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Abstract
Context In the realm of quantum chemistry, the accurate prediction of electronic structure and properties of nanostructures
remains a formidable challenge. Density functional theory (DFT) and density matrix renormalization group (DMRG) have
emerged as two powerful computational methods for addressing electronic correlation effects in diverse molecular systems.
We compare ground-state energies (e0), density profiles (n), and average entanglement entropies (S̄) in metals, insulators
and at the transition from metal to insulator, in homogeneous, superlattices, and harmonically confined chains described
by the fermionic one-dimensional Hubbard model. While for the homogeneous systems, there is a clear hierarchy between
the deviations, D%(S̄) < D%(e0) < D̄%(n), and all the deviations decrease with the chain size; for superlattices and
harmonic confinement, the relation among the deviations is less trivial and strongly dependent on the superlattice structure
and the confinement strength considered. For the superlattices, in general, increasing the number of impurities in the unit
cell represents lower precision in the DFT calculations. For the confined chains, DFT performs better for metallic phases,
while the highest deviations appear for the Mott and band-insulator phases. This work provides a comprehensive comparative
analysis of these methodologies, shedding light on their respective strengths, limitations, and applications.
Methods The DFT calculations were performed using the standard Kohn-Sham scheme within the BALDA approach. It
integrated the numerical Bethe-Ansatz (BA) solution of the Hubbard model as the homogeneous density functional within a
local-density approximation (LDA) for the exchange-correlation energy. The DMRG algorithms were implemented using the
ITensor library, which is based on the matrix product states (MPS) ansatz. The calculations were performed until the energy
reaches convergence of at least 10−8.
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Introduction

Reliable predictions of nanostructure properties are essen-
tial for the development of advanced quantum technolo-
gies. Density functional theory (DFT) [1, 2] and density
matrix renormalization group (DMRG) [3] methods stand
out prominently in this pursuit. DMRG has demonstrated
remarkable success in capturing strong correlation effects
by systematically optimizing the wavefunction in a reduced
Hilbert space, but gets computationally expensive with the
size of the system.

On the other hand, DFT offers a cost-effective approach
to study large systems and is widely used as an electronic
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structure method. However, the inherent approximations in
exchange-correlation functionals can lead to inaccuracies,
particularly in strongly correlated systems. Despite of that
Kohn-Sham DFT [4, 5] has been demonstrated to be reliable
to describe for example i) transport properties in the weakly
coupled repulsive regime [6], ii) phases in cold trapped atoms
[7, 8], iii) chargegap [9], and iv) electrical responseproperties
of homogeneous metals [10].

Within the context of strongly correlated systems mod-
eled by the Fermi-Hubbard model [11, 12], previous studies
have compared DMRG and DFT results across various sce-
narios [8, 10, 13–18]. For the quarter-filling case, small
deviations (less than 2%) between the techniques for the
ground-state energy and for the local densities have been
reported [8, 10, 13]. However, finite size effects, confin-
ing potentials, increasing magnitude of onsite interactions,
and band occupation approaching the half-filling case are
generally associated with higher deviations [8, 14]. Nev-
ertheless, a systematic comparison of DFT and DMRG
in describing the electronic properties − and particularly
entanglement measures − of quantum materials remains
missing. Understanding the limitations and advantages of
these methodologies is crucial for addressing quantum phase
transitions in the Hubbard model, including the underlying
mechanisms of exotic phases and high-temperature super-
conductors [19].

In this work, we provide a detailed comparative assess-
ment of DFT and DMRG in nanostructures described by
the one-dimensional Hubbard model. We explore homo-
geneous, superlattices, and harmonically confined chains,
addressing key properties such as ground-state energies (e0),
density profiles (n), and average entanglement entropies (S̄),
the latter being commonly used to detect and characterize
quantum phase transitions. While for the homogeneous sys-
tems, one finds a clear hierarchy between the deviations,
D%(S̄) < D%(e0) < D̄%(n), for superlattices and har-
monically confined chains, the relation among deviations is
non-trivial and dependent on the superlattice structure and
the confinement strength adopted. For the superlattices, in
general, increasing the number of impurities in the unit cell
makes DFT calculations less precise. For the confined sys-

tems, DFT performs better for metallic phases, while the
highest deviations appear for the Mott and band-insulator
phases.

