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Abstract Nanostructured molybdenum trioxide (α-MoO3)
thin films were deposited to investigate effect of substrate tem-
perature on microstructural, morphological, optical, electrical,
and electrochemical properties of the α-MoO3 thin films. X-ray
diffraction results indicated deposited α-MoO3 thin films are
polycrystalline, crystallizes in orthorhombic structure, and crys-
talline quality improvedwith substrate temperature. Films show
the optical band gap varied between 2.56 and 2.85 eV, the
activation energy of the α-MoO3 thin films were found to be
in the range of 0.15–0.30 eV. The measured electrochemical
properties of α-MoO3 thin film electrode deposited at 673 K
exhibits significantly improved supercapacitive performance in
Na2SO4 (0.5 M) electrolyte about 73.61 F/g at current density
0.6 mA/cm2 than the other deposition temperatures. The max-
imum energy density (11.13 Wh/kg) at the power density
10.54 kW/kg was observed.

Keywords Orthorhombic phase . Nanorods . Optical
properties .

Introduction

Recently, use of nanomaterial supercapacitor electrodes has been
attracting great interest due to their high power and energy den-
sities than the respective bulk materials [1]. According to the
energy storage mechanism, supercapacitors are classified into

two categories, namely, electrical double-layer capacitors
(EDLC) with carbon materials as electrodes and
pseudocapacitors with metal oxide or conducting polymers.
Previous research has shown several important factors affecting
the performance of EDLC: specific area, electrical conductivity,
pore size, and distribution [2]. However, the low-energy density,
especially the low volumetric energy density of EDLC materials
is yet to be improved. The pseudocapacitors store energy through
a Faradic process that involves fast and reversible redox reactions
occurring at or near the electrode surface [3–5]. The most widely
explored pseudocapacitive electrode materials include transition
metal oxides or hydroxides (MnO2, V2O5, RuO2, Co3O4, NiO,
MoO3, etc.) [6–11]; among these electrode materials for
pseudocapacitors, MoO3 has been extensively investigated due
to its natural abundance, large theoretical capability, and low
toxicity [12]. Moreover, MoO3 have attracted much attention as
pseudocapacitive electrode material due to its crystallographic
structure, multiple oxidation states, n-type conductivity, etc.
[13–15].

Different techniques like hydrothermal method [16],
sputtering [17], atomic layer deposition [18], sol-gel [19],
chemical vapor deposition [20, 21], molecular beam epitaxy
[22], and spray pyrolysis [23–26] have been used to prepare
the α-MoO3 thin films. Among them, spray pyrolysis coating
is a simple and low-cost method for the preparation of thin
films with large areas. This method is convenient for prepar-
ing pinhole free, homogenous and smoother films with the
required substrate temperature. It is very attractive because it
has been largely used to produce oxides [27] and sulfides [28]
of II–VI group semiconductors.

In this investigation, α-MoO3 thin films with nanostructured
rod are deposited on FTO substrates by spray pyrolysis method.
The effect of substrate temperature on structural, morphological,
and supercapacitive properties of α-MoO3 thin films has been
calculated. Further electrochemical characteristics like cyclic
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voltammetry, galvanostatic charge/discharge measurement, spe-
cific capacitance, energy density, and power density were studied
and reported.

Experimental details

Deposition of α-MoO3 thin films

Molybdenum trioxide (α-MoO3) thin films were deposited
onto glass substrates via well-known spray pyrolysis tech-
nique. The spraying solution consisted of 0.1 M molybdenum
trioxide powder (AR grade, SD fine, 99.5% pure) dissolved in
ammonia solution separately to form ammoniummolybdate at
room temperature. The undergoing chemical reaction is given
in the following equation:

MoO3 þ 2NH3 þ H2O→ NH4ð Þ2MoO4 ð1Þ

The solution was sprayed onto the glass substrates at vari-
ous substrate temperatures within 573–723 K. The pyrolytic
decomposition of (NH4)2MoO4 on the surface of the sub-
strates results in the formation of α-MoO3 thin films accord-
ing to the following equation:

NH4ð Þ2MoO4→MoO3 þ 2NH3↑þ H2O↑ ð2Þ

The temperature of the substrate controlled within ±1 K
through temperature controller. During the deposition, other
parameters, especially spray rate (5 cm3/min), nozzle to sub-
strate distance (NSD) (32 cm), etc., were kept at their fixed
values [28]. The sprayed droplets undergo evaporation and
solute condensation, and thermal decomposition resulted in
well adherent molybdenum trioxide thin films.

