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Abstract
Context  Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription 
under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant 
tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors 
targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 
modulators, though none have yet received Food and Drug Administration (FDA) approval.
Methods  In this study, we employ in silico approaches including the molecular docking and molecular dynamics simula-
tions for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The 
compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and 
binding free energy calculations to study the compound’s stability under virtual physiological conditions. The first-generation 
CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 
500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed bet-
ter binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable 
figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in 
computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing 
potential and selective CDK9 inhibitors subjected to further validations.

Keywords  Cyclin-dependent kinases (CDKs) · Cancer · Virtual screening · Molecular docking · Molecular dynamics 
simulations
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Introduction

Cyclin-dependent kinases (CDKs) belong to the family of 
serine/threonine kinases, which are involved in regulat-
ing the cell cycle and transcriptional control [1]. There 
are 20 different types of CDKs encoded by the human 
genome [2]. The CDKs play a significant role in maintain-
ing several biological activities like DNA repair, control 
and regulation of different cell cycle phases, metabolic 
regulation, and angiogenesis [3]. CDKs are further clas-
sified into two subclasses based on their function, the first 
class of CDKs includes CDK1, CDK2, CDK4, and CDK6 
which regulates different phases of the cell cycle and is 
known as cell cycle–associated kinases, whereas the sec-
ond class of CDK directly regulate the gene transcription 
and called as transcription associated CDKs including 
CDK7, CDK8, CDK9, CDK12, and CDK13 [4, 5]. Like 
all kinases, CDKs also contains two-lobed structures the 
N-terminal lobe (mostly composed of β-sheets) and the 
C-terminal lobe (predominantly containing α-helix and 
activation loop) connected by a semi-flexible hinge region 
(D104–L110) [6, 7]. Each CDK contains a catalytic center 
which consists of an ATP-binding pocket (Q27-V33) also 
known as G-loop, a PSTAIRE-like conserved sequence 
that binds with cyclin, and a T-loop (F174-P196) region 
that binds to CDK activating kinase [8, 9]. The inactive-
active state equilibrium plays a crucial role in the function-
ing of protein kinases, in which the DFG (aspartate-pheny-
lalanine-glycine) motif in the catalytic domain undergoes 
conformational changes required for function. The DFG 
motif (D167-G169) is highly conserved in both sequence 
and structure among the majority of protein kinases, and 
the conformation of the DFG motif is primarily known 
as the “DFG-in” and “DFG-out” conformations. It also 
determines the shape of the ATP-binding site [10]. The 
enzymatic activity of each CDK critically depends on the 
interaction of specific regulatory subunit cyclins such as 
cyclin A, cyclin D, cyclin K, and cyclin T. CDKs which 
regulate the cell cycle can bind more than one cyclin subu-
nit while the transcription CDKs only bind with specific 
regulatory subunits [6]. Cyclin catalyzes the phosphoryla-
tion of substrates and participates in the cell cycle, lead-
ing to DNA synthesis and mitosis, which promotes cell 
growth and proliferation [11]. Recent studies have sug-
gested that CDKs are overexpressed in different kinds of 
cancer and also participate in the progression of cardiovas-
cular and neurodegenerative disorders [7]. CDKs are not 
only responsible for causing various types of cancer but 
in several research, it has been noted that CDKs are also 
involved in the HIV-1 replication cycle [12].

CDK9 is one of the transcriptional CDKs that is a 
key player in maintaining transcriptional homeostasis 

by forming heterodimeric complexes with the regula-
tory subunit cyclin T1, T2a, T2b, and cyclin K [13]. It 
is also crucial for regulating the transcription, initiation, 
elongation, and termination of RNA polymerase II [14]. 
CDK9 is mostly found in two isoforms (short and long) 
encoded by the same gene, the short form of CDK9 is 
crucial for regulating overall transcription whereas the 
long form regulates mainly the DNA repair and apopto-
sis [6, 14]. There are ample studies that prove that dys-
regulation of CDK9 signaling results in malignancy and 
growth of solid tumors; CDK9 is critical for regulating 
each step of gene transcription and thus can serve as a 
desired target for inhibiting cancer cell growth and pro-
liferation [5]. In recent years, various potential candidates 
have been identified as CDK9 inhibitors but the main 
hurdle while designing CDK9 inhibitors is the selectiv-
ity of a molecule. Many of the identified compounds also 
exhibit inhibitory effects on cell cycle kinases, disrupting 
the normal cell cycle process and impeding the growth 
and proliferation of healthy cells. To date, the FDA has 
not approved any selective CDK9 inhibitors. The only 
FDA-approved anticancer compound that demonstrates 
activity against CDK9 in clinical trials is Flavopiridol 
[15, 16]. Apart from this, Roscovitine and Dinaciclib 
also displayed inhibition of the CDK9 in clinical studies. 
Nevertheless, the lack of selectivity exhibited by afore-
mentioned inhibitors sometimes leads to the occurrence 
of adverse effects, therefore imposing restrictions on their 
utilization in clinical settings. Several selective inhibi-
tors have been developed to address the clinical difficul-
ties associated with the lack of selectivity and potential 
toxicity of CDK inhibitors. Notable examples include 
AZD4573 20, BAY-1143572 21, and BAY-1251152 [17]. 
Undoubtedly, CDK9 stands as a clinically validated target 
with significant potential for the development of inhibi-
tors aimed at treating a variety of cancers. Consequently, 
the pursuit of innovative and distinct chemical scaffolds 
for targeting CDK9 remains a vital endeavor. The objec-
tive of the present study is to find out the novel selective 
natural CDK9 inhibitor using various computer-aided 
drug design (CADD) approaches. In this work, we used 
three different natural compounds (alkaloids, phenol, and 
flavonoids) databases for virtual screening against the 
CDK9 receptor. The compounds obtained from the vir-
tual screening were further validated by using molecular 
docking analysis to find out the binding mode of poten-
tial compounds with the CDK9 receptor. The stability of 
the identified ligand–protein complex was measured by 
using molecular dynamics (MD) simulations and Molecu-
lar Mechanics Poisson-Boltzmann Surface Area (MM-
PBSA) calculations.
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Materials and methods

