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Abstract
Context  Stp1 is a new potential target closely related to the pathogenicity of Staphylococcus aureus (S. aureus). In this study, 
effective Stp1 inhibitors were screened via virtual screening and enzyme activity experiments, and the inhibition mechanism 
was analyzed using molecular dynamics simulation.
Methods  AutoDock Vina 4.0 software was used for virtual screening. The molecular structures of Stp1 and ligands were 
obtained from the RCSB Protein Data Bank and Zinc database, respectively. The molecular dynamics simulation used the 
Gromacs 4.5.5 software package with the Amberff99sb force field and TIP3P water model. AutoDock Tools was used to add 
polar hydrogen atoms to Stp1 and distribute part of the charge generated by Kollman’s combined atoms. The binding free 
energies were calculated using the Amber 10 package.
Results  The theoretical calculation results are consistent with the experimental results. We found that echinacoside (ECH) 
substantially inhibits the hydrolytic activity of Stp1. ECH competes with the substrate by binding to the active center of 
Stp1, resulting in a decrease in Stp1 activity. In addition, Met39, Gly41, Asp120, Asn162, and Ile163 were identified to play 
key roles in the binding of Stp1 to ECH. The benzene ring of ECH also plays an important role in complex binding. These 
findings provide a robust foundation for the development of innovative anti-infection drugs.

Keywords  Ser/Thr phosphatase · Molecular dynamics simulations · Echinacoside · Staphylococcus aureus · Virtual 
screening

Introduction

Staphylococcus aureus (S. aureus) is a common and oppor-
tunistic pathogenic bacterium [1] that is widely present in 
nature. The bacterium can cause infectious diseases [2], 
including pneumonia, endocarditis, and bacteremia [3], 
which can lead to death [4]. S. aureus frequently causes 
community and hospital infections [5]. The main drugs used 
to treat S. aureus infections are antibiotics [6]. A methicillin-
resistant S. aureus strain (MRSA) was first discovered in 
1961 [7]. Genomic plasticity and antibiotic abuse have led to 

increased antibiotic resistance [8]. MRSA isolates are resist-
ant to all available penicillins and other β-lactam antimicro-
bials [9]. MRSA not only expresses virulence factors [10] 
but also utilizes a complex mechanism to resist drugs [11]. 
In 2019, MRSA caused more than 100,000 deaths world-
wide in more than 200 countries and regions. Therefore, 
the development of novel anti-MRSA treatment models is 
essential.

Currently, proteins related to bacterial growth, drug resist-
ance, and virulence factors have become important targets for 
combating S. aureus [12–15]. Dalal et al. [16] screened three 
inhibitor molecules of FmtA (ofloxacin, roflumilast, and fura-
zolidone) via virtual screening. Further research revealed that 
drugs and FmtA can be stably combined, thereby enhancing 
the thermostability of this protein. Kumari et al. screened five 
inhibitors that stably bind to ribosome biogenesis GTP-binding 
(YsxC) via molecular docking [17]. The results demonstrated 
that inhibitors can be effectively screened using theoretical 
calculations. In recent years, methods that specifically block 
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bacterial pathogenicity have become a frontier hotspot in 
research against S. aureus infection. This strategy treats bac-
terial infections by reducing pathogenicity in hosts [18]. Previ-
ous research found that serine/threonine kinase/phosphatase 
(Stk1/Stp1) is involved in regulating the phosphorylation and 
dephosphorylation of Cys in MgrA and SarA [19] and plays an 
important role in the regulation of virulence [20]. Stp1 partici-
pates in many important pathways, such as bacterial cell wall 
biosynthesis, virulence factor regulation, and pathways linked 
with antibiotic sensitivity [21]. Previous studies also showed 
that after bacteria delete the Stp1 gene, their ability to produce 
hemolysin is reduced [22]. A murine infection model showed 
that a Stp1 deletion mutant reduced hepatic abscess formation 
and tissue necrosis [21], indicating that Stp1 is closely related 
to the pathogenicity of S. aureus and could offer a new target 
for drug action.