Characterization

For thickness measurement, gravimetric weight difference meth-
od is used with the relation of t =m/(ρ × A), wherem is the mass
of the film deposited on the substrate in grams,A is the area of the
deposited film in square centimeters, and ρ is the density of the
deposited material (MoO3 = 4.69 g/cm

3) in bulk form. The struc-
tural properties of α-MoO3 thin films were carried out by x-ray
diffractometer (XRD Bruker AXS D8 Advance Model) with the
radiation source Cu-Kα (λ = 1.5406 Å) at 2θ in the range 20 to
80°. Surface morphology of the deposited α-MoO3 thin films
was studied with field emission scanning electron microscope
(FE-SEMSU8000Hitachi). The optical parameters were studied
at room temperature in the wavelength range 400–900 nm
through UV-Visible spectroscopy (PerkinElmer Lambda 1050
UV-Vis-NIR Spectrophotometer). Surface electrical study was
carried out by standard two-probe resistivity method. The elec-
trochemical measurements of the α-MoO3 thin film electrodes
were reported using cyclic voltammetry (CV) and galvanostatic

analysis. A potentiostat (CHI 6005E, made in USA) and a (CHI
6002E, made in USA) were used with three-electrode electro-
chemical cell containing Na2SO4 (0.5 M) as the electrolyte, α-
MoO3 as the working electrode, Ag/AgCl as the reference elec-
trode, and platinum wire as the counter electrode.

Results and discussion

X-ray diffraction studies

Figure 1 shows the typical XRD pattern of α-MoO3 thin films
deposited at various substrate temperatures (573–723 K). The
observed diffraction peaks at 2θ° are around 25.7, 27.3, 38.9,
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Fig. 1 X-ray diffraction patterns of α-MoO3 thin films deposited for
different substrate temperatures
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Fig. 2 Plot of FWHM and relative peak intensity of (0 4 0) diffraction
peak for α-MoO3 thin films at different substrate temperatures
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and 67.4with the correspondingMiller (h k l) planes (0 4 0), (0
2 1), (0 6 0), and (2 7 0), respectively. All these observed peaks
correspond to stable orthorhombic α-MoO3 phase according
to the standard JCPDS data card: 01-0706 [29], Liqiang Mai,
et al. reported the similar results [30]. Figure 1 depicts inte-
grated intensities of the diffraction peaks suggests that α-
MoO3 thin films grow in the preferential orientation (0 k 0)
direction where, k = 4, 6. The (0 4 0) peaks are dominating
preferential growth with b-axis perpendicular to the surface of
all thin films. However, other phases and structural rearrange-
ments are not observed in the α-MoO3 thin films prepared at
temperature range of 573–723 K. The lattice parameters a, b,
and c for orthorhombic phase was determined by using the
following equation:

d hklð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

a2
þ k2

b2
þ l2

c2

s ð3Þ

For orthorhombic lattice, a ≠ b ≠ c, in the above rela-
tion, h, k, and l are Miller indices of reflector planes
appearing on the diffraction spectrum and d(hkl) is their
interplanar distance. The obtained average lattice con-
stants were found to be a = 3.95 Å, b = 13.84 Å, and
c = 3.69 Å. These values are consistent with standard
JCPDS data card [29]. The interplanar distances were cal-
culated by the following equation:

2dsinθ ¼ nλ ð4Þ
where d is the interplanar distance, θ is the Bragg’s angle,
n is the order of diffraction (usually n = 1), and λ is the
wavelength of the x-ray used (here, λ = 1.5406 Å). The
average crystallite size (D) of the prepared films was cal-
culated by the Scherrer relation [31]:

D ¼ kλ
βcosθ

ð5Þ

where k is the shape factor with value k = 0.94, λ is the
wavelength of the x-ray used (λ = 1.5406 Å), β is the full
width at half maxima (FWHM) of corresponding peak,
and θ is the Bragg’s angle. The average crystallite size
of the α-MoO3 film initially increase with substrate
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Fig. 3 The variation of microstrain and interplanar spacing of α-MoO3

thin film for different substrate temperatures

Table 1 The microstructural properties of α-MoO3 thin films deposited for different substrate temperature

Temp.
[°C]

h k l 2θ(obs.) d(obs.) (Å) FWHM Intensity Crystallite size (nm) Dislocation density Microstrain (ε) × 10−3

300 0 4 0 25.607 3.4633 0.004867 6125 29.21496 1.17E + 15 1.131830388

0 4 0 27.305 3.2636 0.005024 1188 28.40075 1.24E + 15 0.66692865

0 6 0 38.899 2.3132 0.005251 3175 28.00478 1.28E + 15 1.101452514

2 7 0 67.399 1.3878 0.007955 406 20.95141 2.28E + 15 1.65455839

350 0 4 0 25.607 3.4636 0.004658 14,857 30.52804 1.07E + 15 1.182700863

0 4 0 27.305 3.2639 0.005726 5877 24.93728 1.61E + 15 0.585187588

0 6 0 38.903 2.313 0.005338 10,519 27.54681 1.32E + 15 1.081968871

2 7 0 67.401 1.3865 0.008077 1077 20.63459 2.35E + 15 1.67988425

400 0 4 0 25.7 3.476 0.004082 29,313 34.83979 8.24E + 14 0.979440986

0 4 0 27.3 3.2635 0.007187 2134 19.85295 2.54E + 15 0.837143226

0 6 0 38.906 2.3134 0.00478 16,524 30.76438 1.06E + 15 0.984915041

2 7 0 67.503 1.3883 0.006873 1490 24.25199 1.70E + 15 1.42864767

450 0 4 0 25.702 3.476 0.004309 27,870 33.00605 9.18E + 14 1.034154469

0 4 0 27.305 3.2636 0.003716 1983 38.40067 6.78E + 14 0.434847686

0 6 0 38.903 2.3132 0.005007 14,566 29.37113 1.16E + 15 1.030580858

2 7 0 67.427 1.3883 0.007885 1205 21.14939 2.24E + 15 1.63973181
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temperature reaches maximum 34.83 nm at 673 K further
decreased with high substrate temperature. Increases in
crystallinity and crystallite size with substrate temperature
are due to the optimum rate of supply of thermal energy
for the recrystallization [32]. The graphical representation
of intensity and the FWHM of the peak (0 4 0) with
respect to substrate temperature is given in Fig. 2. The
sum of individual intensities scattered by each grain is
the total intensity of all grains [26]. The FWHM values
are seen to decrease with substrate temperature up to
673 K and further found to increase at high temperature.
However, the stresses are one of the most important un-
favorable factors affecting the structural properties and
geometric mismatch at boundaries between crystalline lat-
tices of films and substrates [33]. The microstrains are

developed in the films due to these stresses. The
microstrains are calculated by the following relation [34]:

ε ¼ βcosθ
4

ð6Þ

The existence of internal microstrain can easily induce the
formation of defect centers [35]. The dislocation density (δ)
values can be obtained by following relations [36]:

δ ¼ 1

D2 ð7Þ

The variation in microstructural parameters like
microstrain and interplanar spacing with substrate temperature
is shown in Fig. 3. The interplanar spacing of α-MoO3 thin
films are increases with substrate temperature consequently
microstrain relaxation in α-MoO3 thin films decreases. The
microstrain relaxation is steady with the contraction or expan-
sion of the interplanar spacing of (0 4 0) plane. Table 1 gives
the values of microstructural properties of the α-MoO3 films.
The graphical nature of crystallite size (D) and dislocation
density (δ) with different substrate temperature of α-MoO3

thin films is shown in Fig. 4. The dislocation density of the
films decreased up to 673 K further increased with substrate
temperature. In order to explain growth mechanism involved
in sprayed α-MoO3 films, the standard deviation (σ) in inten-
sities of various planes was calculated by using the following
equation (Fig. 5) [37]:

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

Ið Þ2−
∑
N
I

� �2

N
N

vuuuuut
ð8Þ

where I stand for the relative intensity of the (h k l) plane andN
is the reflection number. The standard deviation (σ) value was
found between 36.53 and 32.74, the decrease in standard de-
viation at high temperature is due to improved crystallinity
and reorientational effects. The reflection intensities from each
XRD pattern contain information related to the preferential or
random growth of polycrystalline thin films which is studied
by calculating the texture coefficient TC(hkl) for all planes
using the following equation [38]:

TC hklð Þ ¼
Ihkl
I 0hkl

1

N
∑
Ν

Ihkl
I 0hkl

ð9Þ

where Ihkl is the relative intensity of the observed peak, I0hkl is
the corresponding standard relative intensity from the JCPDS
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Fig. 4 Crystallite size and dislocation density of α-MoO3 thin film for
different substrate temperatures
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Fig. 5 The variation of standard deviation and intensity of α-MoO3 thin
film for different substrate temperatures

J Solid State Electrochem (2017) 21:2737–27462740



data andN is the number of reflections observed in the pattern.
From Eq. (9), it is observed that the value of TC is greater than
unity when the (h k l) plane is preferentially oriented. Figure 6

shows the variation of the TC for (0 4 0) plane with respect to
substrate temperature for α-MoO3 thin films. Figure 6 shows
that the lower value of texture coefficient represents that the
films have poor crystallinity and the crystallinity improved
with substrate temperature. Further, with increase in substrate
temperature above 673 K, the value of texture coefficient
slightly decreases.

Field-emission scanning electron microscopy

The surface morphology was determined using field-emission
scanning electron microscopy (FE-SEM) and compared with
XRD data. Figure 7 shows surface morphology of α-MoO3

thin films prepared at different substrate temperatures. At low
substrate temperature (573 K), α-MoO3 thin film shows sur-
face morphology with dense surface and reticulated oblate-
structured grains. However, at high substrate temperature,
grain boundaries increased and few small nanorods were ob-
served. At 673 K substrate temperature, typical one-
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Fig. 6 Texture coefficient and crystallite size of α-MoO3 thin film for
different substrate temperatures

Fig. 7 Surface FE-SEM images of α-MoO3 thin film for different substrate temperature
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dimensional nanorod-like morphology formed and such rods
grow larger due to enhanced surface diffusion of species.

Optical properties

The optical band gap energy Eg can be determined from the
experimental values of absorption coefficient as a function of
photon energy hν, using the following equation: [39]:

αhνð Þn ¼ A hν−Eg
� � ð10Þ

where A is the probability parameter for the transition, α is the
optical absorption coefficient, Eg is the band gap energy, hν is

the photon energy, and exponent n determines the type of
electronic transitions causing the absorption and take the
values (1/2 for indirect transitions and 2 for the direct transi-
tions). The plot of (αhν)2 vs. (hν) is shown in Fig. 8a which is
linear at absorption edge, indicating a direct allowed transi-
tion. The band gap energy is found to be in the range 2.56 to
2.85 eV depending upon substrate temperature and the varia-
tion is depicted in Fig. 8b [40]. The change in band gap energy
is due to the effect of internal compressive stress and various
chemical compositions [35]. At higher temperature, internal
compressive stress releases the crystal, and expansion of lat-
tice will reduce the band gap of α-MoO3 films [41, 42]. The
internal compressive stress relaxation has been confirmed by
the XRD.With increasing substrate temperature, the grain size
increases and the grain boundary density decreases; the scat-
tering of electron at grain boundaries decreases resulted in
electronic transition from valance band to conduction band
becoming easy.