Protein preparation

The high-resolution 3D structure of CDK9 protein bound 
with a well-known FDA-approved drug Flavopiridol was 
obtained from the Research Collaboratory for Structural 
Biology (RCSB) Protein Data Bank (PDB) [18]. The non-
interacting ions as well as the water molecules were removed 
and hydrogen atoms were added. The protein was prepared 
using the “Prepare Protein” protocol available in BIOVIA 
Discovery Studio (DS) v19 [17, 19]. The minimization of 
prepared protein was done by using the CHARMm27 force 
field [20].

Database preparation

A database comprising 1683 natural compounds, including 
alkaloids, flavonoids, and phenolic compounds was down-
loaded from MedChemExpess (https://​www.​medch​emexp​
ress.​com/). The obtained database was prepared and filtered 
out using Lipinski’s Rule of Five (Ro5) module embedded 
in DS [21, 22]. The final obtained total of 1083 compounds 
containing alkaloids (388), flavonoids (159), and phenols 
(536) were further used for docking-based virtual screening.

Docking‑based virtual screening

Docking-based virtual screening comes out as a promis-
ing technique to screen out the active compounds from 
the small molecule library [23]. The virtual screening was 
done by using Genetic Optimization of Ligand Docking 
(GOLDv5.2.2) by incorporating ChemPLP (piecewise lin-
ear potential), and ASP (Astex statistical potential) scoring 
function with 30% efficiency and one conformer for each 
compound [24].

Molecular docking

The binding pose and key interactions of virtually screened 
compounds were analyzed by using a well-established pro-
tocol known as molecular docking studies [26]. With 100% 
efficiency Gold PLP (piecewise linear potential) scoring 
function was used for performing the molecular docking of 
virtually screened natural compounds [24]. The default scor-
ing functions such as the Gold PLP fitness score and Gold 
ASP fitness score were used for the selection of potential 
CDK9 binders [27]. Gold PLP (ChemPLP) is an empiri-
cal scoring function implemented in the GOLD program. 
It combines a range of molecular properties and interac-
tion terms to evaluate the fitness of ligand binding. These 

properties include van der Waals interactions, hydrogen 
bonding, and lipophilic contacts. The Gold PLP score 
attempts to capture the overall complementary and favora-
ble interactions between the ligand and protein. Gold ASP 
(Astex statistical potential) is another scoring function avail-
able in the GOLD program, developed by Astex Pharma-
ceuticals [28]. It utilizes a statistical potential derived from 
a large database of protein–ligand complexes to estimate 
the binding affinity. The Gold ASP fitness score is based on 
statistical analysis of observed protein–ligand interactions 
and uses a knowledge-based approach to predict the fitness 
of protein–ligand binding [29].

Molecular dynamics simulations

MD simulations studies

To examine the protein–ligand complex stability, 500-ns 
MD simulations were performed for the selected compounds 
and the conventional inhibitor Flavopiridol [30]. The MD 
simulation for obtained compounds was performed using the 
Groningen Machine for Chemical Simulations (GROMACS 
v5.15) by incorporating the CHARMm27 force field [20, 
31]. The parameter files for ligand molecules were gener-
ated by using SwissParam [32]. For each selected natural 
compound associated with the CDK9 receptor, a separate 
simulation system was built in a dodecahedron box, and the 
TIP3P water model was employed for hydration [33, 34]. 
The prepared simulation systems were neutralized by add-
ing sodium ions. Before commencing MD simulations, the 
Steepest Descent algorithm was applied to perform energy 
minimization on the prepared systems. This step aimed to 
alleviate steric hindrance and achieve overall energy minimi-
zation. Subsequently, each system was equilibrated by using 
NVT and NPT ensembles [20]. NVT ensemble was carried 
out for 1 ns at 300 K by keeping a number of particles (N), 
volume (V), and temperature (T) constant using a V-rescale 
thermostat [35]. NPT ensemble was performed at 1 bar at 
a constant number of particles (N), pressure (P), and tem-
perature (T) by Parrinnello-Rehman barostat under periodic 
boundary conditions to avoid edge effects [22, 35, 36]. LINC 
algorithm was employed during simulation to restrain the 
bond length and particle mesh Ewald (PME) was applied for 
estimating the long-range electrostatic interactions [31, 37]. 
Utilizing the DS and GROMACS trajectory analysis tools, 
the obtained simulation results were analyzed [38].

MD trajectory analysis and hydrogen bond calculation

T h e  p ro t e i n – l i ga n d  c o m p l ex  d y n a m i c s  o n 
ligand–protein binding was determined by root mean 
square deviation(RMSD) and root mean square fluctuations 
(RMSF) calculation additionally the hydrogen bond analysis 

https://www.medchemexpress.com/
https://www.medchemexpress.com/
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was performed for each system [22]. The “gmx rmsd,” “gmx 
rmsf,” and “gmx hbond” commands were implemented for 
the calculation of RMSD, RMSF, and H-bond respectively 
[22, 39].