Model andmethods

We consider one-dimensional (1D) systems described by the
fermionic Hubbard Hamiltonian,

Ĥ = −t
∑

i,σ

(ĉ†i,σ ĉi+1,σ + ĉi,σ ĉ
†
i+1,σ ) +U

∑

i

n̂i,↑n̂i,↓

+
∑

i,σ

Vi n̂i,σ , (1)

where ĉ(†)
i,σ annihilates (creates) an electron with spin σ =↑,↓

at site i , and n̂i,σ = ĉ†i,σ ĉi,σ are number operators. Themodel
considers nearest-neighbor hopping, on-site interactions, and
local external potential terms with coefficients t , U , and Vi ,
respectively. The ground-state is calculated by fixing the total
number of electrons N in a chain of size L and the total null
magnetization, such that

∑
i

〈
n̂i,↑

〉 = ∑
i

〈
n̂i,↓

〉 = N/2. We
consider different average densities n = N/L , restricted to
0 ≤ n ≤ 2 (single energy band), and impose open boundary
conditions at the chain ends. Throughout this work, we set
t = 1, which defines the unit of energy.

At the limit Vi = 0, the Hamiltonian of Eq. 1 reduces
to the standard Hubbard model. In this case, for n < 1,
the ground-state represents a metallic phase, while for the
half-filling (n = 1), the system consists of a Mott insu-
lating phase for arbitrarily small U > 0 [20]. When Vi is
periodically modulated, thus simulating superlattices (as in
Fig. 1b), the potential may induce a quantum phase transi-
tion from metal to insulating [21–24]. Similarly, the Mott
metal-insulator transition may be induced by the harmonic
potential Vi = k(i − L/2)2 (as in Fig. 1c) [25–28], widely
used in state-of-the-art cold atoms experiments.

In this paper, we address the performance of DFT−when
compared to numerically exact DMRG calculations − in
describing the properties of the Hubbard model for all the

Fig. 1 Schematic setup of a a
finite homogeneous lattice with
Vi = 0 (blue circles), b
superlattices with distinct
modulations of the periodic
Vi �= 0 (red circles), for a fixed
unit cell of 9 sites (2 : 7, 3 : 6,
and 4 : 5), and c a chain under a
harmonic confinement centered
at L/2, Vi = k(i − L/2)2
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three 1D systems: homogeneous, superlattices, and harmon-
ically confined chains, as schematically illustrated in Fig. 1.

We focus on three main quantities: the per-site ground-
state energy e0, the density profile {ni }, and its respective
nonlocal correlations, quantified by the average single-site
entanglement

S̄ = 1

L

L∑

i

Si , (2)

with

Si = −Tr[ρi log2ρi ] = −
∑

k

wi,k log2wi,k, (3)

where wi,k are the eigenvalues of the i-site reduced den-
sity matrix ρi = TrL−1[ρGS] calculated by tracing out the
remaining L − 1 sites from the ground-state density matrix
ρGS . This typeof entanglement has beenproved tobe relevant
in analyzing the localization and itinerancy of the indistin-
guishable particles [29–31]. In the site-occupation basis, the
reduced Hilbert space has dimension d = 4, and thus wi,k

are the occupation probabilities with k =↑, ↓, 2, 0, such that∑
k wi,k = 1. The set {wi,k} can be calculated by firstly com-

puting the paired probability wi,2 = 〈n̂i↑n̂i↓〉 = ∂e0/∂U .
From this term, one obtains the remaining probabilities: the
unpaired, wi,↑ = wi,↓ = 〈

n̂i
〉
/2−wi,2, and the empty prob-

ability wi,0 = 1 − wi,↑ − wi,↓ − wi,2.
The DMRG algorithms were implemented in our group

using the ITensor library [32]. This library is based on the
matrix product states (MPS) ansatz. The precision of the
MPS representations was essentially controlled by config-
uring the bond dimension D, whose maximum is setting
to approximately 3000. The computational cost of DMRG
scales as O(LD2). Although the bond dimension grows
exponentially with L , in 1D, the area law [33] predicts a
limit to its growth for Hamiltonians with short-range interac-
tions, allowing a more optimized process. The performance
of DMRG calculations is significantly influenced by the ini-
tialization procedure. In our approach, we start with initial
guesses and employ a warm-up algorithm. We begin with
small bonddimensions, typically set to 20 for thefirst sweeps.
Additionally,we apply pinningfields to the sites at the ends of
the chain to improve convergence, sometimes requiring over
100 sweeps to fully converge the results: up to 800 sweeps
were utilized to reach an energy convergence of at least 10−8.
This initialization strategy ensures that the system naturally
converges to a physical state, enhancing both the convergence
and accuracy of the results.

