
Vol.:(0123456789)1 3

Journal of Molecular Modeling (2023) 29:227 
https://doi.org/10.1007/s00894-023-05641-1

ORIGINAL PAPER

Structures and optical properties of zinc oxide nanoclusters: 
a combined experimental and theoretical approach

Cahit Orek1,2 · Serhat Keser3 · Omer Kaygili1 · Piotr Zuchowski4 · Niyazi Bulut1

Received: 11 April 2023 / Accepted: 28 June 2023 / Published online: 5 July 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Context In this study, theoretical and experimental analysis of the electrical, optical, and structural properties of a wurtzite-
like zinc oxide (ZnO) nanostructure has been done. To investigate how quantum confinement affects the optical characteris-
tics, two distinct ZnO clusters in nanowire structures have been investigated. The [(ZnO)55(H2O)4] system’s HOMO–LUMO 
band gap (BG) was calculated to be 2.99 eV, which is quite close to the experimental measurement. It was found that the BG 
decreases with the increase in the number of atoms in the cluster in connection with the quantum confinement in nanoclusters. 
In addition, the lowest excitation energy in TD-DFT calculations of the identical system is in fairly good agreement with 
the experimental value with a difference of 0.1 eV. We conclude that the CAM-B3LYP functional has highly successful in 
reproducing the experimental data reported in the present study and previously reported experimental data.
Methods The geometrical optimization of two different sizes of ZnO clusters ([(ZnO)25(H2O)4] and [ZnO)55(H2O)4]) was 
performed using the CAM-B3LYP functional with no symmetry constraints applied in the gas phase. LANL2DZ basis sets 
were used for the Zinc (Zn) atom and 6-31G* basis sets for the O and H atoms. To determine their optical and electronic 
properties, excited state calculations of the pre-optimized structures were performed using the Time-Dependent DFT (TD-
DFT) method. Multiwfn, Gaussum 3.0, and GaussView 5.0 programs were used to visualize the results.

Keywords Zinc oxide · TD-DFT · Quantum confinement · Energy band gap · Density of states

Introduction

ZnO is a semiconductor material having chemical and ther-
mal stability and is excellent for short-wavelength optoelec-
tronic applications due to its high exciton binding energy 
of 60 meV and direct band gap of 3.37 eV at ambient tem-
perature. The high exciton binding energy of this compound 
gives it UV luminescence and efficient excitonic emission 
properties [1].

In addition, non-toxicity, good permeability and electri-
cal conductivity, high electron mobility and low cost make 
ZnO one step ahead of other metal oxides [2]. Thanks to 
these properties, ZnO nanomaterials are suitable for produc-
ing advanced technology devices such as solar cells, photo-
catalysts, sensors, detectors and light-emitting diodes [3–7]. 
When analyzed morphologically, it is seen that ZnO materi-
als can be in rod, wire, flower, leaf, arch and tube structures. 
Morphological properties, crystal structure and size of ZnO 
materials affect their electrical and optical properties [8–13].

ZnO semiconductor is a compound formed by the com-
bination of  sp3 covalent and ionic bonding of Zn and O 
atoms in group II-VI of the periodic table. ZnO can be 
found in wurtzite, zinc blende and rocksalt crystal struc-
tures and its density is 5.606 g/cm3. The wurtzite is the 
thermodynamically stable phase at room temperature, with 
hexagonal unit cells.