Binding free energy calculation using MM‑PBSA

Calculating the binding free energy of a system is a potential 
measure for estimating the binding affinity of hit compounds 
for a target protein and has crucial importance in compu-
tational drug discovery [40]. The GROMACS plugin tool 
“g_mmpbsa” was used for the calculation of binding free 
energy in this study. The MD simulation trajectories were 
used as an input for binding free energy calculation [41, 42]. 
The protein–ligand complex binding free energy is calcu-
lated as follows:

Pharmacokinetic properties assessment via pkCSM

Pharmacokinetic properties play a crucial role in drug dis-
covery and development. These properties describe how the 
body affects a drug, including its absorption, distribution, 
metabolism, and excretion. Understanding and optimizing 
pharmacokinetic properties are essential for creating safe 
and effective drugs. Early assessment of pharmacokinetics 
helps to prioritize compounds with favorable properties for 
further development. The identified hit compounds were 
further submitted to the pkCSM webserver (http://​struc​ture.​
bioc.​cam.​ac.​uk/​pkcsm) to analyze the pharmacokinetic or 
ADMET properties [43]. Computational approaches pro-
vide a powerful toolbox for analyzing ADME properties 
and can efficiently predict how drugs are absorbed, distrib-
uted, metabolized, and excreted in the body. Experimental 
ADMET studies can be time-consuming, expensive, and 
often require a significant amount of resources. Computa-
tional methods offer a faster and more cost-effective way to 
prioritize and screen potential drug candidates before mov-
ing to experimental stages [43, 44].

In silico prediction of cytotoxicity with CLC‑Pred 
webserver

In silico screening of cytotoxic effects of drug-like can-
didates against various cell lines can be a useful step in 
saving time and cost of the drug development process 
compared to experimental analysis. In the present work, 
we have used the freely available webserver the CLC-Pred 
(cell-line cytotoxicity predictor, https://​www.​way2d​rug.​
com/​cell-​line/) for the estimation of cytotoxic effects of 
identified hits FL_72 and PH_435 in cancer cell lines and 

Gbinding = Gcomplex −

[

Gprotein + Gligand

]

normal cells [45]. The CLC-Pred uses the PASS (predic-
tion of activity spectra for substances) tool to predict the 
biological activities of uploaded compounds based on their 
molecular structures. The SMILES codes of hits were used 
as input for web application and the results of the predic-
tion include five main characteristics, the probability that 
the compound will be active (Pa), the probability that the 
compound will be inactive (Pi), cell lines, tumor type, and 
the region/tissue. Only activities with Pa > Pi are consid-
ered as possible cytotoxic candidates for given cell lines 
[46, 47].

Results

In this study, we used a docking-based virtual screening 
method followed by MD simulations to identify potential 
CDK9 inhibitors from a natural drug database. The sche-
matic representation of the work is summarized in (Fig. 1).

Protein preparation

The 3D structure of CDK9 protein co-crystalized with Fla-
vopiridol was downloaded from the RCSB Protein Data 
Bank (PDB ID: 3BLR) [18]. The DFG motif in 3BLR is 
typically in the “DFG-in” conformation, where the D167 
is positioned in the active site, coordinating with the ATP 
or inhibitor. The F168 is oriented away from the active site, 
maintaining the active conformation [48]. The water mol-
ecules and non-interacting ions were removed, and hydrogen 
atoms and missing loops were added to prepare the protein. 
The “Prepare Protein” protocol available in BIOVIA Discov-
ery Studio (DS) v19 was used to prepare the desired mac-
romolecule [19]. The detailed domain structure of CDK9 is 
shown in Fig. 2.

Database preparation

A dataset of 1683 natural compounds, encompassing alka-
loids, flavonoids, and phenolic moieties, was assembled. 
These compounds were then subjected to preparation pro-
cesses and further organized based on their physiochemi-
cal and pharmacokinetic properties. Lipinski’s Rule of Five 
(Ro5) protocol, available within DS, was utilized for the 
preparation of a drug-like database (Table S1) [21, 22]. The 
Ro5 filter yielded a dataset of 1083 chemicals, comprising 
536 phenols, 159 flavonoids, and 388 alkaloids. These com-
pounds demonstrated favorable physiochemical properties, 
indicating their potential suitability as candidates for further 
investigation (Fig. 3).

http://structure.bioc.cam.ac.uk/pkcsm
http://structure.bioc.cam.ac.uk/pkcsm
https://www.way2drug.com/cell-line/
https://www.way2drug.com/cell-line/
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Docking‑based virtual screening

Molecular docking-based virtual screening was performed 
using the GOLD program by incorporating ChemPLP, 
and ASP scoring function with 30% efficiency. During the 
screening, one conformer for each compound was generated 
to screen out the potential compounds. The validation of 
docking parameters was done by using the co-crystalized 
3D structure of protein-bound with Flavopiridol (REF). 
The radius of the binding site was set at 7.43 Å and the 
XYZ coordinates were set as 53.12, −17.16, and −12.72. 
The drug was re-docked at the same pocket and the root 
mean square deviation (RMSD) value was calculated with 
a crystalized CDK9-Flavopiridol complex. The RMSD 
value was observed to be in the acceptable range with the 
value of 1.1 Å (Figure S1). Virtually screened compounds 
were sorted out based on the Gold PLP score of the REF 
drug. Flavopiridol displayed a Gold PLP fitness score of 
69.81 and a Gold ASP fitness score of 37.43. This score was 
subsequently utilized for the selection of potential CDK9 
inhibitors. Docking results and visual inspection of molecu-
lar interactions with the key residues of receptor reveal that 
only five hit compounds illustrate better interaction and fit-
ness scores when compared with the REF drug. The details 

of the two-dimensional structure and docking score of hit 
compounds are shown in (Table 1).