Stp1 belongs to the metal-dependent phosphatase/protein 
phosphatase 2C (PP2C) family. The structure of Stp1 is simi-
lar to those of other PP2C phosphatases [23]. Its core is a 
β-sandwich consisting of two antiparallel β sheets, which are 
flanked by a pair of antiparallel helices on either side [22]. The 
active site is located on top of the β-sandwich and contains 
four metal ions close to the catalytic site; these ions are respon-
sible for linking water molecules and assist in the catalytic 
function [23]. Knowledge on the protein structure facilitates 
further research on drug screening and binding mechanisms.

Echinacoside (ECH) is derived from the herb Echinacea 
species. Echinacea is a prominent dietary supplement used 
worldwide. Caffeic acid derivatives are bioactive compounds 
of Echinacea. Cichoric acid and ECH are important com-
ponents of caffeic acid derivatives and show major pharma-
cological properties [24]. Previous studies have shown that 
ECH exhibits a variety of biological activities, including 
antioxidative [25], antihyperglycemic [26], anti-inflamma-
tory [27], anticancer [28], and antidepressant [29] activi-
ties. However, few studies have investigated the antimicro-
bial effects of ECH. Via virtual screening, we found that 
ECH has the potential to inhibit Stp1 activity. Furthermore, 
phosphatase activity experiments revealed that ECH exhib-
its the highest inhibitory effect. Subsequently, molecular 
dynamics simulations and binding free-energy calculations 
revealed the binding mode of Stp1 and ECH, and fluores-
cence quenching experiments confirmed these results. This 
study provides new methods and ideas for the discovery of 
novel Stp1 inhibitors.

Materials and methods

Bacterial strains and materials

S. aureus strain USA300 was deposited in the laboratory. 
Escherichia coli strains DH5α and BL21 (DE3) were 

purchased from TIANGEN BIOTECH (Beijing, China) Co., 
Ltd. Echinacoside was purchased from Chengdu Herbpu-
rify (Chengdu, China) Co., Ltd. Dimethyl sulfoxide (DMSO) 
was purchased from Sigma–Aldrich (St. Louis, USA).

Plasmid construction, protein expression, 
and purification

The S. aureus USA300 genome was used as the template 
for PCR [30]. The amplified gene and pET28a vector 
were digested at 37 °C for 2 h with restriction endonu-
cleases BamHI and XhoI. These two digested fragments 
were connected with T4 ligase and named PET-28a-Stp1. 
Construction of the mutant plasmid was performed using 
a QuikChange™ site-directed mutagenesis kit [31]. After 
point mutation was performed, the plasmid was digested 
with DpnI restriction endonuclease and sequenced [32]. The 
primers used in the experiment are listed in Table 1.

The sequenced plasmid was transfected into BL21 (DE3) 
cells for expression analysis. The bacteria were cultured in 
a medium at 37 °C until the OD600 nm reached 0.5. After 
adding isopropyl β-D-thiogalactoside to promote the expres-
sion of the target protein, the bacteria were cultured at 16 
°C overnight. The bacteria were collected by centrifugation 
and subsequently sonicated. The cell lysate was centrifuged 
at 12,000 × g for 40 min, and the supernatant was loaded 
onto a Ni-NTA agarose column [33] that was previously 
equilibrated with binding buffer (20 mM Tris, pH = 8.0). 
The column was washed with washing buffer (20 mM Tris, 
10 mM imidazole, pH 8.0). After washing, the His-tagged 
protein was eluted with elution buffer (20 mM Tris, 100 mM 
imidazole, pH 8.0). The elution solution was concentrated by 
a Millipore Amicon filter to obtain Stp1 protein.