Electrical properties

The measurement of surface electrical resistance of the α-
MoO3 thin films was using standard two-probe method in
the temperature range 573–723 K. A plot of inverse absolute
temperature (1000/T) vs. log (ρ) for a cooling cycle is shown
in Fig. 9a. Decrease in electrical resistance behavior with in-
creasing substrate temperature may be due to the increase in
the crystallite size. This is attributed to the crystallite boundary
discontinuities, presence of surface states, and the change in
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structural parameter of the thin films. Activation energy of the
α-MoO3 thin films is calculated by the following equation:

ρ Tð Þ ¼ ρ0exp
Ea

KBT

� �
ð11Þ

where ρ(T) is the resistivity at absolute temperature T, Ea is the
thermal activation energy, and KB is the Boltzmann constant.
The Ea is found to be in the range between 0.15 and 0.50 eV,
indicating that the prepared samples are semiconductors. This
change in energy attributed to change in dislocation and the
stoichiometry of the films. The graphical representation of the
activation energy is shown in Fig. 9.

Electrochemical properties

To study electrochemical properties of prepared α-MoO3 thin
film electrodes, the cyclic voltammetry (CV) is carried in
Na2SO4 electrolyte. The representation of electrochemical
Na+ insertion process is given by the following equation:

MoO3 surfaceð Þ þ x Naþ þ xe−↔NaxMoO3 surfaceð Þ ð12Þ

where x = QM/mF is the mole fraction of Na+ insertion. Here,
Q is the stored charge, M is the molar weight, m is the mass,
and F is the Faraday constant. During intercalation/de-
intercalation process, two mechanisms occur: the first mech-
anism is based on simple surface adsorption of alkali metal
cations such as Na+ in the electrolyte on the surface of elec-
trode material, and the second mechanism involves the inter-
calation of alkali metal cations (Na+) into the electrode mate-
rial during reduction and de-intercalation upon oxidation [43].

Figure 10a shows the cyclic voltammograms (CVs) of α-
MoO3 thin film deposited at substrate temperature 673 K in a
potential range of −0.5 to +0.2 V vs. Ag/AgCl at different scan
rates. The area under the curve increased continuously with a

scan rate from 5 to 100 mV/s. At low scan rate 5 mV/s, the
oxidation and reduction peaks are observed approximately at
−0.32 and −0.21 V vs. Ag/AgCl, respectively. This is different
from the reported ordered mesoporousα-MoO3 [44]; this may
be due to the different morphology and structure. As usual, the
intensities of the redox peaks increased with the scan rate. The
redox peaks are shifted slightly due to the increase in over
potentials. The oxidation and reduction peaks are observed
at −0.35 and −0.17V vs. Ag/AgCl reference electrode, respec-
tively, at a scan rate of 100 mV/s. The redox peaks are still
evident even at high scan rate of 100 mV/s, represents that α-
MoO3 thin film electrodes will be stable as an anode material
for supercapacitors and present good rate capability [45]. The
specific capacitance (Cs) was calculated using following rela-
tions [46]:

C ¼ I
dv=dt

; Ci ¼ C
A

and Cs ¼ Ci

m
ð13Þ

where C is the differential capacitance, I is the average current
in ampere, dV/dt is the voltage scanning rate, Ci is the inter-
facial capacitance,A is the area of activematerial dipped in the
electrolyte, and m is the weight of α-MoO3 film dipped in
electrolyte. The specific capacitance value found to be
118.79 F/g at the scan rate of 100 mV/s for the α-MoO3 thin
film electrode deposited at substrate temperature 673 K.