MD simulations studies

MD simulation studies are a powerful tool in the compu-
tational drug discovery field that enables the investigation 
of the dynamic behavior of protein–ligand complex at an 
atomic level over a set period. These simulations involve the 
numerical integration of Newton’s equations of motion to 
simulate the motion and interactions of atoms and molecules 
in a system [49]. The protein–ligand complexes obtained 
from molecular docking were further considered as an ini-
tial coordinate for MD simulation to check the stability of 
the ligand–protein binding in an assigned period at given 
physiological conditions. A total of six systems were pre-
pared including the REF drug and subjected to production 
run for 500 ns [50]. The CDK9-Flavopiridol complex was 
used for comparative analysis for identified hit compounds 
result analysis. The MD simulation results were analyzed 
through RMSD, RMSF, potential energy, hydrogen bond 
analysis, and binding mode analysis [25]. The compounds 
with no important molecular interaction and showing unsta-
ble behavior throughout the simulation were discarded from 

Fig. 1   Graphical representation of the work done in the present study to identify the potential CDK9 inhibitors
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Fig. 2   The 3D structure of CDK9 (PDB: 3BLR) is shown here with a 
surface model and the solid ribbon representations. a The important 
regions of the G-loop or ATP-binding site were shown with green 
(Q27-V33), hinge region (D104-L110) in blue, orange (cyclin bind-

ing domain; P60-E66), yellow (catalytic loop; H148-N154), purple (T 
loop; F174-P196), and pink color (DFG motif; D167-G169). b The 
3D surface model with detailed domains of CDK9

Fig. 3   Docking-based virtual screening of three natural databases to identify the of selective CDK9 inhibitors
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Table 1   List of potential 
compounds obtained from 
molecular docking

Compound
Gold PLP 

fitness score
Gold ASP 

fitness score
2D structure

Compound 

FL_72
75.59 34.99

Compound 

PH_54
82.08 35.51

Compound 

PH_435
77.57 40.22

Compound 

AL_199
64.76 22.78

Compound 

AL_268
69.50 22.57

REF 

(Flavopiridol)
69.81 37.43
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further analysis. Following MD simulations, the obtained 
systems were ranked based on the calculated binding free 
energy using the MM-PBSA method. Through MD simula-
tions studies, two natural compounds come out as potential 
candidates for inhibiting CDK9 with better binding energy 
and stable interaction with key residues compared to REF 
and other drug-like compounds and named FL_72 and 
PH_435.

MD trajectory analysis and hydrogen bond calculation

MD trajectories were used to analyze the system stabil-
ity throughout the simulation run from backbone RMSD, 
RMSF, potential energy plots, and hydrogen bond calcula-
tion [22, 39]. Compounds that showed unstable behavior and 
undesirable interaction were discarded from further analysis; 
detailed MD simulation results have been demonstrated in 
Table 2 and Fig. 4. The MD results observation suggest that 
FL_72 and PH_435 showed RMSD values of 3.1 Å and 3.3 
Å respectively which is slightly higher than the threshold 

value of <3 Å, whereas the REF drug-bound CDK9 protein 
showed RMSD values of 3.0 Å (Fig. 3a).

The root mean square fluctuation (RMSF) values of each 
simulated system were calculated to analyze the behavior of 
each protein residue. It measures the average deviation or 
fluctuation of the atoms in a bimolecular system over a set 
period. Through RMSF calculation, we observed that both 
the FL_72 and PH_435 compounds are showing fluctuating 
results than the REF (Fig. 4b). Further, the potential energy 
plots suggested that FL_72 and PH_435 were showing stable 
behavior throughout the 500-ns MD simulation run com-
pared to REF (Fig. 4c). The average number of hydrogen 
bonds present in each system during the 500-ns simulation 
run was calculated by using simulation trajectories. The 
hydrogen bond analysis was performed along with other 
MD simulation calculations to obtain a more comprehen-
sive understanding of each system’s dynamics and function. 
The hydrogen bond analysis results revealed that both FL_72 
and PH_435 form a more prominent and greater number of 
hydrogen bonds compared to REF (Fig. 4d and Table 2).

