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Abstract
Context Protein–protein interaction interfaces play a major role in cell signaling pathways. There is always a great interest 
in developing protein–protein interaction (PPI) inhibitors of kinases, as they are challenging due to their hydrophobicity, flat 
surface, specificity, potency, etc. 3 Phosphoinositide-dependent kinase-1 (PDK1), which is involved in the PI3K/PDK1/AKT 
pathway, is a cancer target that has gained insight for the past two decades. PDK1 possesses a protein interaction fragment 
(PIF) pocket, which is a well-known PPI that targets allosteric modulators. This work focusses on energy-based pharmaco-
phore model development which on virtual screening could yield novel scaffolds towards the drug designing objective for 
the kind of PDK1 modulators. A novel pyrazolo pyridine molecule was identified as an allosteric modulator that binds to 
the PPI site. The metadynamics simulations with free energy profiles further revealed the conformational allosteric changes 
stimulated on the protein structure upon ligand binding. The cytotoxic activity  (IC50-20 μM) of the identified compound 
against five different cancer cell lines and cell cycle analysis supported the anticancer activity of the identified compound.
Methods All the computational works were carried out by the most commonly used Schrodinger Suite software. The phar-
macophore was validated by Receiver Operation Characteristics (ROC) and screening against allosteric Enamine database 
library. The Optimized Potential Liquid Simulations (OPLS-2005) was used to minimize the structures for molecular dock-
ing calculations, and inbuilt scoring method of ranking the compounds based on docking score and Glide energy was used. 
Molecular dynamics simulations were conducted by Desmond implemented in Maestro. The hit compound was purchased 
from Enamine and tested against different cancer cell lines by MTT assay, apoptosis by western blotting technique, and by 
flow cytometry analysis.

Keywords Allosteric modulator · Hotspot-based pharmacophore · Virtual screen · Phosphoinositide-dependent kinase · 
Metadynamics simulations

Introduction

Protein–protein interaction (PPI)-based drug discovery is 
currently emerging with remarkable advances over the past 
two decades. PPIs play a fundamental role in all life events 
and cellular activities, regulating apoptosis and mediating 
various biochemical reactions, such as signal transduction 
and metabolism. It is estimated that there are approximately 
650,000 types of specific protein–protein interactions in a 

human cell [1]. Due to biophysical and biochemical limita-
tions in cancer cells, targeting PPIs with small molecules or 
peptides remains a difficult task for academia as well as the 
pharmaceutical industry. Usually, the PPI site in proteins is 
wide and flat, more hydrophobic, large in surface area, chal-
lenging to target with small molecules, and not always drug-
gable. However, the idea of “hotspots”, the residues lining 
the PPI site that contribute energetically high in interacting 
with other proteins, changes the situation to an alternative 
way of developing the allosteric modulators of PPI [2–5]. 
Either the activator that binds at the PPI site that stimulates 
the intrinsic activity of the enzyme but disrupts the interac-
tion with other proteins or the inhibitor that binds with the 
PPI site and allosterically affects the enzyme’s activity leads 
to therapeutic development strategies.
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Several approaches have been used to develop PPI mod-
ulators in recent years, such as pharmacophore modeling 
[6], fragment-based drug design [7], NMR-based fragment 
screening, molecular dynamics simulations, and competi-
tive binding assays. Enasidenib was first developed in silico 
as a selective allosteric inhibitor of the tumor target, IDH2. 
Nutlins are the first class of MDM2 inhibitors mimicking the 
p53 peptide identified by SPR-based competitive assays [8]. 
Venetoclax [9] is considered the first FDA-approved BH3-
mimetic drug to interfere with PPIs, identified by fragment-
based drug discovery.