Via DFT, the per-site ground-state energy e0 and the den-
sity profile {ni } are obtainedvia standardKohn-Shamscheme
[4, 5], implemented in our group within BALDA approach:
in which the numerical Bethe-Ansatz (BA) solution of the

Hubbard model is considered as the homogeneous density
functional within a local-density approximation (LDA) for
the exchange-correlation energy (for a review, see [34]).

Now for the entanglement, which requires the energy
derivative with respect to U , w2 = ∂e0/∂U , to avoid errors
related to the numerical derivative of the BALDA approach
described above, we adopt instead the analytical derivative
of the FVC parameterization for the energy [13], which (for
non-magnetized systems) is given by

wFVC
2 (n,U ) = 2n

β(n,U )

∂β(n,U )

∂U
cos

(
πn

β(n,U )

)

− 2

π

∂β(n,U )

∂U
sin

(
πn

β(n,U )

)
, (4)

where β(n,U ) = β(U )
3√U/8 and the function β(U ) is deter-

mined from

β (U )

π
sin

(
π

β (U )

)
= 2

∫ ∞

0
dx

J0 (x) J1 (x)

x
(
1 + eUx/2

) , (5)

with J0 and J1 the zero and first order Bessel functions,
respectively. This analytical parametrization becomes exact
by construction for i) U → 0 (for which β = 2), ii) U → ∞
(β = 1), and iii) n = 1 and any U (0 � β � 1). For other
(n,U ) regimes, the FVC parametrization provides a reason-
able approximation to the full Beth-Ansatz [35, 36] solution.

We thus adopt Eq. 4 as approximation to the homoge-
neous chain and hence perform a LDA to obtain the double
occupancy for the inhomogeneous systems:

wi,2 ≈ wLDA
i,2 = wFVC

2 (n,U )|n→ni , (6)

by using the density profile {ni } obtained via BALDA.
The percentage deviations between DFT and DMRG cal-

culations are then, for the energy,

D%(e0) =
∣∣∣∣∣
eDMRG
0 − eDFT0

eDMRG
0

∣∣∣∣∣ × 100, (7)

for the average single-site entanglement,

D%(S̄) =
∣∣∣∣
S̄DMRG − S̄DFT

S̄DMRG

∣∣∣∣ × 100, (8)

while for the density profiles, we quantify a mean percentage
deviation, defined as

D̄%(n) = 1

M

M∑

i

∣∣∣∣∣
nDMRG
i − nDFTi

nDMRG
i

∣∣∣∣∣ × 100, (9)

where the average in the latter equation is performed only
within the M sites with non-negligible occupation, ni ≥
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Fig. 2 DMRG-DFT deviation
for the ground-state energy,
Eq. 7, as a function of the chain
length for a finite homogeneous
system for low density a,
intermediate density b, and at
half-filling c, for several
strengths of interaction U

0.001, in order to avoid artifactual amplification of the devi-
ations.

Results and discussion

DFT x DMRG: homogeneous system

First, we analyze the DFT performance in reproducing the
DMRG results for finite chains. In Fig. 2, we present the
percentage deviation for the per-site ground-state energy.We
see that in general, DFT performs better for low densities
and weak interactions, in both cases, due to less influence
of the electron–electron correlations. We find that the error
monotonically decays by increasing the chain length L for
all n,U , since our DFT-LDA approach becomes exact in the
limit of L → ∞.

