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Abstract In this study, Co3O4/SiO2 nanocomposites have
been successfully synthesized by citrate–gel method by utiliz-
ing SiO2 matrix for Co3O4 embedment. Spectroscopy analy-
ses confirm the formation of high crystalline Co3O4 nanopar-
ticles; meanwhile, microscopy findings reveal that the Co3O4

nanoparticles are embedded in SiO2 matrix. Electrochemical
properties of the Co3O4/SiO2 nanocomposites were carried
out using cyclic voltammetry (CV), galvanostatic charge–
discharge, and electrochemical impedance spectroscopy
(EIS) in 5 M KOH electrolyte. The findings show that the
charge storage of Co3O4/SiO2 nanocomposites is mainly due
to the reversible redox reaction (pseudocapacitance). The
highest specific capacitance of 1,143 F g−1 could be achieved
at a scan rate of 2.5 mV s−1 in the potential region between 0
and 0.6 V. Furthermore, high-capacitance retention (>92 %)

after 900 continuous charge–discharge tests reveals the excel-
lent stability of the nanocomposites. It is worth noting from
the EIS measurements that the nanocomposites have low ESR
value of 0.33 Ω. The results manifest that Co3O4/SiO2 nano-
composites are the promising electrode material for
supercapacitor application.
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Introduction

Supercapacitors, which are also known as ultracapacitors or
electrochemical capacitors, are the energy storage devices that
possess high power density (10 kW kg−1), which can be fully
charged or discharged in seconds [1]. In terms of their perfor-
mance, they can strategically fill in the gap between conven-
tional capacitors and batteries to give better energy and power
performance. The potential applications of supercapacitors
vary from household electronic products to emergency doors
in Airbus A380 planes [2, 3] owing to their excellent energy
and power performance. Nonetheless, the energy performance
of supercapacitors is still far below as compared to that of
batteries. Various research efforts have been attempted in
order to enhance the energy performance of the
supercapacitors. The energy density of a supercapacitor is
given as 0.5 CV2, where C is the capacitance and V is the
operating voltage. Maximizing capacitance value in a
supercapacitor is a key factor in enhancing energy perfor-
mance. Electrode material plays a vital role in this context.
The supercapacitors electrode material can be categorized into
carbon-based materials (activated carbon, carbon nanotubes,
graphene, fullerene, and etc.) [4–7], transition metal oxides
(MnO2, V2O5, Fe2O3, NiO, CuO, Co(OH)2, Co3O4, and etc.)
[8–14] and conductive polymers (polyaniline, polypyrrole,
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and etc.) [15, 16]. Among all electrode materials, transition
metal oxides are often preferred, owing to their low internal
resistance that contributes to high power output. Furthermore,
different oxidation states of the transition metal oxides could
contribute to high pseudocapacitance in the system. They are
particularly favored for supercapacitor application due to their
cost advantages over noble metal oxides such as RuO2.

Among all transition metal oxides, Co3O4 is a promising
electrode material for supercapacitor application by virtue of
its high theoretical specific capacitance (3,560 F g−1) [17, 18],
reversible surface redox reaction, low cost, and environmental
friendliness [14, 19]. Various surface morphologies of Co3O4

such as nanoparticles, nanowires, and layered structure [14,
17, 18, 20–22] have been reported for supercapacitor applica-
tion as the charge storage phenomenon is directly associated
with surface properties. However, the reported specific capac-
itance values for Co3O4 are still far below its theoretical value.
Therefore, integrated multi-component structure is proposed
to provide synergistic effect on energy storage process. For
instance, Co3O4/RuO2 · xH2O, Co3O4@MnO2, and
Co3O4@Pt@MnO2 nanocomposites have been developed
with enhanced electrochemical performance [23–26].
However, all the literature reports focus on the integration
between Co3O4 and other metal or metal oxides. To the best
of our knowledge, the integration of Co3O4 with non-metal
oxide for supercapacitor application has not been reported yet.

Herein, we report the fabrication of Co3O4/SiO2 nanocom-
posites as electrode material for supercapacitor application. It
has been proven that SiO2 could increase the specific capac-
itance of carbon substrate [27]. SiO2 is chosen as the non-
metal oxide matrix for Co3O4 embedment in order to uniform-
ly disperse Co3O4 nanoparticles and the electrochemical prop-
erties of the nanocomposites are studied.