3-Phosphoinositide-dependent kinase-1 (PDK1) was cho-
sen for the present work because it is a well-studied enzyme 
and a well-known cancer target. The constitutive activation 
of the enzyme due to oncogenic mutation initiates tumori-
genesis [10–12]. The inhibitor design pointing at the ATP 
binding site led to off-target effects due to the presence of 
conserved residues at the active site of similar kinases. The 
alternative strategy is to target other sites of PDK1, as it 
has three different binding sites. It has been biochemically 
proven that it interacts with four substrate proteins, namely, 
S6K1, SGK1, PKC-ζ, and PKC-related kinase-2 (PRK2), 
through the PIF pocket [13, 14]. The hydrophobic motif 
present in the small lobe of PDK-1 lined by the residues 
Lys115, Ile118, and Ile119 on the αB-helix, Val124, and 
Val127 on the αC-helix and Leu155 on β-sheet 5 forms a 
5 Å deep pocket known as the PIF pocket, which acts as 
the docking site for the substrates. Among the mentioned 
residues, Leu155 is the key residue that inhibits the PDK1 
interaction with other proteins. The PIF pocket residues 
Lys115, ILE118, Ile119, Val124, and Val127 upon mutation 
reduce the tenfold affinity of the PDK1 interaction. PDK1 
was also found to recruit, phosphorylate, and activate 23 
other AGC kinases, including AKT, S6K, SGK, RSK, and 
PKC isoforms, which regulate cell survival, proliferation, 
and metabolism [15, 16]. This type of PDK1 binding with 
physiological substrate proteins can be recognized as pro-
tein–protein interactions (PPIs), and the interface is a known 
PPI site [17]. This PDK1 protein–protein interface possesses 
a secondary structure epitope and has proven to be druggable 
[4]. The PPI interaction in the case of PDK1 is a phosphoryl-
ation-dependent mechanism, as it has a phosphate binding 
site that activates PDK1 binding only after phosphorylation 
of the substrates and allosterically activates PDK1 kinase 
activity [17]. These types of interactions involve large con-
formational changes enabling the inactive-active conforma-
tional transition of PDK1 through the regulatory site.

Thus, targeting this PPI site may endow modulators that 
either activate or inhibit the regulation of PDK1 function. 
One of the strategies for inhibiting the recruitment of such 
substrates by PDK1 is to develop small compounds that bind 
the PPI site, thereby modulating the binding [16, 18–20]. 
Small molecule activators, when bound to PDK1, disrupt 

PDK1-substrate binding and allosterically regulate the cata-
lytic activity of the enzyme. A small molecule occupying 
a limited space in the HM/PIF pocket defined by Ile119, 
Leu155, Val127, and Arg131 was able to activate PDK1 
[18]. The hydrogen bonding interactions of small com-
pounds with residues Arg131 and Gln150 established by 
the amide group, Tyr126 movement away from the active 
site, and the disordered αB and αC helices gave rise to an 
allosteric inhibitor [21]. Hence, there is always significant 
interest in identifying allosteric modulators [4, 22–26]. It is 
also predicted that the potential for developing new types of 
kinase inhibitors is huge, and it will continue to be a major 
growth area over the next 20 years [27].

In this study, screening of a small library of 4800 allos-
teric kinase inhibitors yielded a pyrazole pyridine deriva-
tive with structural and functional impacts on PDK1. The 
pharmacophore hypothesis developed based on the energy 
of the hotspots is screened against a small library of allos-
teric compounds, and the results are discussed. The binding 
nature of the identified hit molecule was further validated 
using molecular docking and free energy analysis by meta-
dynamics simulations whose main purpose was to explore 
the nature of allosteric interactions required for diagnostic 
agents to bind within the PDK1 protein–protein interface. 
The biological activity of the identified compound with 
five different cancer cell lines and cell cycle analysis is also 
presented.