Now, considering the DFT performance for the local den-
sities {ni }, we show in Fig. 3 the mean deviation defined in
Eq. 9. For the Mott insulator regime, n = 1 and any U > 0,

DFT is very precise with average deviations smaller than
0.004% due to the suppression of the Friedel-type oscilla-
tions [37, 38]. For the metallic regime, n < 1, the open ends
of the chain act as effective impurities, inducing Friedel oscil-
lations in the density distribution, which are not completely
described by DFT, as can be confirmed by Fig. 4. Since the
Friedel oscillations are more pronounced for low densities,
the deviations are greater for n = 0.2 (Fig. 3a). In contrast,
the smallest deviation for the energy is precisely for the case
of n = 0.2 (Fig. 2a). We attribute this to error cancellations:
while Eq. 9 sum up the local errors, the under and over DFT
estimates for the density profile lead to error cancellation
for the total energy. Nevertheless, for chain sizes L � 60,
DFT density profiles are also reliable, with mean deviations
smaller than 2%.

For the average single-site entanglement, in Fig. 5, one
finds a good performance of DFT calculations even for the
worse regimes of parameters (for L = 10, n = 1, and U =
4): the maximum deviation observed is 1.73%. This very
good performance of DFT for the average entanglement also

Fig. 3 Mean percentage
deviation of the local densities,
Eq. 9, as a function of the chain
length for a homogeneous
system at a n = 0.2, b n = 0.6,
and c n = 1 for several values of
U

123

Journal of Molecular Modeling (2024) 30:268268 Page 4 of 11



Fig. 4 Density profile for the
homogeneous system with
L = 60 sites, for several
interactions U , and for distinct
average filling factors: a
n = 0.2, b n = 0.6, and c n = 1

comes from error cancellations: the von Neumann entropy
is a density functional [29, 30]; thus, it reflects the DFT dif-
ficulty of reproducing the Friedel oscillations by under and
overestimating the single-site entanglement along the chain,
hence leading to a good average. As S̄ has been widely used
to detect and characterize quantum phase transitions [18, 31,
39–45], our results then show that DFT represents a reliable

and powerful method to be used in Hubbard chains, as we
explore below in inhomogeneous chains.

DFT x DMRG: superlattices

We focus on the performance of DFT calculations for iden-
tifying the Mott metal-insulator transition in superlattices

Fig. 5 Average entanglement S̄
as a function of the chain length
of homogeneous systems for
several interaction regimes and
different densities: n = 0.2 a,
n = 0.6 b, and n = 1 c
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Fig. 6 DMRG-DFT deviation
for the ground-state energy of
the superlattice 2 : 7 with
L = 90 sites as a function of
interaction U , for several
periodic potential strengths: a
V = 0, b V = −2, c V = −4,
and d V = −10

and harmonically confined chains. Starting with the super-
lattices (with unit cell SL 2 : 7), Fig. 6 shows that DFT is
considerably precise in reproducing the ground-state energy:
deviations increase in general by increasing the interactionU
and the superlattice potential V , but are smaller than ∼ 3%
for all the regimes of parameters considered.

Accordingly, Fig. 7 reveals that also the density profile
in the superlattice is reasonably well reproduced by DFT.
For non-interacting systems, Fig. 7a, the density concentrates
within the impurity sites, since the modulated potential is
attractive, V < 0. For U = 0 and low average densities
(n = 0.2 and n = 0.4), the particles essentially reside in the
impurity sites, emptying the non-impurity ones. For higher

Fig. 7 Density profile for a
superlattice 2 : 7 with V = −4,
L = 90 sites, for several
densities and distinct
interactions: a U = 0, b U = 2,
c U = 4, and d U = 10
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average densities (n = 0.8 and n = 1), the impurity sites
reach maximum occupation (ni = 2); thus, the remaining
particles are distributed also in the non-impurity sites.

When turning the interaction on, Fig. 7b–d, we find that
the non-impurity sites start to be filled with particles even for
the low density regime n = 0.4, once now the competition
between V < 0 and U > 0 disfavors the maximum occu-
pation at the impurity sites. Thus, depending on the three
parameters V , n,U , the interaction can be strong enough to
avoid ni > 1 in the impurity sites, thus characterizing a local
Mott insulator phase [21, 22]. This is seen already forU ≤ 2
at n = 0.2, while at n = 0.4, this appears for U ≤ 4 and at
n = 0.8 and n = 1 only for U ≤ 10, for this fixed V = −4.