Experimental section

Sample preparation

The Co3O4/SiO2 nanocomposites were prepared as described
in our previous report [28]. Briefly, 13.5 g cobalt chloride
(Riedel deHaen, UK, 98 %), 1.85 mL of tetraethyl silicate
(Merck, Germany, 99 %), and 1.6 g of citric acid (Adwic,
Egypt, 33 %) were dissolved in absolute ethanol (Analar,
BDH, 99.8 %), and ultrasonicated for 30 min. The hydrolysis
of tetraethyl silicate was done by adding bidistilled water (1:3
volume ratio) into the alcoholic mixture and the pH of the
mixture was adjusted to 5. The mixture was heated at 60 °C
with continuous stirring for 3 h. A slightly blue gel was
obtained and dried in an oven at 80 °C for 24 h. Finally, the
dried sample was calcined at 400 °C for 3 h to obtain Co3O4

crystallites embedded in SiO2 matrix.

Sample characterization

Phase identification, and crystallinity of the nanocomposites
were studied using an x-ray diffractometer (XRD; Philips
PW1700, Netherlands) equipped with an automatic divergent
slit. Diffraction pattern was obtained using Cu–Kα radiation
(λ=0.15418 nm) and a graphite monochromator in the 2θ
range from 10 to 90 °. Infrared spectrum was measured in
the range 400–4,000 cm−1 using a Fourier transform infrared
spectrometer (FTIR; JASCO–480 Plus, Japan). The sample
was prepared by KBr disc method. The morphology and
elemental analyses of the nanocomposites were investigated
using a field emission scanning electronmicroscope (FESEM;
JEOL–JSM–7800 F, Japan), equipped with energy dispersive
x-ray analysis (EDX).

Electrochemical measurements

For electrochemical measurements, Co3O4/SiO2 electrode
was prepared with a final composition (weight percentage)
of 80 % Co3O4/SiO2, 15 % carbon black (Alfa Aesar), and
5% polytetrafluoroethylene (Aldrich, 60%). The mixture was
casted on nickel foam (Goodfellow) and dried at 60 °C for
30 min. After drying, the coated mesh was uni-axially pressed
(5 t) and the weight of the active material was determined by a
microbalance. Three-electrode electrochemical systemwas set
up: Co3O4/SiO2 electrode as working electrode, Ag/AgCl
(CH Instrument) as reference electrode, and Pt wire (CH
Instrument) as counter electrode. Electrochemical data were
collected using an electrochemical workstation (AUTOLAB
PGSTAT30, Netherlands) equipped with frequency response
analyzer. Cyclic voltammetry (CV) tests were performed in
the potential range between 0 and 0.6 V vs. Ag/AgCl with
scan rates from 2.5 to 30 mV s−1. Galvanostatic charge–
discharge tests were performed at different current densities
from 1 to 5 A g−1. Electrochemical impedance spectroscopy
(EIS) data were collected from 100 kHz to 10 mHz, at open
circuit potential with a.c. amplitude of 10mV. KOH (5M)was
used as the electrolyte throughout all electrochemical
measurements.

Results and discussion

Crystal structure and phase analyses

Figure 1 shows the XRD pattern of Co3O4/SiO2 nanocom-
posites and it can be seen that all the diffraction peaks are
related to Co3O4 phase (ICDD card # 00–009–0418), suggest-
ing the formation of pure crystalline Co3O4 nanoparticles.
Diffraction peaks (Fig. 1 insets) were fitted using Lorentzian
line shapes for accurate determination of apparent crystallite
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size and lattice constant. According to Scherrer formula [29],
the apparent crystallite size of Co3O4 was calculated to be
26 nm with lattice constant and volume of 0.808 nm and
0.527 nm3, respectively. The values are slightly larger than
those of bulk Co3O4 due to surface relaxation usually ob-
served for such nanoparticles [30].

Further information about the chemical structure of Co3O4/
SiO2 nanocomposites was obtained from FTIR data shown in
Fig. 2. The FTIR bands at 460 and 1,090 cm−1 can be assigned
to the asymmetric stretching vibration of the bond Si–O–Si in
the SiO4 tetrahedron [30] within SiO2 matrix. The weak
intensity band at 840 cm−1 can be attributed to the stretching
of non-bridging oxygen atoms in Si–OH bond [28, 30, 31].
Additionally, the absorption bands at 3,440 and 1,635 cm−1

correspond to the O–H stretching and bending vibrations,
respectively. These observations suggest the presence of
absorbed water molecules within SiO2 matrix. Strong absorp-
tion bands can be seen at 560 and 660 cm−1, due to the
vibrations of Co–O stretching in Co3O4 [30, 31].

The crystalline Co3O4 nanoparticles are distributed evenly
in SiO2 matrix, as shown in the FESEM image (Fig. 3a). The
findings match with our previous TEM observations [28, 30] of
the Co3O4 nanoparticles embedded in SiO2 matrix. Figure 3b
shows the EDX data and the Co3O4/SiO2 weight ratio was
calculated to be 94.8:5.2. Figure 3c shows the Gaussian fitting
of the mean particle size distribution obtained from FESEM
image. The obtained mean particle size is 16.5 nm, which is
consistent to that obtained from XRD analysis.