Table 2   Molecular docking and 
molecular dynamics simulation 
analysis of REF, FL_72, and 
PH_435

Systems Docking score RMSD (nm) Potential energy
(kJ/mol)

Number of 
hydrogen 
bond

Bind-
ing free 
energy
(ΔGbinding 
kJ/mol)

Gold PLP 
fitness score

Gold ASP 
fitness score

Backbone atoms

REF 69.81 37.43 0.30  − 804493 1.02  − 63.75
FL_72 75.59 34.99 0.31  − 804598 2.08  − 86.99
PH_435 77.57 40.82 0.33  − 804466 2.32  − 64.58

Fig. 4   The graphical representa-
tion of MD simulation results. 
a RMSD; b RMSF; c potential 
energy; d hydrogen bonds
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Binding free energy calculation using MM‑PBSA

The binding affinity of the identified drug-like candidates 
towards the CDK9 receptor was inferred by calculating 
the binding free energy (ΔG) using the MM-PBSA method 
[40]. The last 50-ns trajectory data was used for calculating 
the ΔG values. The observed average binding free energy 
value was for FL_72 − 86.99 kJ/mol, PH_435 − 64.58 kJ/
mol, and REF − 63.75 kJ/mol (Fig. 5a, Table 3). The ΔG 
values emphasized that both the identified compounds 
FL_72 and PH_435 show a greater binding affinity for 
CDK9 compared to REF, interestingly PH_435 displayed 
significantly better affinity towards CDK9 in MM-PBSA 
calculations.

The per-residues contribution obtained from free 
energy calculation can provide more details about protein 
inhibitor interactions. It can be noticed from Fig. 5 that 
the known inhibitor Flavopiridol (REF) and selected hits 
(FL_72 and PH_435) target similar residues with differ-
ent energetics. In particular, L25, F30, V33, V79, F103, 
L156, and A166 significantly contribute to binding via 
various hydrophobic interactions. The residues shown on 
the upper side of the graph, such as K35, K48, E66, D104, 
D109, A153, and D167, may contribute to polar interac-
tions (Fig. 5b).

Binding mode and intermolecular interaction 
analysis

Flavopiridol is a small molecule inhibitor that has been 
extensively studied as a CDK9 inhibitor. It binds to the 
ATP-binding site of CDK9 and competes with ATP for 
binding, thereby inhibiting the kinase activity of CDK9. 
The binding site of Flavopiridol on CDK9 is located in the 
catalytic domain of the protein. Specifically, it occupies the 
ATP-binding pocket of CDK9, which is a conserved region 
responsible for binding and transferring phosphate groups 
during kinase activity. Flavopiridol forms multiple interac-
tions with the residues lining the ATP-binding site, including 
hydrogen bonds, hydrophobic interactions, and pi-stacking 
interactions.

It is been already notified that Cys106 and Asp167 are 
important residues in CDK9 protein that have been impli-
cated in the regulation of its activity and inhibition [2]. The 
role of Cys106 present in the hinge region in CDK9 inhibi-
tion can vary depending on the specific context and inhibi-
tor being studied. Cys106 is located in the N-terminal lobe 
of the CDK9 kinase domain, away from the ATP-binding 
pocket. In certain cases, binding of an inhibitor or ligand to 
Cys106 can induce allosteric effects that modulate CDK9 
activity. Asp167 is located in the active site of CDK9, 

Fig. 5   The MM-PBSA calculation. a Graphical representation of calculated binding free energy for REF, FL_72, and PH_435. b The energy 
decomposition plot of each residue in the corresponding simulated system was obtained from the MM-PBSA calculation

Table 3   Binding free energy 
components of Hit compounds 
and REF calculated from MM‐
PBSA method

Inhibitors van der Waals 
(kJ/mol)

Electrostatic 
(kJ/mol)

Polar solvation 
(kJ/mol)

SASA energy
(kJ/mol)

Binding 
energy (kJ/
mol)

FL_72  − 167.104  − 49.52 147.876  − 18.23  − 86.99
PH_435  − 170.352  − 60.03 186.564  − 20.76  − 64.58
REF  − 175.369  − 57.04 188.789  − 20.13  − 63.75
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specifically within the catalytic domain. It plays a significant 
role in the catalytic activity of CDK9 and can also influence 
the binding of inhibitors and their inhibitory potency [2]. 
Allosteric regulation mediated by Cys106 can influence the 
conformation and stability of CDK9, which in turn affects 
its susceptibility to inhibition [2]. The crystal structure of 
CDK9 bound with Flavopiridol (PDB: 3BLR) also shows 
hydrogen bond interaction with Cys106 which further con-
firms the role of Cys106 in CDK9 inhibition [18, 51].

After a simulation run of 500 ns, we analyzed the molecu-
lar interaction pattern of each system and it was observed 
that with Flavopiridol-CDK9 complex displayed van der 
Waals interactions with active site residues Lys48, Val79, 
Phe103, Glu107, His108, Asp109, Lys151, and Ala153. The 
drug displayed hydrogen bond interactions with Asp167. 
Moreover, residues such as Ile25, Val33, Lys35, Ala46, 
Cys106, Leu156, and Ala166 are observed to form hydro-
phobic interactions. In the present work, we observed that all 
the key residues responsible for π-π interaction and hydrogen 
bond interaction in the crystal structure of the Flavopiridol-
CDK9 complex were forming stable interactions through-
out the 500-ns simulations. In the case of FL_72 residues, 
Gly26, Gln27, Lys48 Val79, Phe103, Phe105, His108, 
Asp109, Val155, and Asn154 are forming van der Waals 
interactions and the hinge region residues, Asp104, Cys106, 
Ala153 of the catalytic loop, and Asp167 from the DFG 

motif are stabilizing the protein–ligand complex by form-
ing hydrogen bond interactions. On other hand Ile25, Val33, 
Ala46, Leu157, and Ala166 forms hydrophobic interactions. 
Additionally, Phe30 is forming a π-π-stacked interaction. By 
analyzing the molecular interaction of PH_435, we found out 
that residues responsible for van der Waals interactions were 
Ile25, Gly26, Val33, Lys48, Phe103, Phe105, Gly112, and 
Asn154. Hinge region residues Asp104, Cys106, Asp109, 
and Asp167 in the DFG motif are key formers of hydrogen 
bond interaction with PH_435 and CDK9, while residues 
Ala46, Val79, Ala111, Ala153, Leu156, and Ala166 are 
making hydrophobic interactions. Additionally, Asp167 is 
also participating in the formation of π-anion bond. Overall 
molecular interaction analysis suggests that with FL_72 and 
PH_435 all the previously mentioned key residues Cys106, 
Asp104, and Asp167 are making stable hydrogen bonds 
making protein–ligand complex stable (Fig. 6, Table 4).