One Zn atom coordinates with four O atoms in the crystal 
structure to form a tetrahedral arrangement. This result in 
a crystal structure without a center of symmetry and ZnO 
has two polar surfaces facing each other, each ending with 
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a single type of ion. The lack of symmetry in the crystal 
structure gives ZnO strong piezoelectric and pyroelectric 
properties and great electromechanical properties [14–17]. 
When the studies related to ZnO are examined [18], it found 
that the bandgap energies of ZnO and indium-doped ZnO 
samples synthesized by hydrothermal method decreased and 
that indium doping further increased this decrease and that 
the dopant concentration also decreased the photocurrent 
intensity. In another study [19], it was investigated the anti-
bacterial and biocompatibility properties of synthesized ZnO 
and Ca-doped ZnO samples, and it was suggested that these 
materials have high aforementioned properties. Giannouda-
kos et al. [20] calculated the catalytic and adsorption prop-
erties of the un-doped, Au- and Pd-doped ZnO thin films 
using PC programs written in Fortran. In a similar study, El 
Mragui et al. [21] determined the photocatalytic and phys-
icochemical properties of ZnO/TiO2 nanomaterials. Li et al. 
[22] showed that the visible emission of ZnO nanomils and 
ZnO@ZnS micromil composites can be tuned, which may 
have potential applications in luminescence, electronics and 
sensors. Fujinami et al. [23] evaluated the adsorption and 
binding mechanism between  Zn2O2 cluster and crystalline 
polyimide substrate by semi-experimental molecular orbital 
calculations and concluded that reactions involving a chemi-
cal bond between a cluster of Zn atoms and a carbonyl O 
atom in the polyimide take place and that the adsorption 
processes are almost a thermal.

Kaygili et al. [24] experimentally synthesized, charac-
terized and theoretically modeled (DFT) ZnO powders and 
compared the results with each other and with the results of 
other studies in the literature. As a result, they found that the 
electron excitation of ZnO is most likely to occur at the Γ-Γ 
point, where the energy gap between the valence and con-
duction bands has the lowest value. Sheela et al. [25] tried to 
determine the structural, morphological, optical and photo-
catalytic properties of the un-doped, Ni- and Co-doped ZnO 
samples produced by hydrothermal method. In their review 
article [26], suggested that ZnO-based polymer nanocom-
posites have dielectric, thermal, antibacterial, biomedical, 
catalytic and mechanical properties and that ZnO doping 
of these nanocomposites improves their thermal, electri-
cal, piezoelectric, mechanical, electromagnetic, energy 
storage properties and environmental application potential. 
Baranov et al. [27] found a decrease in the melting tempera-
ture of ZnO samples produced under high pressure and they 
observed a single crystal growth occurred in these samples.

Raha and Ahmaruzzaman [28] suggested that ZnO nano-
particles can be used in the treatment of diabetes by lowering 
blood sugar and increasing insulin levels, as well as for anti-
cancer and antibacterial purposes by causing high inhibition 
on cancerous cells and bacteria, and that ZnO nanoparticles 
are recognized as safe substances by the FDA. Chu et al. [29] 
investigated the use of ZnO samples with different forms 

(e.g., nanoparticles, nanowires, nanoneedles, nanorods and 
microtubes, etc.) as UV photodetectors and they exhibited 
different photoelectric properties such as response, on/off 
ratio and response time. Puspasari et al. [30] claimed that 
ZnO-based antibacterial coatings have great potential in bio-
medical and medical fields and have shown positive results 
in clinical applications.

Many DFT studies have been reported in the literature on 
the optical, electronic and structural parameters of wurtzite-
like ZnX (X = O, Se, Te and S) systems [31–34]. In these 
studies, Local density approximation (LDA) and generalized 
gradient approximation (GGA) functionalism are generally 
used to determine the structural parameters. However, since 
these functional are insufficient for determining optical and 
electronic properties [35–38], the B3LYP hybrid functional 
is used to calculate optical and electronic properties such as 
UV–VIS, DOS and band gap.

Here, unlike the existing studies, since the deficiencies 
of B3LYP functional are known, further studies using more 
adequate functionals are needed. To this end, the structural, 
optical and electronic properties of wurtzite ZnO have 
been calculated using the CAM-B3LYP functional. CAM-
B3LYP is an exchange–correlation functional [39], which is 
a combination of the hybrid properties of B3LYP and long-
range correction. These functional gives results very close 
to experimental findings, especially for UV–VIS, DOS, PL 
and band gap calculations where long-range interactions are 
important [40–42].