Experimental

Structure‑based design

The three-dimensional coordinates of 3 phosphoinositide-
dependent kinase-1 bound with PIFtide (a peptide sub-
strate) were downloaded from the Protein Data Bank (PDB 
ID: 4RRV). The protein was prepared with the Protein 
preparation module in Schrodinger. The missing residues 
in the crystallographic structure were built with Prime in 
Maestro, and the hydrogens were added. The structure was 
optimized by the OPLS2005 forcefield, and the structure 
was refined for added hydrogens. The pharmacophore 
model was developed by generating pharmacophores in 
the Phase module [28] in Schrodinger Suite 2017 [29]. 
The developed model was validated using decoys gener-
ated from the Schrodinger decoys database. The potential 
PIF pocket binders cocrystallized with PDK1 and whose 
three-dimensional structures were deposited in PDB were 
considered actives. The pharmacophore hypothesis was 
validated with the receiver operation characteristic curve. 
The validated pharmacophore was then screened against 
the Enamine allosteric compound library by phase ligand 
screening. The resulting hits were subjected to virtual 
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Fig. 1  a. Seven featured 
pharmacophores (NDDDARR) 
created from hotspots with three 
Hbond donors (blue sphere with 
arrows), two aromatic rings, one 
Hbond acceptor (peach sphere 
with arrow), and a negatively 
charged interaction (orange 
sphere). b. Excluded volumes 
with blue transparent spheres 
based on 4RRV. (The excluded 
volumes on the second cavity 
of the ATP site are omitted for 
clarity)

Fig. 2  The alignment of 
pharmacophore model features 
with PIFtide cocrystallized 
PDK1 (PDB ID: 4RRV), where 
PIFtide is shown as a red ribbon 
with their side chains repre-
sented as gray sticks

αB Helix 

αC Helix 
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screening workflow algorithms implemented in the Maes-
tro interface. The refined hit receptor–ligand complex was 
chosen for metadynamics simulations

Metadynamics simulations

The docked pose will not always result in the exact interac-
tions between receptors and ligands, and to mimic the pro-
tein–ligand binding event in an actual solvated environment 
and to trace its conformational transition pathway, metady-
namics simulations were carried out. The Desmond inter-
face developed by D.E. Shaw Research group [30] imple-
mented in Maestro on the Ubuntu Linux platform in the 
HPZ238 workstation served this purpose. The best pose of 
the docked PDK1- Z1147972667 was solvated with a TIP4P 
water model in an orthorhombic box and neutralized by 0.15 
M NaCl. The prepared complex was minimized by the Opti-
mized Potential for Liquid Simulations (OPLS2005) force-
field. The two collective variables CV1 (αB helix length) 
and CV2, hinge distance (distance between Gly rich loop 
and ASP 205). Metadynamic parameters such as height 
(0.03 kcal/mol), interval (0.09 ps), temperature (300 K), and 
pressure (1 bar) were used as default, and the model system 
was relaxed before simulation. The production run of the 
simulation was carried out for 200 ns of the ensemble class 
as the NPT, and the trajectory was recorded at every 200 ps 
interval; therefore, 1000 frames of trajectory were collected. 
The RMSD and RMSF were determined for each frame with 
respect to frame 1 throughout 200 ns of simulation time. The 
number of hydrogen bonds and other nonbonding interac-
tions throughout the simulation time was calculated. The 
free energy surface diagram was obtained by the metady-
namics analysis module in Desmond.

MTT assay

The hit compound was purchased from Enamine (Product 
No: Z1147972667, N-{5-[(3-fluorophenyl)methyl]-1,3,4-
thiadiazol-2-yl}-3,6-dimethyl-1H-pyrazolo[3,4-b]pyridine-
4-carboxamide, 90%) and used for cytotoxic assays. The 
compound was dissolved in DMSO to prepare stock solution 
and diluted with PBS at pH 7.2 for working solution. The 
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay was carried out against PC-3, LNCaP, and 
DU145 prostate cancer cells as well as Hep3B, SiHa, and 
HeLa cancerous cell lines. The cells were obtained from the 
American Type Culture Collection and cultured in DMEM 
(Dulbecco’s Modified Eagle’s Medium) supplemented with 
10% FBS and 1% antibiotic (Welgene, South Korea). The 
cells were seeded onto 96-well plates, and the compound 
was added at different dilutions and incubated for 24 h.

Cell cycle analysis

PC3 and LNCaP cells (1 ×  106cells/ml) were treated with 
0,40, and 80 μM concentrations of the hit compound and 
were subjected to cell cycle analysis using FACS Calibur 
(Becton Dickinson, Franklin Lakes, NJ) using CellQuest 
Software. The procedures were followed as reported [31]. 
All statistical analyses were carried out by Sigmaplot 12.0, 
and the data are expressed as the means ± SDs.