Pharmacokinetic properties assessment via pkCSM

Computational tools allow researchers to predict ADME 
properties of compounds in the early stages of drug dis-
covery, helping to select the most promising candidates 
for further development. This reduces the risk of investing 
resources in compounds with unfavorable properties.

Fig. 6   Binding mode of a REF, b FL_72, and c PH_435 with the 
active site residues of CDK9. REF, FL_72, and PH_435 are shown in 
brown, pink, and yellow respectively represented in the stick model. 
The lower panel represents the 2D molecular interaction of d REF, e 

FL_72, and f PH_435 with active site residues. The hydrogen bonds 
are shown in green dash lines while π-π, π-alkyl, π-cation π-sulfur, 
and π-σ interactions are shown as pink, orange, yellow, and purple 
dash lines respectively
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The obtained results suggested that FL_72 and PH_435 
have intermediate levels of water solubility which is com-
patible with REF. The caco-2 permeability prediction is 
a useful parameter for oral absorption of a drug, which 
indicates the acceptable value of 1.45 and 1.12 for FL_72 
and REF respectively, but unfortunately PH_435 shows a 
value of 0.51 which does not fall under the acceptable cut-
off criterion for caco-2 permeability according to pkCSM 
reference values. The intestinal absorbance level of a 
compound below 30% is considered as poorly soluble and 
less absorbed; in this study, REF as well as both FL_72 
and PH_435 showed good absorption values of 83.01%, 
92.02%, and 80.79% respectively. The skin permeability 
potential score is higher than the acceptable range for REF, 
FL_72, and PH_435. Both FL_72 and PH_435 and REF 
were investigated for being p-glycoprotein substrates and 
inhibitors; we observed that all three compounds were 
predicted as p-glycoprotein substrates. Interestingly, 
FL_72 was observed as not an inhibitor for p-glycopro-
tein whereas REF and PH_435 came out as an inhibitor 
of p-glycoprotein. A drug that is considered a substrate of 
p-glycoprotein can potentially act as an inhibitor or inducer 
of its function, p-glycoprotein functions as a biological 
barrier by removing xenobiotics and toxins from the cell. 
The volume of distribution (VD) is an essential pharma-
cokinetic parameter that needs to be estimated during 
the drug discovery process. VD explains the relationship 
between the dose of an administered drug and the amount 
of drug present in plasma to tissue, the higher the VD 
more of a drug is distributed in tissue. The REF, FL_72, 
and PH_435 were observed as fairly distributed in tissue. 
The pharmacokinetic parameters, blood–brain barrier per-
meability (BBBP), and central nervous system permeabil-
ity (CNSP) for REF, FL_72, and PH_435 were observed to 
be very low which indicates that all three compounds have 

a very rare chance of causing CNS-related toxicity. Metab-
olism-related pharmacokinetic parameter analysis includes 
cytochrome P450 analysis, which is an important enzyme 
in the human body for drug detoxification. The cytochrome 
P450 enzymes play a crucial role in drug metabolism by 
oxidizing a large variety of xenobiotic substances. While 
predicting the pharmacokinetic properties we considered 
all the isoforms of cytochrome P450, overall analysis sug-
gested that FL_72 and PH_435 both showed acceptable 
results compared to REF. Drug clearance is measured as 
a combination of hepatic clearance and renal clearance. 
Transport of cationic substrates is mainly mediated by 
organic cation transporter 2 (OCT2) which is a renal 
uptake transporter unambiguously expressed on tubular 
epithelia of the kidney and plays a significant role in drug 
disposition and drug renal clearance. The renal OCT2 sub-
strate and total clearance excretion properties mentioned 
in pkCSM were also predicted during the pharmacokinetic 
properties assessment. The total clearance was observed as 
a value of 0.46 ml/min/kg, 0.17 ml/min/kg, and 0.36 ml/
min/kg for REF, FL_72, and PH_435 respectively. On the 
other side, none of the compounds were predicted as a 
substrate of renal OCT2. We observed that REF, FL_72, 
and PH_435 come out as not an inhibitor for hERG I (the 
human ether-à-go-go-related gene) which indicates that 
compounds are not cardiotoxic. On the other hand, similar 
to REF both FL_72 and PH_435, it inhibits hERG II. The 
oral rat acute toxicity (LD50) and oral rat chronic toxicity 
(LOAEL) were also predicted for FL_72, PH_435, and 
REF. Other important toxicity parameters such as hepato-
toxicity, skin sensitization, T. pyriformis toxicity, AMES 
toxicity, and Minnow toxicity were also predicted for REF, 
FL_72, and PH_435 (Table S3). The overall analysis of 
pharmacokinetic or ADMET properties suggested that 
both the identified natural compounds FL_72 and PH_435 