We then analyze the average single-site entanglement as
a function of U in order to find signatures of the Mott
metal-insulator transition within the superlattice. As shown
in Fig. 8, our results reveal that entanglement becomes non-
monotonic with the density (crossing between distinct n
curves)whenever the entire chain or a portion of it reaches the
Mott-insulator regime: at V = 0 (homogeneous finite chain),
it happens only for the n = 1 curve, once this is the only
regime for the Mott physics in the absence of the superlattice
potential. In contrast, depending on V , the non-monotonicity
with n is observed also for n < 1, thus detecting the Mott
insulator in a portion (the impurity sites) of the chain, as con-
firmed by Fig. 7. Consistently, we also see that the interaction
for which the curves cross increases by increasing V , sup-
porting the interpretation that themechanismbehind theMott
insulator phase in superlattices is the competition betweenU
and V . Remarkably, DFT properly captures all this physics.

DFT x DMRG: harmonically confined systems

In Fig. 9, we present the DFT performance in recovering
the DMRG ground-state energies for harmonically confined
chains (Vi = k(i−L/2)2) as a function of the potential curva-
ture k. Although the deviations increase with the interaction,
we find that for typical strongly correlated systems (U = 4),
DFT energies deviate from DMRG by at most 2.5%, what
can still be considered as a fair accuracy.

For the density profile, we find also a good agreement
between the techniques, as can be seen in Fig. 10a. We
also observe that the effective chain − defined by the cen-
tral region where the particles are effectively distributed
(ni > 0.001) − decreases by increasing k, while the densi-
ties at the center of the chain increase. This occurs due to the
strong potential at the wings. The density profile also reflects
the metallic and insulating phases: (i) a metallic phase with
ni < 1 at the entire chain; (ii) the Mott-like insulating phase,
where the density at the center is kept fixed at ni = 1 and
a stronger V potential is required to produce ni > 1; (iii)
another metallic phase with ni > 1 at the center of the chain;
and (iv) a band-insulator phase, with maximum occupation
ni = 2 at the core.

As shown inFig. 10b, the average single-site entanglement
is very well reproduced by DFT calculations in harmonically
confined chains. Notice that at S̄, the signatures of the distinct
phases are very subtle; therefore, in Ref. [46], the entan-
glement derivative was used to clearly identify the phases
induced by the harmonic confinement. But numerical deriva-
tives require a very large number of data to be precise; thus,

Fig. 8 Average entanglement
for a superlattice 2 : 7 with
L = 90 sites as a function of the
on-site interaction, for several
densities and distinct periodic
potential strengths: a V = 0, b
V = −2, c V = −4, and d
V = −10
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Fig. 9 DMRG-DFT deviation
for the ground-state energy as a
function of the confinement
curvature k for several densities
and interactions: a U = 0, b
U = 2, c U = 4, and d U = 8.
The inset shows the energy
deviation at n = 0.5 for larger
confinement strengths, as
explored in Fig. 10

we here propose an alternative analysis to the transitions,
which consists of considering the average single-site entan-
glement only at the effective chain, S̄e f f ≡ S̄(ni > 0.001),
i.e., for the sites that are effectively occupied. Figure 10b
reveals that S̄e f f signs better the distinct phases: it decreases
monotonically with k in the metallic phase (i); has a local
minimum at the Mott-like transition (ii); a local maximum at
the metallic regime (iii); and a monotonic decreasing for the
band-insulator phase (iv).

Finally in Table 1, we present the deviations for a few
representative cases of each of the systems, homogeneous,
superlattices, and harmonic confinement, for strongly corre-
lated systems with U = 8, which represents a challenge to
DFT calculations. In general, one finds that the deviations
for the density profile are greater than the deviations for the
ground-state energy and entanglement for all the systems.
We attribute this to error cancellations related to the under
and overestimate of DFT for the density profile, while Eq. 9

Fig. 10 a Density profile for confined lattices, with L = 100 sites, for
several confinement curvatures k. b Entanglement as a function of the
confinement curvature k: averaging over the entire chain, S̄, and averag-
ingonly at the effective chain (central siteswith occupationni > 0.001),

S̄e f f .While in both casesDFT reproduces theDMRGdata, one sees that
S̄e f f is more sensitive to the transitions between the phases: (i) metallic,
(ii) Mott-like insulating, (iii) metallic at the center of the chain, and (iv)
band insulating at the core
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Table 1 Deviations for the
ground-state energy (Eq. 7), the
average entanglement (Eq. 8),
and the density profile (Eq. 9),
for homogeneous chains
(U = 8, n = 0.6) of distinct
sizes L , superlattices (U = 8,
n = 0.4, V = −2, L = 36) with
different structures SL, and
harmonic confinement (U = 8,
n = 0.5, L = 100) for distinct
curvatures k