Results and discussion

Hotspot‑based pharmacophore generation

The three-dimensional coordinates of 3 phosphoinositide-
dependent kinase-1 bound with PIFtide (a peptide substrate) 
were downloaded from the Protein Data Bank (PDB ID: 
4RRV). The protein was prepared with the Protein prepa-
ration module in Schrodinger. The missing residues in the 
crystallographic structure were built with Prime in Maestro, 
and the hydrogens were added. The structure was optimized 
by the OPLS2005 forcefield, and the structure was refined 
for added hydrogens. The pharmacophore model was cre-
ated using the hotspot residues of PDK1 that are involved 
in the interactions with the PIFtide substrate of PDK1, 
namely, Lys76, Val127, Arg131, Tyr146, Thr148, Gln150, 
Phe157, and Leu155. The resulted seven-feature model 
(NDDDARR) with excluded volumes shown in Fig. 1a has 
two aromatic rings represented by letter R, three H bond 
donors denoted by letter D, one H bond acceptor with letter 
A, and a negative ionizable bond represented by the letter 
N. Among the excluded volumes, two cavities (ATP site and 

Table 1  The hit molecules from the virtual screen workflow with 
their critical parameters

a In kcal/mole

S. No Catalog ID ClogP Number 
of sites
matched

Phase
screen score

Glide
gscorea

1 Z1147972667 3.117 4 0.375 −4.519
2 Z1185766474 2.991 4 0.406 −4.886
3 Z809380814 3.309 4 0.467 −4.835
4 Z340588958 1.806 4 0.479 −4.883
5 Z1603709568 2.52 5 0.382 −4.694
6 Z220356320 2.382 4 0.459 −4.736
7 Z1834079437 3.043 4 0.437 −4.645
8 Z88897443 2.509 4 0.376 −4.556
9 Z52997366 1.552 5 0.432 −4.53
10 Z56926818 2.415 4 0.396 −4.54
11 Z1355941678 2.552 4 0.428 −4.915
12 Z1673510588 1.876 4 0.417 −4.874



Journal of Molecular Modeling (2024) 30:51 Page 5 of 12 51

PIF pocket) were observed, and the excluded volumes gen-
erated along with the pharmacophore that corresponds to 
the protein–protein interface were used for pharmacophore 
screening (Fig. 1b).

Pharmacophore model validation

The obtained pharmacophore features generated from hot-
spot residues were overlaid with the PPI region of PDK1, 
and interestingly, the aromatic ring feature was well aligned 
with the phenyl ring of Phe 17, Hbond Acceptor with the 
carbonyl backbone of Phe17, and another H-bond donor and 
negative charge with peptide bonds of ASP18 of PIFtide 
(Fig. 2). Hence, these features can serve as authentication to 
utilize them for further ligand matching. The pharmacoph-
ore generated must be evaluated to ascertain its quality. The 
pharmacophore model was validated by ligand screening 
of 84 compounds, including four actives and eighty decoys 
(Fig. S1) generated from Glide Drug-like Ligand Decoy sets. 
Interestingly, the created pharmacophore model picked up 
one active compound without any false positives, which cor-
responds to an enrichment of (1/1) ÷ (1/84) ≈83.33. The 
ROC curve obtained for the hypothesis (Fig. S2) in which 
the curve pointing on the left side of the diagonal of false 
positives proved the hypothesis to be good with area under 
ROC curve score of 0.82.

Dataset generation and pharmacophore screening

The developed model was then utilized to screen the enam-
ine allosteric library that contains 4800 compounds. All 
compounds were prepared using Ligprep in Maestro by 
generating conformers before screening. All seven features 
with excluded volumes were included for screening, and 
partial matches of the pharmacophoric points were allowed 
with criteria of matching at least four points without any 
constraints.