Virtual screening

AutoDock Vina 4.0 software was used for virtual screening 
by docking compound to Stp1 [34]. A total of 15,362 natural 
compounds were obtained from the Zinc database. The 2D 
structure files of small molecules were converted into 3D 
structure files that can be used in AutoDock Vina. The 3D 

Table 1   Oligonucleotide primers used in this study

The modified codons are underlined in each primer sequence

Primer name Oligonucleotide (5′–3′)

Stp1-F GAA​GGA​TCC​ATG​CTA​GAG​GCA​CAA​TTT​TTTAC​
Stp1-R TCT​CTC​GAG​TCA​TAC​TTT​ATC​ACC​TTC​AATAG​
M39A-F GTT​CTG​TGT​GAT​GGT​GCGGG​TGG​CCA​TAA​AG
M39A-R CTT​TAT​GGC​CAC​CCGCACC​ATC​ACA​CAG​AAC​
G41A-F GAT​GGT​ATG​GGT​GCCCA​TAA​AGC​AGG​
G41A-R CCT​GCT​TTA​TGG​GCAC​CCA​TAC​CAT​C
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structure of Stp1 was downloaded from the RCSB Protein 
Data Bank (protein ID:5F1M). AutoDock Tools was used 
to add polar hydrogen atoms to Stp1 and distribute part of 
the charge generated by Kollman’s combined atoms. Subse-
quently, a grid box surrounding the hydrolyzed active region 
was constructed as a ligand docking site. To improve the 
computational efficiency, the AutoDock Vina search space 
was minimized to cover the binding site with the following 
dimensions: center_x = 47.248 Å, center_y = 101.299 Å, 
and center_z = 195.568 Å; size_x = 14 Å, size_y = 40 Å, 
and size_z = 16 Å. The ligands were docked individually to 
the active region of Stp1. The Lamarckian genetic algorithm 
was used for the entire calculation process during virtual 
screening [35]. The target protein [36] was always rigid, 
and all the twisted bonds of the inhibitor could rotate freely 
[37]. A grid box was created, including metal ions at the 
active site of the Stp1 receptor, which was positioned on 
the ligand’s center of mass. After each ligand in the ligand 
library was docked to the active site of Stp1, the binding 
affinity (kcal/mol) of the ligand-Stp1 system was obtained. 
Binding affinity is an indicator used to assess the ability of 
ligands to bind receptor proteins. The values obtained for the 
binding affinity were sorted from low to high, and the top 
50 ligands were selected for structural analysis. Small mol-
ecules that are closely bound to the protein activity center 
and can establish a strong interaction are commonly selected 
for phosphatase assays.

Phosphatase assay

As described in a previous study [19], the drug was detected 
using a phosphatase activity assay. The purified Stp1 was 
preincubated in a 96-well plate with different concentra-
tions of drug in buffer at 25 °C for 10 min. p-Nitrophenyl 
phosphate (PNPP) was then added to the mixture at a final 
concentration of 0.8 mM. The samples were incubated for 
20 min at 25 °C. The total volume of the mixture was 200 
μL. After the reaction was complete, the absorbance was 
measured at 405 nm using a spectrophotometer. The group 
containing PNPP and the drug served as the negative con-
trol. A group without drug addition was used as a positive 
control [30]. The absorbance was measured three times at 
492 nm after NaOH was added to determine the point at 
which the reaction was neutralized and completed. Enzyme 
activity = (A−A0)/(A100−A0) × 100%, where A represents the 
absorbance of inhibitor groups and A0 is the negative control 
measurement. A100 was used as a positive control.

Molecular dynamics simulation

The Gromacs 4.5.5 software package with the Amberff99sb 
force field and TIP3P water model was used for the molec-
ular dynamics simulation [38]. The Stp1 structure file 

contained Mn2+ coordinates. Given that the Amberff99sb 
force field did not contain the Mn2+ force field, the param-
eters of Mn2+ were added to some files (ions.itp, ffnon-
bonded.itp, and atomtypes.atp) to establish the force field 
[39]. The initial phase of the Stp1-inhibitor system involved 
energy relaxation. In this phase, 2000 steps were maximum 
descending energy minimizations, followed by 2000 steps of 
conjugate gradient energy minimizations. Subsequently, the 
temperature and pressure of the system were controlled by 
200 ps and 500 ps molecular dynamic runs, while position 
restriction was applied to the proteins and ligands to allow 
relaxation of the solvent molecules. Next, a 200 ns MD was 
run with no position restriction on the solute. The trajectory 
equilibration was reflected by the balance of various quanti-
ties, such as root mean square deviation (RMSD) relative to 
the initial structure, internal protein energy, and fluctuations 
calculated at different time intervals. After a 200 ns simula-
tion, the binding energy of the protein and ligand was ana-
lyzed using the molecular mechanics/Poisson–Boltzmann 
surface area (MM/PBSA) method [40]. We evenly selected 
a total of 100 snapshots from 10 ns on the equilibration MD 
trajectory at intervals of 100 ps. A detailed description of 
this method is provided in the Supplementary Materials.