Table 4   Molecular interactions of REF, FL_72, and PH_435 with CDK9 were obtained after a 500-ns molecular dynamics simulation

Name Hydrogen bond interactions van der Waals interactions Hydrophobic interactions

Amino acid Amino 
acid 
atom

Ligand atom Distance 
(< 3.5 Å)

REF Asp167 OD2 H43 1.63 Lys48, Val79, Phe103, Glu107, His108, 
Asp109, Lys151, Ala153

Ile25, Val33, Lys35, Ala46, Cys106, 
Leu156 and Ala166

FL_72 Asp104 O H43 2.09 Gly26, Gln27, Lys48 Val79, Phe103, 
Phe105, His108, Asp109, Val155 
Asn154

Ile25, Val33, Ala46, Leu157 Ala166
Cys106 NH O23 2.80
Ala153 O H44 1.94
Asp167 NH O11 2.77

PH_435 Asp104 O H54 1.88 Ile25, Gly26, Val33, Lys48, Phe103, 
Phe105, Gly112, Asn154

Ala46, Val79, Ala111, Ala153, Leu156 
Ala166Cys106 NH O34 1.83

Asp109 OD1 H38 1.65
Asp167 NH O14 3.01
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are showing acceptable predicted values compared to REF, 
interestingly in some pharmacokinetic parameters Fl_72 is 
showing better results than REF (Table S2).

In silico prediction of cytotoxicity with CLC‑Pred 
webserver

The CLC-Pred tool is used to predict the cytotoxicity of 
tumor cell lines using the PASS-based CLC-Pred database 
to develop potential anti-cancer agents. Cytotoxicity pre-
diction was performed for both the identified hits. As per 
the interpretation of CLC-Pred, if the Pa value is > 0.5, the 
probability of action is considerably high, whereas the Pi 
value indicates the inactivity of compounds or activities with 
Pa > Pi is also considered as possible potential candidates. 
The results obtained after the prediction suggest that FL_72 
and PH_435 have a higher probability of being active mainly 
in leukemia and lung carcinoma (Table 5).

Discussion

The cell cycle progression is critically controlled by proline 
directed serine/threonine kinases known as cyclin-dependent 
kinases (CDK) at each step [6]. CDK9 regulates the tran-
scription elongation of RNA polymerase II; it also modu-
lates the expression and activity of different oncogenes [14, 
52]. It has been experimentally proved by researchers that 
CDK9 plays key role in tumor progression and pathogenesis; 
hence, it can be a promising pharmacological target for a 
variety of cancer, specifically tumor associated with tran-
scriptional dysregulation [53, 54]. The only FDA-approved 
drug available as CDK inhibitor in market is Flavopiridol 
which does not show selectivity towards CDK9; hence, there 
is an absolute need for developing new candidate which can 
selectively binds to CDK9 and inhibit the cancer cell pro-
gression [55]. In this work, we have used natural compounds 
databases to design the potential selective CDK9 inhibitor 
using computer-aided drug-designing techniques in order to 
save time efforts required for experimental analysis. Present 

study is primarily focused on identifying natural compounds 
as CDK9 antagonist by using docking-based virtual screen-
ing followed by molecular docking, MD simulation, and 
binding free energy calculation for identified hits as well 
as the reference drug (Fig. 2). The co-crystalized 3D struc-
ture of CDK9 protein with Flavopiridol was obtained from 
the RCSB Protein Data Bank (PDB ID: 3BLR) [18]. The 
“Prepare Protein” protocol available in DS was used to pre-
pare the protein [19]. A dataset of 1683 natural compounds, 
encompassing alkaloids, flavonoids, and phenolic moieties, 
was assembled and used for virtual screening. Molecular 
docking-based virtual screening was performed with 30% 
efficiency and one conformer for each compound using 
GOLD program by incorporating ChemPLP and ASP scor-
ing functions [26]. Virtually screened compounds were fur-
ther filtered out based on the Gold PLP score of REF drug. 
The Flavopiridol displayed a Gold PLP fitness score of 69.81 
and Gold ASP fitness score of 37.43. Docking results and 
visual inspection of molecular interactions with the key resi-
dues of receptor suggests that only five hit compounds shows 
better interaction and fitness score than the REF drug which 
can be used for performing further computational calcula-
tions. The docking score of hit compounds and detailed of 
two-dimensional structure are shown in (Table 1). In order 
to check the stability of the complex upon ligand binding the 
protein–ligand complexes obtained from molecular dock-
ing were further considered as initial coordinates for MD 
simulation. The RMSD, RMSF, potential energy, hydrogen 
bond analysis, and binding mode analysis were performed 
after MD simulation calculation (Table  2 and Fig.  3). 
The overall MD analysis suggest that FL_72 and PH_435 
showed stable RMSD value of 3.1 Å and 3.3 Å respectively 
which is quite higher than the threshold value of < 3 Å. The 
REF drug bound to CDK9 protein showed RMSD values 
of 3.0 Å (Fig. 3). RMSF calculation also pointed out that 
the FL_72 and PH_435 compounds are showing compara-
tively acceptable results with the REF (Fig. 3). To analyze 
the stable behavior of the complex throughout the 500-ns 
MD simulation run, the potential energy was calculated for 
REF, FL_72, and PH_435 (Fig. 3). The average number of 

Table 5   In silico cell line 
cytotoxicity prediction of 
identified hits FL_72 and 
PH_435 using CLC-Pred