Molecular docking‑based virtual screening

The 1000 hits generated as output were used in the virtual 
screening workflow, including the high throughput virtual 
screen mode, and the top ten percent of the hits were sub-
jected to simple precision docking. The top ten percent of 
the SP results were fed to extra precision (XP) docking, and 
the hit results were obtained with 12 compounds (Table 1). 
The manual inspection of ligand interactions of all the com-
pounds inferred that compound Z1147972667, which has 
a glide gscore greater than −4.5, possesses more hydrogen 
bonds with key residues (Fig. S3). To be an allosteric modu-
lator for the PIF pocket, the compound must possess a car-
boxylate group, i.e., a negative charge, but in this case, the 
nitrogen atom in the peptide bond becomes deprotonated and 
thus provides a negative charge to the ligand molecule. Two 
salt bridges with a deprotonated nitrogen atom and Lys76 
and Arg131 and two hydrogen bonds with nitrogen atoms in 
five-membered ring systems and Tyr156 and Lys76 stabilize 

Fig. 3  a. The receptor–ligand interaction of compound Z1147972667 
with PDK1 residues. b. Ligand occupancy in the PPI docking site and 
interactions with Lys76, Arg131, and Tyr146 as dashed lines
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the molecule in the PPI region with a binding energy of 
−4.519 kcal/mol (Fig. 3).

Molecular dynamics simulations

The binding stability of the receptor–ligand complex, 
intermolecular interactions, and conformational changes 
of the structure can be derived from molecular dynamics 
simulations. Although the molecular docking results have 
given out the intermolecular interactions where the sol-
vent effect is neglected, it is more reliable to consider the 
solvent effects and the molecular motions with respect to 
temperature and pressure. Molecular dynamics simulations 
will handle those situations in the molecular environment 
to move close to reality. The receptor–ligand complex of 

PDK1- Z1147972667 was initially predefined with 9613 
TIP3P water molecules to constitute the orthorhombic sys-
tem of length 10 Å with 33581 atoms altogether; 0.15 M 
NaCl was added, and the OPLS2005 forcefield was applied 
to set up the system in which energy was minimized. After 
energy minimization, seven stages were executed to relax the 
system as per the default settings in Desmond. The relaxed 
system was submitted to 200-ns MD simulation, carried out 
under the NPT ensemble using a Nose–Hoover thermostat 
at 300 K and Martyna-Tobias-Klein barostats at 1.01325 
bar pressure [32]. A snapshot of the simulated structure was 
recorded every 200 ps, and energy was recorded every 1.2 
ps.

Thousand frames were collected over 200 ns, and the 
root mean square fluctuations, root mean square devia-
tion, protein–ligand interaction, and energy potential were 
acquired. The root mean square deviation (RMSD) measured 
the average change in displacement of a selection of atoms 
(protein/ligand) for a particular frame concerning the first 
reference frame. The RMSD evolution of the protein above 
5 Å gives us insight into the conformational change of the 
protein backbone during simulation. From Fig. 4, it can be 
noted that the RMSD increases initially up to 100 ns and 
gradually decreases and reaches below 3.2 Å at the end, 
which indicates that the protein structure is regaining its 
initial state after reaching equilibrium. These pronounced 
conformational changes might arise due to ligand binding 
and its allosteric effect on the protein structure. RMSF val-
ues characterize the local changes along the protein chain. 
The RMSF plot consists of peaks that indicate areas of the 
protein that fluctuate the most during the simulation. The αB 
helix fluctuates more, i.e., > 5 Å, and the αC helix fluctuates 
to 3 Å, which indicates that the ligand influences the motion 
of both the helices as well as the T-loop (Fig. 5).

Fig. 4  Protein and ligand RMSD plotted against the simulation time

Fig. 5  Root mean square fluc-
tuations (RMSF) of the protein 
residues during simulation 
depicting more conformational 
changes in the αB helix region
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Free energy surface analysis