Fluorescence quenching

The binding constants (KA) of the ligand to the binding site 
of the wild-type and mutant Stp1 were calculated by fluores-
cence quenching. Stp1 protein solution (3 mL) and inhibitors 
were added to a 1 cm quartz cuvette, mixed, and incubated 
for 10 min. The fluorescence spectra of the mixed solutions 
were obtained using a fluorescence spectrophotometer. The 
excitation and emission slits were 5.0 nm, and the excitation 
wavelength was 280 nm. The calculation expression is r/
Df = n KA − r KA [41], where r is the amount of ligand per 
mol of protein-bound material (r ≈ ΔF/F0), Df is the free 
concentration of quercetin, and n refers to the quantity of 
binding sites.

Bioinformatics prediction

The SwissADME program (http://​www.​swiss​adme.​ch) 
from the Swiss Institute of Bioinformatics can predict the 
absorption, distribution, metabolism, excretion (ADME), 
and pharmacokinetic properties of drugs [42]. Accessing 
http://​www.​swiss​adme.​ch in a web browser directly displays 
the submission page of SwissADME. The structure of the 
ligand was entered, and the analysis result was obtained. The 
software reveals molecular properties from physicochemi-
cal properties, pharmacokinetics, and medicinal chemistry 
friendliness.

http://www.swissadme.ch
http://www.swissadme.ch
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Results and discussion

ECH inhibits Stp1 activity

Using virtual screening, we found that ECH (Fig. 1a) has 
the potential to inhibit Stp1. Therefore, phosphatase activ-
ity was measured using Stp1 at different drug concentra-
tions. The results showed that ECH strongly inhibited Stp1 
activity (Fig. 1b). As the drug concentration increased, the 
activity of Stp1 gradually decreased. At an ECH concentra-
tion of 2 μg/mL, the inhibition rate was 16.00%. When the 
ECH concentration was 16 μg/mL, the degree of inhibition 
exceeded 50%.

To further study the mechanism by which ECH inhibits 
Stp1, enzyme kinetic assays were carried out. As shown in 
Fig. 2, the KM values in the reaction changed. Therefore, we 
conclude that ECH is a competitive inhibitor of Stp1.

Virtual screening analysis

To screen the potential inhibitors of Stp1, Stp1 and the 
ligands were docked to obtain the binding affinity [43]. 
According to previous reports, verbascoside (VBS) exerts a 
significant inhibitory effect on Stp1 by binding to the active 
site of Stp1 [30]. Molecular docking experiments found that 
the binding affinity of Stp1-VBS was 7.4 kcal/mol, which 
was used as the cutoff value to select the active compound. 
According to the binding affinity, the top 50 ligands were 
selected. As previously mentioned, small molecules that 
were closely bound to the protein activity center and could 
establish a strong interaction were selected by the PyMOL 
and LigPlus software [33]. Therefore, these candidate com-
pounds showed the potential to become an inhibitor of Stp1 
[13]. Subsequently, a total of nine molecules were selected 
as candidate compounds, and enzyme activity experiments 

were conducted to verify their inhibitory activity (Table 2). 
The docking results are shown in Fig. 3. Enzyme activity 
experiments showed that ECH exhibits a significant inhibi-
tory effect on Stp1.