Materials and methods

Synthesis and characterization of ZnO sample

The synthesis procedure of the ZnO sample is given as fol-
lows: 100 mL of 40 mmol of zinc acetate dihydrate (Sigma-
Aldrich) solution was prepared by using ethanol (Sigma-
Aldrich) as the solvent. This solution was stirred at room 
temperature for 1 h, and put in an oven at 50 °C for 10 days 
to dry. The as-obtained powder was heated in an electric 
furnace at 650 °C for 1.5 h.

A Rigaku RadB-DMAX II model diffractometer utiliz-
ing CuKα radiation was used to collect the X-ray diffraction 
(XRD) data. A LEO EVO 40xVP model scanning electron 
microscope (SEM) was used to investigate the morphology 
of the as-produced sample.

Computational details

Owing to the effects of quantum confinement in nanostruc-
tures, the optical properties (absorption and emission) are 
dependent on the structural size and an energetic upward 
shift in the onset of absorption and emission spectra is 
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observed with decreasing structural size [43–45]. How-
ever, studies on ZnO nano-structures have shown that 
the main directions responsible for quantum confinement 
effects are the crystal axes [0001] and [1010] [46]. For this 
reason, in the present study, 2D ZnO cluster geometries of 
different sizes were formed starting from the bulk wurtz-
ite structure to make a convenient comparison with the 
experimental data.

Similarly, in the past studies on Zn-based II-VI semi-
conductor nano-structures [47–49], an unrealistically 
high dipole moment in the c direction due to Zn- and 
O-terminated (0001) and (000) surfaces in non-cen-
trosymmetric WZ structures is observed and this dipole 
moment makes the structure unstable [47, 48]. For this 
reason, in accordance with the literature [47, 50, 51], 
polar surfaces were saturated with dissociating water 
molecules. Zinc atoms on polar surfaces were saturated 
with  OH− and oxygen atoms were saturated with  H+ 
ions. Considering that protic solvents are used in the 
synthesis of semiconductor nanostructures, it should 
be emphasized that this saturation process is not just a 
calculation trick.

The geometrical optimization of ZnO clusters of two 
different sizes ([(ZnO)25(H2O)4] and [ZnO)55(H2O)4]) 
was performed using the CAM-B3LYP [39] functional as 
implemented in the GAUSSIAN 09 suite of programs [52] 
and Gaussian type orbits (GTO) basis sets. For simplicity, 
the calculations were performed in the gas phase and no 
symmetry constraints were applied. In the calculations, 
LANL2DZ (Los Alamos National Lab 2 Double Zeta) 
[53] for Zinc (Zn) atom and 6-31G* basis sets for O and 
H atoms were used. In addition, to determine the optical 
(UV) and electronic (band gap) properties of ZnO clusters, 
excited state calculations of the pre-optimized structures 
were performed in the gas phase by Time-Dependent DFT 
(TD-DFT) [54] method. Multiwfn [55], Gaussum 3.0 [56] 
and GaussView 5.0 [57] programs were used to visualize 
the data obtained from the calculations.

Findings and discussion

The XRD plot of the sample confirms the polycrystal-
line ZnO structure with the hexagonal crystal structure 
(JCPDS PDF No: 36–1451) (Fig. 1). No impurity phase 
was detected. Table 1 lists the observed and estimated val-
ues of the distance between two adjacent planes (d) and 2θ 
angles for each Miller index (hkl). Both the calculated and 
the observed values are in agreement.

To calculate the crystallinity percent (XC%) of ZnO, the 
following relation was used [58]

where ΣAC and ΣAA are the total areas under crystal and 
amorphous peaks, respectively. This value was estimated to 
be 95.7% in the present study.