The galvanostatic charge/discharge curves at different cur-
rent densities (0.6 to 0.9 mA/cm2) of the electrode prepared at
673 K are shown in Fig. 10b. The figure shows that charge/
discharge time decreases with the increase in applied current
density. The galvanostatic charge/discharge (GCD) curves are
almost linear and symmetrical without IR drop, indicating a
rapid I–V response and good capacitance performance [47].
The inset of Fig. 10c shows galvanostatic charge/discharge
curves of the last few cycles at 0.6 mA/cm2 current density
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Fig. 9 a Plot of surface electrical resistance versus temperature of α-MoO3 thin films at different substrate temperatures. b Plot of activation energy of
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Fig. 10 a Cyclic Voltammograms at different scan rates of α-MoO3 thin
film prepared at 673 K substrate temperature. b Galvanostatic charge/
discharge curves recorded at different current densities for the electrode
prepared at 673 K substrate temperature. c Plot of specific capacitance of
the α-MoO3 thin film electrode for different applied current densities vs.
cycle number and inset figure is last few cycles of fast charge/discharge at

0.6 mA/cm2 current density. d Plot of energy density and power density
vs. cycle number at current density 0.6 mA/cm2 of α-MoO3 thin film
electrodes prepared at 673 K temperature at different current density. e
Ragone plot for the 1st and 2000th cycles of GCD at different current
densities of α-MoO3 electrode prepared at 673 K substrate temperature
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within potential window 0.55 V for α-MoO3 thin film elec-
trodes prepared at 673 K substrate temperature. Figure 10c
depicts that α-MoO3 electrodes show a nonlinear charge/
discharge curve, indicating that they have a mainly
pseudocapacitive behavior and same graphical nature was re-
ported by few authors [48, 49]. The values of total specific
capacitance (Cs) are calculated from Eq. (13) [50–53]:

Cs ¼ I � td
m�ΔV

ð14Þ

where I (mA) is the discharge current density, ΔV (V) is the
working potential window, m (g) is the actual mass deposited
on the active area of the material, and td (s) is the discharging
time. The specific capacitance values are calculated to be
73.61, 72.93, 62.51, and 61.9 F/g corresponding to the
discharging current densities 0.6, 0.7, 0.8, and 0.9 mA/cm2,
respectively. It is due to the inner active sites of the electrode
which can be fully accessed and diffused with alkali cations at
the low current density and also attributed to the slow rate of
redox reactions [54]. The variation in the specific capacitance
with the cycle number for different current densities is shown
in Fig. 10c. The maximum specific capacitance observed for
α-MoO3 thin film electrode for the 1st cycle is 73.61 F/g and
for the 2000th cycle is 69.70 F/g at a 0.6 mA/cm2 current
density. Hence, there is about 95% stability of the α-MoO3

thin film electrode deposited at substrate temperature 673 K.
The specific energy density (ED) and specific power den-

sity (PD) of the supercapacitor cell were calculated according
to the following equation [52]:

ED ¼ Q�ΔV
2m

ð15Þ

PD ¼ E
td

ð16Þ

where Q = (I × t) is charge delivered during discharge,ΔV is
the cell voltage (potential window) and td is the discharging
time. The variation of power density and energy density with
cycle number is shown in Fig. 10d. Figure 10 depicts very
slight variation in energy density and power density after
2000th cycles, it resulted that deposited material have good
stability. Figure 10e shows the Ragone plot of α-MoO3 elec-
trode deposited at substrate temperature 673 K and shows the
highest energy density 11.13 Wh/kg with power density
10.54 kW/kg at applied current density of 0.6 mA/cm2.

Conclusions

Nanostructured α-MoO3 electrodes were deposited with differ-
ent substrate temperatures on the conducting glass substrates by
spray pyrolysis technique. The effect of substrate temperature on
the microstructural, morphological, optical, electrical, and

electrochemical properties of α-MoO3 thin films was investigat-
ed. The XRD results revealed that microstructural properties
changedwith substrate temperature. The optical band gap energy
varied in the range 2.56–2.85 eV is observed and it depends on
the substrate temperature. The decreasing trend of electrical re-
sistance attributed to the semiconducting nature of the α-MoO3

electrode. The spray deposited α-MoO3 thin film electrodes at
673 K have successfully showed as supercapacitor property with
higher specific capacitance of 73.61 F/g, energy density
(11.13Wh/kg) at the power density 10.54 kW/kg. It is concluded
that the electrochemical properties of α-MoO3 electrode are
temperature-dependent and it can be used for application in elec-
trochemical supercapacitors.
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