Determination of the binding mode of Stp1 
with ECH

In this study, the potential binding mode of the Stp1-ECH 
complex was determined using molecular docking, molecu-
lar dynamics simulations, and binding free energy calcu-
lations. According to the results of the virtual screening 
and activity experiment, ECH can bind to the active site of 
Stp1 and effectively inhibit the hydrolytic activity of Stp1. 
A three-dimensional structure of the Stp1-ECH complex 
obtained by molecular docking was used as the initial coor-
dinates for the molecular dynamics simulations. Based on 
the molecular docking results, a 200 ns molecular dynamics 

Fig. 1   Inhibition of Stp1 by ECH. a Structure of ECH. b Inhibitory effect of ECH on Stp1

Fig. 2   Lineweaver−Burk plot of Stp1 activity against different con-
centrations of ECH indicates that ECH is a competitive inhibitor
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simulation of the Stp1-ECH complex was conducted to 
explore the underlying mechanism. The RMSD is an impor-
tant indicator for analyzing the structural stability of com-
plexes [16]. To investigate the stability of the complex sys-
tem during the simulation [12], the RMSD values of the 
complex and free proteins during a 200 ns simulation were 
calculated (Fig. 4a). The RMSD values of the Stp1-ECH 
complex (~ 0.28 nm) and ECH (~ 0.12 nm) were smaller 
than that of free Stp1. Therefore, the combination of Stp1 
and ECH was more stable. After 25 ns, the RMSD value 
of the system stabilized. Therefore, the complex system 
reached equilibrium during the 180–200 ns simulation, and 
the trajectory of the molecular dynamics simulation could 
be used for subsequent analysis. After a 200 ns molecular 
dynamics simulation, the stable binding mode of the ECH 
and Stp1 complex system was obtained. ECH bonded to the 
active region of Stp1 via hydrogen bonding and hydrophobic 
interactions (Fig. 4b). ECH, especially the benzene ring, was 
tightly bound by Met39, Gly41, Asp120, Asn162, and Ile163 
of Stp1, as shown in Fig. 4b. The side chains of Met39 and 
the carbonyl group of Asn162 tightly bonded the benzene 
ring of ECH at the binding site. The carboxyl group of Asp 
120 strongly interacted with the phenolic hydroxyl group of 
ECH. As revealed by PyMOL software, compared to other 
inactive site amino acids, Gly41 and Ile163 were closer to 
ECH; thus, these two amino acids and the drug may interact.

Table 3 shows that the Stp1-VBS complex exhibited 
negative van der Waals (~ −26.32 kcal/mol), electrostatic 
(~ −23.75 kcal/mol), and SASA (~ −3.75 kcal/mol) ener-
gies, resulting in a total binding energy of −16.63 kcal/mol. 
Compared with Stp1-VBS, the Stp1-ECH complex exhibits 
a lower binding energy. Therefore, the combination of Stp1 
and ECH is more stable.

The root mean square fluctuation (RMSF) reflects the 
fluctuation in each residue and reveals the flexibility of 
the system [44]. The average RMSF values of Stp1-ECH 
and free Stp1 were 0.10 and 0.13 nm, respectively. Com-
pared with the free protein, the binding site residues in the 

complex system exhibited a smaller RMSF value, indicating 
that the residues of the binding site in the complex system 
were less flexible (Fig. S1). These residues became more 
rigid due to binding with ECH. The radius of gyration (Rg) 
was used to characterize the compactness of the complex. 
As seen in Fig. S2, the Rg of ECH-Stp1 is lower than that of 
free Stp1, which is consistent with previous results.

Confirmation of the binding mode of ECH to Stp1

To further analyze the interaction between ECH and Stp1, 
we applied the MM/PBSA method to calculate the electro-
static (ΔEele), van der Waals (ΔEvdw), solvation (ΔEsol), and 
total contribution (ΔEtotal) of the residues to the binding free 
energy. As shown in Fig. 5, most of the decomposed energy 
interactions originated from van der Waals forces, which 
resulted from the strong hydrophobic interactions between 
the protein and ligand.