The lattice parameters (a and c) and unit cell volume 
(V) were found to be a = 0.3251 nm, c = 0.5207 nm, and 
V = 0.0477 nm.3 by using Eqs. (2) and (3), respectively [59]

Both Scherrer and Williamson-Hall equations were used 
to calculate the crystallite size, respectively [24]
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Fig. 1  XRD pattern of the ZnO sample
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where β, λ and ε are the full width at half maximum, wave-
length, and lattice strain, respectively. The DS value was 
found to be 32.51 nm, and the DWH and ε values estimated 
from the βcosθ vs. 4 sin θ graph shown in Fig. 2a were cal-
culated to be 46.84 nm and 1.02 ×  10–3, respectively. To cal-
culate the stress (σ), the Eq. (6) was used:

To estimate Young's modulus (Y), the following rela-
tion was used

The slope of the βcosθ vs. 4sinθ/Y graph (Fig. 2b) gives 
the σ value. This value was computed to be 88.56 MPa.

To calculate the energy density (u), the following rela-
tion was used:

The u value was calculated from the βcosθ vs.  25/2sinθ 
Y−1/2 graph (Fig.  2c), and this value was found to be 
52.90 kJ  m−3 in the present work.

The bond length (L) between Zn and O, and atomic 
packing factor (APF) were calculated by using Eqs. (9) 
and (10), respectively [60]
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Table 1  The comparison of 
the observed and calculated 
values of the d and 2θ for the 
as-produced ZnO

h k l dobs (nm) dcol (nm) Δd (n)m 2θobs (◦) 2θal (◦) Δθ (◦)

1 0 0 0.281684 0.281565 0.00119 31.740 31.754 −0.014
0 0 2 0.260340 0.260367 −0.00027 34.420 34.416 0.004
1 0 1 0.247145 0.247677 −0.00532 36.320 36.239 0.081
1 0 2 0.191181 0.191162 0.00018 47.520 47.525 −0.005
1 1 0 0.162582 0.162562 0.00020 56.560 56.568 −0.008
1 0 3 0.147759 0.147757 0.00002 62.840 62.841 −0.001
2 0 0 0.140824 0.140782 0.00042 66.320 66.342 −0.022
1 1 2 0.137927 0.137892 0.00035 67.900 67.920 0.020
2 0 1 0.135960 0.135903 0.00056 69.020 69.053 0.033
0 0 4 0.130205 0.130183 0.00021 72.540 72.554 0.014
2 0 2 0.123764 0.123839 −0.00075 76.980 76.925 0.055
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Fig. 2  The plots of a) βcosθ vs. 4sinθ, b) βcosθ vs. 4sinθ/Y, and c) 
βcosθ vs.  25/2sinθ Y−1/2
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The L value was estimated to be 1.9783 Å. For the hex-
agonal crystal structure, the APF% value is 74%. For the 
as-prepared ZnO sample, this value was found to be 75.46%.

The truncated hexagonal pyramid morphology is seen in 
the SEM images of the ZnO sample shown in Fig. 3. The 
average size of the experimental nanocluster has been deter-
mined as 5.598 µm, which was calculated by Imagej Soft-
ware using the SEM image. The EDX result supports the 
formation of the ZnO structure.

Geometry

After the optimization of the constrained [ZnO)25(H2O)4] 
and [ZnO)55(H2O)4] clusters, their c-axis lengths were cal-
culated as 13.1 Å and 29.2 Å, respectively (Figs. 4 and 5). 
As a result of the calculations, the Zn-O bond length of 
the optimized [ZnO)55(H2O)4] cluster was calculated as 
1.93 Å at the Zn-terminated (0001) surface and 1.90 Å 
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3
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at the O-terminated (000) surface. Considering that the 
bond length in bulk ZnO in the wurtzite structure is 1.96 
Å, it is seen that there is a shortening of 1.5% in the Zn- 
terminated surface and 3.1% in the O- terminated surface. 
The bond length at the core of the nano-particle was found 
to be slightly higher than the experimental value of bulk 
ZnO. The Zn-O bond length in the interior of the nanopar-
ticle was calculated as 1.99 Å, which is 1.5% longer than 
the experimental value. We have experimentally calcu-
lated this value as 1.9783 Å mentioned in the experimental 
section. Similarly, the O-Zn-O bond angle was calculated 
as 112.2° at the Zn-terminated surface and 118.8° at the 
O-terminated surface. Compared to this angle of 109.2 in 
bulk ZnO, the O-Zn-O angle increased by 2.7% and 8.8% 
in Zn- and O-terminated surfaces, respectively. The O-Zn-
O angles in the inner part of the cluster were calculated as 
104.7° and were found to be 4.5% smaller than the experi-
mentally measured value.