Hits Pa Pi Cell line Tumor type Region/tissue

PH_435 0.452 0.032 NCI-H187 Carcinoma Lung
0.441 0.038 HL-60 Leukemia Hematopoietic and lymphoid tissue
0.395 0.039 NALM-6 Leukemia Hematopoietic and lymphoid tissue
0.351 0.058 PC-6 Carcinoma Lung

FL_72 0.533 0.009 NCI-H187 Carcinoma Lung
0.404 0.028 NALM-6 Leukemia Hematopoietic and lymphoid tissue
0.395 0.031 HOP-18 Carcinoma Lung
0.361 0.019 MKN-7 Carcinoma Stomach
0.353 0.058 PC-6 Carcinoma Lung
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hydrogen bonds present in each system during the 500-ns 
simulation run was calculated by using simulation trajec-
tories (Fig. 3 and Table 2). The molecular interaction pat-
tern of each system was analyzed and it was observed that 
with Flavopiridol-CDK9 complex displayed van der Waals 
interactions with active site residues Lys48, Val79, Phe103, 
Glu107, His108, Asp109, Lys151, and Ala153. The drug 
displayed hydrogen bond interactions with Asp167. On the 
other hand, residues such as Ile25, Val33, Lys35, Ala46, 
Cys106, Leu156, and Ala166 are observed to form π-alkyl 
interactions. In the case of FL_72 residues, Gly26, Gln27, 
Lys48 Val79, Phe103, Phe105, His108, Asp109, Val155, and 
Asn154 are forming van der Waals interactions, and Asp104, 
Cys106, Ala153, and Asp167 are stabilizing the pro-
tein–ligand complex by forming hydrogen bond interactions. 
On other hand Ile25, Val33, Ala46, Leu157 and Ala166 
forms π-alkyl bonding. Additionally, Phe30 forms π-alkyl 
bonding. Additionally, Phe30 forms a π-π-stacked interac-
tion. By analyzing the molecular interaction of PH_435, we 
found out that residues responsible for van der Waals inter-
actions were Ile25, Gly26, Val33, Lys48, Phe103, Phe105, 
Gly112, and Asn154. Residues Asp104, Cys106, Asp109, 
and Asp167 are key formers of hydrogen bond interaction 
with PH_435 and CDK9. Moreover Ala46, Val79, Ala111, 
Ala153, Leu156, and Ala166 are making π-alkyl bonding. 
Additionally, π-anion bond was also observed with PH_435 
and Asp167. Overall, molecular interaction analysis suggests 
that FL_72 and PH_435 are making stable hydrogen bonds 
with all the previously mentioned key residues Cys106, 
Asp104, and Asp167 (Fig. 4, Table 3). Computational tools 
allow researchers to predict ADME properties of compounds 
in the early stages of drug discovery, helping to select the 
most promising candidates for further development [43, 56]. 
The overall analysis of pharmacokinetic or ADMET proper-
ties was performed by using pkCSM online server [43]. The 
ADMET results suggested that both the identified natural 
compounds FL_72 and PH_435 are showing acceptable pre-
dicted values for each pharmacokinetic property compared 
to REF; interestingly, in some pharmacokinetic parameters, 
FL_72 is showing better results than REF (Table S3). The 
cytotoxicity of tumor cell lines using the PASS-based CLC-
Pred database predicted that identified hits, FL_72 and 
PH_435, have a great potency mainly in leukemia and lung 
carcinoma which further theoretically promotes these com-
pounds as potential anti-cancer agents.

Limitation of the study

The computational drug design approach used in the pre-
sent work is able to provide valuable insights, but has 
several limitations that need to be considered. Firstly, we 
agree that the accuracy of our molecular dynamics simula-
tions and docking studies is constrained by the used force 

fields and scoring functions, which may not fully justify 
the complexity of protein–ligand interactions. Addition-
ally, the conformational sampling in our MD simulations 
might not explore the complete conformational space, 
potentially overlooking important binding modes. The 
other factor which limit our research could be the use of 
implicit solvent models, while computationally efficient, 
may not accurately represent all solvent interactions in real 
time. The physiological environment required for a drug, 
including factors such as ionic strength and pH, was tried 
to keep as same as the biological environment but it could 
affect the predicted binding affinities and stabilities.

In this work, we tried to incorporate a long MD simula-
tion run of 500 ns to get more reliable and stable results. 
Despite these limitations, our study provides a robust 
framework for understanding the initial stages of drug 
design, and future work will focus on addressing these 
limitations through improved models, enhanced sampling 
techniques, and extensive experimental validation.

Conclusion

CDK9 plays a crucial role in cancer progression and has 
emerged as an important target for cancer therapy. Dys-
regulation of CDK9 can lead to abnormal expression of 
genes, disrupting the balance between cell growth and cell 
death which can positively contribute to cancer formation. 
In the present work, we have used computational meth-
ods to identify novel selective CDK9 inhibitors obtained 
from natural compounds databases. In the first step, we 
performed the docking base virtual screening of natural 
compounds, and then the screened compounds were fur-
ther subjected to molecular docking studies. The docking 
results conferred the total five potential compounds having 
better docking scores and interaction with key residues 
compared to reference drug Flavopiridol were subjected to 
the 500-ns production. The detailed analysis of MD simu-
lation results theoretically suggests two potential natural 
compounds (FL_72 and PH_435) as novel selective CDK9 
inhibitors based on stable RMSD behavior, binding free 
energy value, and detailed interaction pattern with the 
important residues.
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