As shown in Fig. 5, Ile163 exhibited significant van der 
Waals contributions (~ −2.43 kcal/mol), resulting in bind-
ing energy contributions of −2.76 kcal/mol. This indicates 
that Ile163 and ECH exhibit a strong hydrophobic interac-
tion. In addition, Met39 and Gly41 exhibited electrostatic 
(~ −0.63 and −0.07 kcal/mol), van der Waals (~ −1.78 and 
−0.83 kcal/mol), and solvation (~ −0.12 and −0.01 kcal/
mol) force contributions, resulting in strong binding free 
energy contributions (−2.53 and −0.91 kcal/mol). This was 
primarily attributed to the strong hydrophobic interaction 
between Met39 and Gly41 with the benzene ring of ECH. 
Although the van der Waals and solvation forces were unfa-
vorable, Asp120 provided a strong electrostatic contribu-
tion, resulting in a ΔEtotal value of −1.19 kcal/mol. This 
indicates that hydrogen bonds could form between Asp120 
and ECH. In addition, Asn162 provided significant van der 
Waals and electrostatic contributions, resulting in binding 
energy contributions of −1.38 kcal/mol. Therefore, hydro-
phobic interactions occurred between Asn162 with ECH 
due to strong hydrogen bonding between Asn162 and ECH. 

Table 2   Binding affinity and 
inhibition ratio of 9 candidate 
compounds

a The drug has no inhibitory activity at a concentration of 100 μg/mL

No. Ligands Name Binding affinity 
(kcal/mol)

IC50 (μg/mL)

1 ZINC4273446 Hawthorn acid −9.4 >64
2 ZINC4175638 Quercetin −9.1 N/Aa

3 ZINC338122 Jatrorrhizin −8.7 N/A
4 ZINC169724091 Vaccarin −8.4 N/A
5 ZINC39111 Fisetin −8.4 N/A
6 ZINC169345514 Hydroxysafflor yellow A −8.1 N/A
7 ZINC95613012 Echinacoside −7.7 23.12
8 ZINC169721173 Epmedin C −7.6 N/A
9 ZINC299810059 Rebaudioside A −7.6 N/A
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Decomposition of the binding free energy further indicated 
that the amino acid residues in the binding site of Stp1 to 
ECH were Met39, Gly41, Asp120, Asn162, and Ile163.

Hydrogen bonding is a strong interaction that plays an 
important role in the stability of protein–ligand complexes 
[17]. To further study hydrogen bonding between Stp1 and 
its ligands, the number of hydrogen bonds was determined 
using a trajectory file. As shown in Fig. 6a, the number of 
hydrogen bonds fluctuated between four and five during the 
simulation, suggesting that the ligand formed four or five 

hydrogen bonds with the amino acid residues of Stp1. As 
shown in Fig. 6b, according to the LigPlus software, ECH 
can form four strong hydrogen bond interactions with the 
amino acid residues of proteins, which confirms the above 
conclusion. Stp1 and VBS can directly form a stable hydro-
gen bond [30], and there are more hydrogen bonds in the 
Stp1-ECH complex than the Stp1-VBS complex.

The distance between the ligand ECH and the amino 
acid of Stp1 was also calculated and analyzed. As shown 
in Fig. 7, the distances between the inhibitor ECH and the 

Fig. 3   Ligand binding poses at the active site of Stp1
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binding site amino acids were less than 0.2 nm, further indi-
cating that ECH interacts strongly with amino acids Met39, 
Gly41, Asp120, Asn162, and Ile163. According to previ-
ous reports [45], these amino acids are located in the active 
region of Stp1. Therefore, ECH inhibits the hydrolytic activ-
ity of Stp1 via competitive inhibition.

Identification of the binding mode of ECH and Stp1

To verify the theoretical calculation results, the Met39 and 
Gly41 residues of Stp1 were mutated to alanine (Ala) to 
obtain mutants M39A-Stp1 and G41A-Stp1, respectively. 
After protein expression and purification, the mutant pro-
tein was obtained and used for subsequent phosphatase 
hydrolysis and fluorescence quenching experiments. The 
binding constants (KA) of ECH and Stp1 were calculated 
by the fluorescence quenching method. The binding 

constants (KA) of the WT-Stp1-ECH, M39A-ECH, and 
G41A-ECH systems were 7.76, 2.81, and 5.73 × 105 L/
mol, respectively. The binding affinity of the mutant 
decreased compared to the wild-type, resulting in the fol-
lowing binding order: WT-Stp1 > G41A-Stp1> M39A-
Stp1. This indicates that the wild-type protein was the 
most suitable to bind to ECH.

