

LMNC electrode. In addition, the high-level doping can sharply
decrease the initial discharge capacity and coulombic efficiency
of the Li-rich material.

Figure 6b exhibits the cycle performance of the LMNC and
LMNCS electrodes for 50 cycles at 0.1 C. From Fig. 6b, the
LMNCSI electrode always exhibits the highest discharge ca-
pacities among all electrodes during cycling and delivers a
discharge capacity of 199.8 mAh g ! with capacity retention
of 75.2% after 50 cycles. Although the LMNCSO0.5 electrode
presents similar discharge capacities to the LMNC electrode
in the initial cycles, it gradually exhibits higher capacities than
LMNC in the consequent cycles. The LMNCSO0.5 electrode
still keeps a reversible discharge capacity of 182.4 mAh g'
with capacity retention of 72.5% after 50 cycles, while the
LMNC electrode remains only 66.8% (168.1 mAh g™') of
the initial discharge capacity. For the LMNCS1.5 and
LMNCS?2 electrodes, the initial discharge capacities are much
less than the others, but their capacity retentions are quite high

@ Springer
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Fig. 4 TEM images of the a
LMNC and b LMNCSI1 samples;
HRTEM images of the ¢ LMNC
and d LMNCS1samples (the
insets are the corresponding fast
Fourier transform patterns)

(95.1 and 81.0%, respectively). These results suggest that
x = 0.01 is the optimal doping amount of Sn** over the four
Sn-doped samples to improve the specific capacity and cycle
performance of the LMNC cathode. The Sn—O bond is stron-
ger than Mn—O bond and the ionic radius of electrochemical
inactive Sn** always stay unchanged during cycling, which
can stabilize the framework of layered structure, leading to the
enhancement of structural stability and cycling stability [38,
49].

The charge/discharge curves of LMNC and LMNCSI elec-
trodes in the 1st, 10th, 20th, 30th, 40th, and 50th cycles at 0.1 C
and the corresponding discharge midpoint potential of LMNC
and LMNCSI electrodes during 50 cycles are shown in Fig. 7.
From Fig. 7a and b, the discharge capacities of LMNC and
LMNCSI continuously decrease during cycling. As marked
by black arrows, the discharge profiles of both samples shift
to the lower voltage plateau during cycling due to the increasing
polarization. As we can see in Fig. 7c, the discharge midpoint
potential for LMNC and LMNCSI is similar in the initial 30

b

cycles, but the difference is more and more obvious in the
further cycling. The discharge midpoint potential of LMNC
reduces by 0.51 V (AV) after 50 cycles, while that of
LMNCSI exhibits a smaller AV value (0.48 V). As the cycle
number further increases, the difference of discharge midpoint
potential for LMNC and LMNCSI1 will become larger. This
phenomenon has been frequently reported in recent investiga-
tions [41, 50-52]. This implies that the appropriate Sn**-doping
could reduce the structural change of the LMNC material from
the layered phase into the spinel phase during cycling [38]. As a
result, the cycle performance of the LMNCS electrode is sig-
nificantly enhanced.

Figure 8a shows the rate performance of the LMNC and
LMNCS electrodes between 2.0 and 4.8 V, while Fig. 8b
exhibits the variations of discharge capacities of the electrodes
with discharge current density. From Fig. 8, the discharge
capacities for all electrodes fade with the increasing discharge
rate, which is attributed to the increased polarization at high
rates [53]. The LMNCSO0.5 and LMNCSI1 electrodes exhibit

Fig.5 XPS spectra ofa Co 2p, b - =
Ni 2p, ¢ Mn 2p, and d Sn 3d for S 8
the LMNC and LMNCSI1 2 >
samples 7 Rz
= [=]
L 2
o = R
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electrodes show similar discharge capacity to the LMNC elec-
trode at low discharge rates, they deliver larger discharge ca-
pacity at high rates. Among all samples, the LMNCS|1 cathode
shows the optimal rate performance, giving the capacities of
239.8,198.6, 164.4, 133.4, and 88.8 mAh g ' at0.2,0.5, 1, 2,
and 5 C, respectively, which are superior to the LMNC cath-
ode (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g " at 0.2, 0.5,
1,2, and 5 C, respectively). Such prominent rate performance
of the LMNCS electrodes is attributed to the enlargement of
Li* diffusion channels caused by the doping of Sn**, which is
favorable to the intercalation/deintercalation of Li* [38, 49].
The CV curves of the LMNC and LMNCSI cathodes in
the initial five cycles are shown in Fig. 9. Both samples exhibit
a characteristic CV curve of the Li-rich cathode materials [4,
24]. For the LMNC electrode (Fig. 9a), two oxidation peaks
are observed in the initial charging curve, which are consistent
with the two potential plateaus in the initial charge profile. The
first one at ~4.1 V corresponds to the oxidation of TM ions
(Ni**/Co>* — Ni**/Co™"), while another one at ~4.7 V is
related to the irreversible removal of Li,O from Li,MnQOs,
which disappears in the subsequent cycles [5, 54]. In the