Fig. 1 XRD pattern of Co3O4/
SiO2 nanocomposite. The insets
are zoomed view for some peaks;
the solid lines are the Lorentzian
fitting

Fig. 2 FTIR spectrum of Co3O4/
SiO2 nanocomposite
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Electrochemical studies

The charge storage properties of Co3O4/SiO2 electrode were
evaluated by CV, galvanostatic charge–discharge and EIS.
Figure 4a shows the CV curves of Co3O4/SiO2 electrode in
5 M KOH under different scan rates. It can be seen from the
CV curves tha t Co3O4/S iO2 e lec t rode exhib i t s

pseudocapacitance behavior with two pair of reversible redox
peaks. The reversible redox reactions are as follows [17, 20]:

Co3O4 þ OH− þ H2O⇆3CoOOHþ e− ð1Þ

CoOOHþ OH−⇆CoO2 þ H2Oþ e− ð2Þ

Fig. 3 a FESEM image, b EDX analysis, and c particles size distribution for Co3O4/SiO2 nanocomposite (the solid line is the Gaussian fitting)

Fig. 4 a Cyclic voltammetry at different scan rates and b peak current densities versus scan rate for Co3O4/SiO2 electrode in 5 M KOH
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The first redox peaks (O1/R1) corresponding to Co2+/Co3+

are easily identified at 0.38:0.22 V; the second redox peaks
(O2/R2) corresponding to Co3+/Co4+ occur at 0.46:0.28 V.
However, the R2 reduction peaks are elusive as they just
appear as the shoulder of R1 reduction peaks. Additionally,
with an increase in the scan rate, the anodic (O1, O2) and
cathodic (R1, R2) peaks shift to higher and lower potentials,
respectively. The peak current densities of Co3O4/SiO2 elec-
trode at different scan rates are summarized in Fig. 4b. Linear
relationship between peak current density and scan rate could
be observed, indicating the occurrence of surface redox reac-
tion for Co3O4/SiO2 electrode.

To assess the feasibility of Co3O4/SiO2 electrode in the
application of supercapacitor, galvanostatic charge–discharge
tests were performed at various current densities (Fig. 5a). The
shape of the charge–discharge curves is independent of the
current density thereby indicating that the Co3O4/SiO2 elec-
trode is suitable for the application of supercapacitor. The
discharge curve of Co3O4/SiO2 electrode can be divided into
two regions (Fig. 5b), corresponding to pseudocapacitance
(region 1) and electrical double layer capacitance (region 2).
Region 1 (0.22–0.50 V) with slope variation, contributes 83%
while region 2 (below 0.22 V) with linear slope, contributes
only 17 % of the total capacitance. Obviously, large percent-
age of the specific capacitance in Co3O4/SiO2 electrode is
con t r ibu t ed by the reve r s ib l e r edox reac t ions
(pseudocapacitance), as suggested from CV data.

The specific capacitance of Co3O4/SiO2 electrode with
respect to scan rate and current density are summarized in
Fig. 6. The calculation method can be found in the
Supplementary Data. The CV data of Co3O4/SiO2 electrode
shows the highest specific capacitance of 1,143 F g−1 at a scan

rate of 2.5 mV s−1. Apparently, the Co3O4/SiO2 in this study
has relatively high specific capacitance value as compared to
that of the previous reported values (Table 1) for Co3O4

nanocomposites. This could be ascribed to the even distribu-
tion of Co3O4 nanoparticles in SiO2 matrix, renders facile
electrolyte penetration in the matrix and better surface utiliza-
tion of the active material for Faradaic reactions. Control
experiment had been conducted on Co3O4/SiO2 nanocompos-
ites with higher SiO2 loading (40 %) to investigate the effect
of SiO2 towards charge storage in nanocomposites
(Supplementary data Fig. S1). It shows lower specific capac-
itance at higher SiO2 loading, possibly due to lower
electroactive material in the nanocomposites. In addition, the

Fig. 5 a Galvanostatic charge–discharge curves for Co3O4/SiO2 electrode at various current densities and b distribution of pseudocapacitance and
electrical double layer capacitance contribution to the capacitance value of Co3O4/SiO2 electrode at 1 A g−1 in 5 M KOH

Fig. 6 Specific capacitance as a function of discharge current density
(left vs. bottom) and scan rate (left vs. top) for Co3O4/SiO2 electrode
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specific capacitance of Co3O4/SiO2 electrode is dependent of
the scan rate as the specific capacitance increases at a lower
scan rate. At lower scan rate, the OH− ions could diffuse into
the inner pores of SiO2 matrix and more OH− ions are in
contact with the Co3O4 nanoparticles that are embedded in
the matrix, contributing to higher feasible redox reactions as
shown in Eqs. 1 and 2. On the other hand, the specific
capacitance values of Co3O4/SiO2 electrode derived from
galvanostatic charge–discharge are lower than those from
CV data. It could be attributed to the low surface accession
by OH− ions under high discharge current density conditions.