As shown in Fig. 8, the phosphatase assays revealed that 
the inhibitory activity of ECH on mutant Stp1 was lower 
than that on WT-Stp1. Therefore, the mutation of the two 
amino acid residues, namely, Met39 and Gly41, directly 
reduced the inhibitory ability of ECH. Mutating the bind-
ing site residues reduced the binding affinity of the inhibitor 
to Stp1, thus resulting in loss of inhibitory activity. There-
fore, the experimental results further verified that a reliable 
complex structure was produced by molecular dynamics 
simulations.

Fig. 4   This paper demonstrates 
the potently competitive binding 
mode of Stp1 and ECH through 
molecular modeling. a RMSD 
plot of free protein, Stp1-ECH, 
and ECH in 200 ns. b Stable 
three-dimensional (3D) struc-
ture of Stp1 binding with ECH 
based on MD simulation. The 
hydrogen-bonding interactions 
are shown as yellow dashed 
lines

Table 3   Binding free energies 
(kcal/mol) between Stp1 and 
compounds by the MM/PBSA 
method

Compound van der Waals 
energy

Electrostatic 
energy

Polar solvation 
energy

SASA energy Binding energy

VBS −26.32 −23.75 37.19 −3.75 −16.63
ECH −30.40 −85.37 103.63 −5.89 −18.03
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Lipinski and ADMET properties of ECH

The SwissADME software can predict Lipinski and ADME 
based on a molecular structure. Given that the values of frac-
tion Csp3 (Fraction Csp3 = 0.57) and log S (ESOL) (log S = 
−2.63) were within the standard value range, the solubility 
and saturation of ECH were adequate. Therefore, ECH can 
be easily dissolved and formulated, which is conducive to 
absorption. Conversely, the Log Po/w values were not within 

the standard range, and the saturation was poor. Based 
on pharmacokinetic studies, the gastrointestinal absorp-
tion of ECH was low. However, ECH can pass through the 
blood–brain barrier in permanent middle cerebral artery 
occlusion in rats [46].

According to Lipinski’s rule, ECH is not suitable for 
oral administration due to the relative molecular mass and 
the number of hydrogen bond receptors, which exceeds the 
standard. The prediction results are consistent with previous 
experimental studies. Utilizing absorption promoters and 
new formulation technologies can improve bioavailability. 
Li et al. formulated ECH into a phospholipid complex to 
enhance its bioavailability [47]. Shen et al. used verapamil 
and clove oil to enhance the intestinal absorption and oral 
bioavailability of ECH [48].

Moreover, ECH is a natural compound. The medicinal 
history of plants rich in ECH shows that its adverse reac-
tions and toxic effects are relatively minor. Animal and cell 
experiments have shown that ECH exhibits good activity in 
the treatment of osteoporosis [49] and liver injury [50]. ECH 
can be employed to develop new anti-infective drugs using 
nano-based drug delivery systems.

Conclusions

ECH is a natural compound with numerous biologi-
cal activities. In this study, using virtual screening and 
enzyme activity assays, we found that ECH is a novel 
Stp1 inhibitor. Further studies showed that ECH binds to 
the active center of Stp1, preventing binding to Stp1 by 

Fig. 5   Decomposed binding free energies of the residues in the bind-
ing site. The histogram chart shows the van der Waals (black), elec-
trostatic (red), solvation (blue), and total (green) contributions for the 
complexes

Fig. 6   Interaction between ECH and Stp1 demonstrated in the competitive binding mode. a Number of hydrogen bonds between ECH and Stp1. 
b Interaction between ECH and the residues of binding sites of Stp1 identified using LigPlus software
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substrate competition and thus reducing enzyme activity. 
This was mainly due to residues Met39, Gly41, Asp120, 
Asn162, and Ile163 of Stp1. The benzene ring of ECH also 
plays an important role in complex binding. These results 
provide information useful for the design and development 
of antimicrobial drugs targeting S. aureus and will thus be 
useful for the discovery and design of new Stp1 inhibitors.
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