Conventional molecular dynamics is not very efficient in 
analyzing complete conformational changes, and hence, 
few enhanced sampling methods, such as metadynam-
ics, umbrella sampling [33, 34], and multiple replicas 
in parallel tempering methods [19], are being used by 
researchers. Thus, the metadynamics simulations of PDK1- 
Z1147972667 were performed in Desmond, and the free 

energy surfaces were reconstructed using two collective 
variables (CV): CV1, αB helix end-to-end distance, and 
CV2, the distance between Gly rich loop and Asp205, which 
describes the kinase hinge motion. Three energy minima 
(−7.5 to −9.8 kcal/mol) were calculated in which one of 
the minima (Fig. 6) is well populated with closed structures 
with hallmark salt bridge between Lys111-Glu130 and hinge 
distance < 20 Å and other minima with open structures of 
hinge distance > 25 Å without the salt bridge. Additionally, 

Fig. 6  The free energy 
landscape from metadynam-
ics simulations of PDK1 with 
ligand and without ligand with 
distinct energy minima shows 
that the ligand has stabilized 
PDK1 in an open inactive form 
in its conformational transition 
pathway
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the diffusive CVs can represent the convergence and thereby 
the stability of the system. From Fig. 6, we can see the well-
diffused CVs beyond −3.6 kcal/mol, which indicates con-
vergence of the simulation.

This free energy landscape with the lowest energy of −8 
to −9.8 kcal/mol discriminates the equilibrium transition 
between the open and closed states of PDK1 upon ligand 
binding. In addition to these two minima, the third one also 
corresponds to an open structure but with a highly disturbed 
N lobe and unwind αB helix. However, in the similar meta-
dynamics simulation of PDK1 without any ligand in the 
PIF pocket (Fig. 6), the free energy mapping consists of 
only one energy minimum representing the closed active 
conformation.

Allosteric mechanism

Similar to the PIFtide interaction, the ligand interacts with 
Arg131 and Thr148, water-mediated interactions with 
Arg131, Thr146, Thr148, Glu150, and hydrophobic interac-
tions with Phe147, Phe149, Leu155, and Phe157, which are 
the key amino acid residues involved in substrate docking 
(Fig. 7). The occupancy of the ligand in the PPI site influ-
ences the movement of the αC helix as well as the hydro-
phobic interactions formed between the aromatic amino acid 
residues in the PPI site and the ligand. The ionic interactions 
formed between the negatively charged nitrogen atom of the 
ligand and Arg131 played critical roles in ligand binding, as 
observed from experiments with other allosteric modulators. 
[14, 35] The salt bridge with Arg131 implies strong bind-
ing affinity, as reported in PS210 [36]. The obtained trajec-
tory frames were clustered based on RMSD by the aver-
age hierarchical cluster linkage method, and representative 
structures from each cluster were superimposed to view the 
differences in the conformation (Fig. 8). The more deviated 

Fig. 7  Contribution of protein–ligand interactions to the binding event showing all the previously reported amino acid residues involved in bind-
ing with the ligand

Fig. 8  The superimposition of representative structures from four 
clusters indicating the upward αB helical movement and αC helix 
moving downward (indicated by blue arrows) and can be viewed 
in orange-colored conformation with the opening of the loop in the 
hinge region
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cluster representative in orange indicates the upward move-
ment of the αB helix and downward movement of the αC 
helix, which might disturb allosteric communication to the 
ATP site. Allosteric activators generally bind in the PIF 
pocket and stabilize the ATP binding site to enhance the 
catalytic activity of PDK1, and allosteric inhibitors bind-
ing to the PIF pocket cause the realignment of helices αB 
and αC in the inactive open conformation, leading to the 
inhibition of PDK1 activity. This was also supported by the 
calculated free energy landscape in which the two observed 
minima were in the open state with highly disturbed αB and 
αC helices. The upward movement of the αB helix and the 

downward shifting of the αC helix and well-populated open 
structures in two energy minima in the free energy surface 
predicted the identified hit compound to be an allosteric 
inhibitor. The detailed allosteric mechanism of disrupt-
ing PPI binding or inducing conformational changes in the 
ATP site can be further confirmed by appropriate biological 
assays. However, these computational studies have proven 
that the identified compound can very well act as an allos-
teric modulator of PDK1. These findings provide further 
evidence that the carboxylic acid moiety is not very essen-
tial for an allosteric modulator and that the negative charge 
might arise from deprotonation of any group present in the 

Fig. 9  The cytotoxicity of the 
identified compound against 
different prostrate and cervical 
cancer cells. Cell viability was 
evaluated by MTT assay. Data 
represent means ± SDs. *p 
<.05, ***p <.001
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chemical entity. This study serves as an example and can be 
implicated in future studies of PDK1 as well as other kinases 
for drug design.