GS energy Density profile Entanglement
D%(e0) D̄%(n) D%(S̄)

Homogeneous

L = 10 2.30 3.09 0.43

L = 50 0.44 0.88 0.14

L = 100 0.21 0.28 0.11

Superlattices

SL 2 : 7 1.14 12.05 2.56

SL 3 : 6 1.85 9.60 1.35

SL 4 : 5 1.51 17.19 2.92

Harmonic Confinement

Metal (i), k = 0.002 0.01 2.77 0.16

Mott-like insulating (ii), k = 0.005 0.12 3.20 0.02

Metal (iii), k = 0.015 0.01 3.15 0.20

band insulator (iv), k = 0.035 0.04 13.20 6.62

will always sum up, thus producing a higher average devia-
tion; Eqs. 7 and 8will have smaller and greater contributions,
thus on average producing a small deviation. While for the
homogeneous systems, there is a clear hierarchy between
the deviations, D%(S̄) < D%(e0) < D̄%(n), and all the
deviations decrease with L; for superlattices and harmonic
confinement, the relation among deviations is less trivial and
strongly dependent on the SL structure and the confinement
strength considered. For the superlattices, in general, DFT
calculations become less precise by increasing the number
of impurities in the unit cell (3 : 6 and 4 : 5). For the con-
fined chains, DFT performs better for the metallic phases (i)
(k = 0.002) and (iii) (k = 0.015). The highest deviations
appear for the band-insulator phase (iv) (k = 0.035). At this
(iv) phase, the density profile shows essentially only three
values, ni = 0 at the chain borders, ni = 1 at the wings
of the potential, and ni = 2 at the core (see Fig. 10a), thus
any imprecision on the DFT calculations has a bigger impact
than in a metallic phase whose density profile is more homo-
geneously distributed.

Conclusions

Wehave performed a comparative analysis betweenDFT and
DMRG calculations, focusing on their efficacy in describing
the electronic properties and quantum phase transitions of
one-dimensional homogeneous, superlattices, and harmoni-
cally confined nanostructures.

For homogeneous finite chains, DFT exhibited signif-
icant deviations from the DMRG results for chain sizes
L � 60, especially for the ground-state energy near the half-
filling case: ∼ 16% for small chains L = 10, although it
is less than 1% for L ∼ 100. This arises from additional

electronic correlations due to Friedel oscillations, which are
not very well described by the local density approxima-
tion within DFT. However, far from the half-filling case,
around 20% band filling, the DFT exhibited the best per-
formance, presenting a maximum deviation of less than 2%
for the ground-state energy for any interaction and chain
size. Also, there is a clear hierarchy between the deviations,
D%(S̄) < D%(e0) < D̄%(n).

For superlattice and confined systems, the relation among
the deviations is less trivial − strongly dependent on the
superlattice structure and the confinement strength−, and the
inaccuracy of the DFT calculation is amplified, what is justi-
fied by the heterogeneous nature of the spatial distribution of
electronic occupancy, representing a further challenge to the
LDA approach. For the superlattices, in general, increasing
the number of impurities in the unit cell represents less pre-
cision of the DFT calculations. For the confined chains, DFT
performs better for the metallic phases, while the highest
deviations appear for the Mott and band-insulator phases.

Although the DMRG offers an accurate description of the
wave function of 1D systems, it faces computational con-
straints that can hinder its scalability to larger nanostructures,
while the DFT approach is practicable in arbitrary large
systems. Furthermore, DFT results are generally obtained
in shorter computational simulation times, typically on the
order of minutes, while accurate convergence of the DMRG
calculation can reach hours.

This comparative study highlights the importance of
leveraging strategies that combine the capabilities of DFT
and DMRG to predict electronic properties within one-
dimensional nanostructures. Future research efforts can focus
on developing hybrid methodologies that synergistically
employ the advantages of these approaches, especially in
describing the correlation potential [47, 48], thus offering a
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more robust and accurate framework formodeling and under-
standing nanoscale systems.
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