Utilization efficiency of the Co3O4/SiO2 electrode had
been calculated by comparing the highest attained specific
capacitance with the theoretical value. It was calculated as
29.3 %, higher than the reported value for Co3O4 nanoparti-
cles (17.5 %) [17], which can be understood as higher surface
utilization of Co3O4 nanoparticles in SiO2 matrix. The elec-
trochemical cycling stability is a crucial factor for the
supercapacitor application. Figure 7 shows the cycling stabil-
ity test for Co3O4/SiO2 electrode at a current density of 7 A
g−1. High current density is selected for cycling stability test in
order to reflect the practical viability of the electrode material

for supercapacitor application. It can be noticed that the ca-
pacitance retention remains stable (>92 %) up to 900 cycles
and only drops to 80.5 % at the 1,000th cycle. This value is
higher than that reported for pure Co3O4 (65 % after 1,000 cy-
cles and 74 % after 500 cycles) [20, 35], indicating better
electrochemical stability of the Co3O4/SiO2 nanocomposites
in this work. Such high-capacitance retention suggests that the
Co3O4/SiO2 nanocomposites are the good electrode material
for supercapacitor application.

The EIS data was analyzed with Nyquist plot. It shows the
frequency response at the electrode/electrolyte interface and is
a profile of imaginary component (Z′′) of the impedance
against the real component (Z′). The Nyquist plot of Co3O4/
SiO2 electrode (Fig. 8) features a semicircle at high frequency
followed by a near 45 ° line at low frequency. The EIS data
were analyzed by the CNLS fitting method based on a
Randles equivalent circuit, as depicted in Fig. 8 inset, where
Rs and Rct are solution and charge transfer resistances, respec-
tively. Cdl and Cps represent double layer capacitance and
pseudocapacitance, respectively. The interfacial diffusive re-
sistance (Warburg) is designated asW. The solution resistance
(Rs) or better known as equivalent series resistance (ESR) is a
combination of ionic resistance of electrolyte, intrinsic resis-
tance of active material, and contact resistance of the active
material/current collector interface. The low ESR value (0.33
Ω) in this study suggests the good conductivity of Co3O4/SiO2

electrode which contributes to higher redox current. The rel-
atively higher Cps value (258.51 mF) as compared to that of
Cdl value (0.289 mF) support the galvanostatic charge–dis-
charge findings that the main storage mechanism in the
Co3O4/SiO2 electrode is mainly based on Faradaic reaction
(pseudocapacitance). TheWarburg impedance at low frequen-
cy is due to the OH− ions diffusion within the SiO2 matrix. All
the above–mentioned results demonstrate that Co3O4/SiO2

nanocomposites have good frequency response with low

Table 1 Comparison of reported specific capacitance with Co3O4/SiO2

nanocomposites

Material Specific capacitance (F g−1)

Cyclic voltammetry
(5 mV s−1)

Charge–discharge
(1 A g−1)

CoMoO4 [32] 117 –

Co3O4–MnO2 [25] 419 –

Co3O4 [17] 742.3 –

MnCo2O4 [33] – 349.8

NiCo2O4 [34] – 372

Co3O4/RuO2·xH2O [23] – 642

Co3O4/SiO2 (this work) 876 679

Fig. 7 Cycling stability for Co3O4/SiO2 electrode measured at 7 A g−1
Fig. 8 Nyquist plot of Co3O4/SiO2 electrode. The insets are the equiv-
alent circuit and the impedance at high frequency region
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impedance and are suitable to be used as electrode material for
supercapacitor application.

Conclusions

The present work reports the integration of Co3O4 with non-
metal oxide in energy storage application. High crystalline
Co3O4 nanoparticles are embedded and distributed evenly in
SiO2 matrix, using citrate–gel method. The obtained Co3O4/
SiO2 nanocomposites show excellent charge storage proper-
ties (1,143 F g−1 at 2.5 mV s−1; 679 F g−1 at 1 A g−1), together
with excellent cycling stability, which are attributed to the
facile electrolyte penetration in SiO2 matrix and better
Co3O4 electroactive surface utilization for redox reactions.
Such excellent charge storage properties with low ESR value
render Co3O4/SiO2 nanocomposites as promising electrode
material for energy storage application.
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