Cycle number

Fig. 7 Charge/discharge curves of the a LMNC and b LMNCSI1
electrodesin the 1st, 10th, 20th, 30th, 40th, and 50th cycles at 0.1 C
between 2.0 and 4.8 V; ¢ The corresponding discharge midpoint
potential of LMNC and LMNCS1 samples during 50 cycles

subsequent charging process, the first oxidation peak moves
to left and locates at ~3.7 V. The 3.7 V oxidation peak for
LMNC is shaper, while for LMNCSI, it is broader. This
may because the oxidation of Ni** in LMNCS1 experiences
multiple steps (Ni** — Ni** — Ni*"), while some of Ni** is
only oxidized to Ni** in LMNC [55]. The evidence is shown
in Fig. S1 and the length of charge stage for LMNCSI in the
2nd, 3rd, 4th, and 5th cycles are all longer than that for
LMNC. There are two reduction peaks at ~3.7 and 4.3 V in
the initial discharging process, which are related to the reduc-
tion of Ni** and Co™*, respectively [56, 57]. In the second
discharging process, a new reduction peak occurs at ~3.25 V
that involves the reduction of Mn ion (Mn** — Mn>*) [58].
For the LMNCSI1 electrode (Fig. 9b), the two oxidation peaks
in the initial charging process are sharper and more
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Fig. 8 a Rate capability of the LMNC and LMNCS electrodes between
2.0 and 4.8 V; b Variations of the highest discharge capacity with
discharge rate

symmetrical than the LMNC. The cathodic peak at 3.25 V for
LMNCSI can be observed in the initial discharging process,
indicating Mn is functionally activated, resulting in higher
initial coulombic efficiency [58]. Moreover, the redox peaks
of Ni**/Ni** redox couple for the LMNC and LMNCS]I elec-
trodes are located at 3.72/4.14 and 3.71/4.02 V, respectively.
Consequently, the peak potential difference of Ni**/Ni** re-
dox couple for the LMNCSI electrode is smaller (0.31 V) than
that of the LMNC electrode (0.42 V). Furthermore, the CV
curves of the LMNCSI electrode are highly overlapped com-
pared with that of LMNC. These results imply that the Sn**
doping can reduce the polarization of electrochemical redox
and enhance the cyclic reversibility [59], which is in accor-
dance with the enhancement of cycle stability.

Figure 10 shows the EIS spectra of the LMNC and
LMNCSI electrodes after 10 cycles. The Nyquist plots for
these two cathode materials are made of three parts: two semi-
circles in a high-to-mid-frequency region and a tail in a low-
frequency region. The two semicircles are assigned to the Li*
diffusion through the surface layer and the charge transfer re-
sistance in the interface of electrode/electrolyte, respectively,
while the tail relates to the Li* diffusion process in the electrode
materials. Table 3 exhibits the simulated electrochemical
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parameters from the Nyquist plots in Fig. 10, in which R, Ry,
R, and Dy;" are the internal resistance, the surface layer resis-
tance, the charge transfer resistance of the cell, and the Li*
diffusion coefficient, respectively. As shown in Table 3, the
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Fig. 10 Electrochemical impedance spectra of the LMNC and LMNCS1
electrodes after 10 cycles (The inset is the equivalent circuit for the
impedance spectra)
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Table 3  Simulated data from EIS spectra of the LMNC and LMNCS1
electrodes after 10 cycles

Sample Ry () Ry () R () Dy (em*s™)
LMNC 194 2114 3662 4.164 x 1071
LMNCS1 5.7 209.6 2315 1.676 x 10713

values of R, and Ry for LMNCSI1 are close to those for
LMNC, while the value of R for LMNCSI is much smaller
than that for LMNC. This indicates that the Sn**-doping can
decrease the charge transfer resistance and improve the elec-
trical conductivity of LMNC cathode material and thus en-
hance the cycle performance and rate capability [38]. The
values of Di;" were calculated from the Nyquist plots using
the following equation [59].

0.5R*T?

it = — 5
" 2 FA%Cr a2

Herein, R is the gas constant, 7'is the absolute temperature,
is the number of the electrons in the reactions, F'is the Faraday’s
constant, A is the area of the cathode, C is the concentration of
Li*, and o is the Warburg factor which is related to Z'.

/ —1/2
Z = ow

where Z' is the real part of impedance and w is the angular
frequency in the low-frequency region. The Dy;* for
LMNCSI is 1.67 x 107"° cm? s ™' that is much higher than
that for LMNC (4.16 x 10 " cm?s ™), demonstrating that the
appropriate Sn**-doping could facilitate the Li* diffusion in
electrodes.

Conclusions

The Sn**-doped LMNC cathode materials with the enhanced
electrochemical performance were synthesized using the sol-
gel method. The electrochemical performance of Sn**-doped
LMNC cathode has been significantly enhanced, especially
when the doping amount of Sn** is 0.01. Compared to the
pristine LMNC, the LMNCSI1 electrode has higher initial dis-
charge capacity (268.9 mAh g 'with the initial coulombic effi-
ciency of 76.5%), better cycle stability (199.8 mAh g ' at 0.1 C
with capacity retention of 75.2% after 100 cycles), and the
superior rate capability (88.8 mAh g ' at 5 C). The XRD results
indicate that all the samples are layered a-NaFeO, structure
without any impurity and the Sn**-doping (x = 0.005~0.02)
could expand the volume of unit cell. The CV curves and EIS
measurement demonstrate that the Sn**-doping could alleviate
the electrochemical polarization and increase the value of Dy ;*.

These suggest a faster Li* diffusion process and better structural
stability, which are favorable for the electrochemical perfor-
mance of the LMNC cathode material.
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