Biological activity

Cervical and prostrate cells were reported to express a sig-
nificantly high amount of PDK1 (The Human Protein Atlas). 
Hence, the identified hit compound was tested against three 
standard prostate cancer cells (PC3, LNCaP, DU145) as 
well as liver (Hep3B), uterine tissue (SiHa), and HeLa cer-
vical cancer cells. The results indicated that the viability 
of LNCaP cells was more affected by the addition of the 
identified compound (Fig. 9). The significant activity of the 
compound was also found in HeLa cells in a dose-dependent 
manner. The IC50 value of the compound was found to be 
20 μM for HeLa and LNCaP cells. These results imply the 
anticancer potential of the hit compound at relatively high 
concentrations in these cell lines when compared to recently 
reported XAV939 of 10 μM [37] and other marketed drugs 
like docetaxel (9 μM) against HeLa cells [38].

Most of the compounds exert their activity by apopto-
sis through intrinsic or extrinsic pathways [39]. To confirm 
the apoptosis-inducing effects of the hit compound, the 
expression levels of apoptosis-related proteins in PC-3 cells 
and LNCaP cells were measured via western blotting after 
incubation with various doses of the compound for 24 h. 
Treatment with the compound downregulated caspase-3 
and upregulated PARP in LNCaP cells, implying caspase-
dependent apoptosis (Fig. S3a). The compound-treated PC-3 
cells were further analyzed for inhibition against cell motil-
ity-related proteins such as cadherin and vimentin with their 
antibodies by western blotting. E-cadherin was upregulated 
(Fig. S3b), and there was no change in the expression of 
other proteins.

ROS levels in PC-3 cells treated with the compound were 
also investigated and found to be increased by approximately 
20% at a compound concentration of 80 μM (Fig. S3c). PC-3 
and LNCaP prostate cancer cells were also subjected to flow 
cytometry analysis. The identified hit compound notably 
increased sub-G1 phase accumulation (Fig. S3d) in LNCaP 
cells, indicating that the cytotoxicity might occur through 
apoptosis in these cells. There was no evidence of such an 
increase in PC-3 cells (Fig. S3e). Collectively, the compound 
was found to have moderate activity at a relatively higher 
concentration in prostate cancer cells LNCaP and HeLa cer-
vical cells when compared to the available drugs. Thus, there 
is a need for further modification in the derivational substitu-
tions of the compound. Although the detailed mechanism of 
interaction of the compound with PDK1 requires additional 
mediated pathway studies, the substitutional finetuning of 
the molecule identified is planned for future work.

Conclusions

PDK1 is overexpressed and deregulated in many human 
solid tumors and not in normal tissues. The disruption of 
PDK1 interaction with downstream enzymes in the cell sign-
aling pathway constitutes a therapeutic option for cancers. 
PDK1 targeting has gained importance over the past two 
decades, and thus far, only a few allosteric modulators have 
been identified. The need for allosteric modulators of PDK1 
still exists in the drug design arena. To this end, we have 
developed an energy-based pharmacophore model based on 
the hotspot residues in the protein–protein interaction site 
of PDK1 to efficiently identify a new scaffold by screening 
a library of allosteric compounds. The model was validated 
by enrichment with actives and decoys. The virtual screen 
workflow further ended up with a new scaffold from the 
Enamine allosteric library, which is predicted to bind in the 
PPI site with strong binding affinity with salt bridges, hydro-
gen bonds, water bridges, and hydrophobic interactions with 
the key residues of PDK1. The free energy landscape from 
the metadynamics of the PDK1-ligand complex further con-
firmed the allosteric effect of the identified compound on the 
protein. The moderate cytotoxic activity at 20 μM against 
the LNCaP and PC3 cancer cell lines further supports taking 
up the identified molecule to fine-tune for becoming a drug 
candidate against PDK1.
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