Similarly, when geometrical parameters such as bond 
angle and bond length of [ZnO)25(H2O)4] cluster were ana-
lyzed, it was observed that these parameters were similar 
to [ZnO)55(H2O)4] cluster and there was no significant dif-
ference. When the geometrical parameters obtained as a 
result of the calculations are compared with bulk ZnO, it 
is seen that the values are in agreement with each other 

Fig. 3  SEM images and EDX report of ZnO
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Fig. 4  Optimized geometrical structures of the (a) [(ZnO)25(H2O)4], (b) (ZnO)55(H2O)4] 2D nanostructures. (c) Crystal structure of wurtzite 
ZnO

Fig. 5  Optimized geometrical structures, seen along the c crystallographic axis. The wire lengths (Å) are also reported



Journal of Molecular Modeling (2023) 29:227 

1 3

Page 7 of 11 227

and there is no phase transition from wurtzite to rock salt 
during the optimization process.

Electronic structure and absorption spectra

In the energy calculations of [ZnO)55(H2O)4] cluster in 
vacuum, the HOMO energy level of this structure is -6.03 
eV, LUMO energy level is -3.04 eV and HOMO-LUMO 
band gap is 2.99 eV. Similarly, the energy calculations of the 
[ZnO)25(H2O)4] cluster showed that the HOMO energy level 
was -6.68 eV, the LUMO energy level was -2.47 eV and the 
HOMO-LUMO band gap was 4.27 eV. As the length in the 
c direction decreases, the band gap increases due to quantum 
confinement effects. In the present study, the variation of the 
band gap with respect to the c direction is in parallel with 
the previously reported studies [46, 51]. However, it should 
be noted that the variation of the band gap with respect to 
the c direction does not differ much after a certain length 
(about 5 nm) [46, 51]. It is observed that the HOMOs and 
LUMOs calculated in both clusters are distributed through-
out the system rather than on polar surfaces (Fig. 6). As can 
be seen from this distribution, the saturation of the polar 
surfaces with dissociating water molecules prevented the 
formation of surface localized trap states of atoms lacking 
coordination.

A more precise prediction of the excitation energies 
of confined nanostructures needs TD-DFT computations, 

despite the fact that Kohn-Sham (KS) molecular orbitals and 
their eigenvalues can provide a fair estimate for the bandgap 
of bulk II-VI semiconductor materials. TD-DFT calculations 
more accurately predict bandgap transitions by taking into 

Fig. 6  Isodensity plots of 
the frontier orbitals of the 
[(ZnO)25(H2O)4] cluster

Fig. 7  Experimental and calculated absorption spectra of the 
ZnO nanostructures, obtained by a Gaussian convolution with 
FWHM = 0.333 eV, calculated taking into account the 16 lowest sin-
glet − singlet electronic transitions. The inset show the Tauc plot of 
the optical transmittance spectra of the ZnO nanoparticles
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account electron-hole interactions, exchange-correlation 
effects, and configurational mixing of single excitations. 
Figure 7 shows the TD-DFT spectra of [ZnO)55(H2O)4] and 
[ZnO)25(H2O)4] clusters for the 16 lowest electronic tran-
sitions. According to these spectra, the calculated lowest 
excitation energies are 3.13 eV (396 nm) for [ZnO)55(H2O)4] 
and 3.61 eV for [ZnO)25(H2O)4]. Considering that the exper-
imental value determined by the Tauch plot in Fig. 7 is 3.25 
eV, it is seen that the TD-DFT calculated band gap transi-
tions for [ZnO)55(H2O)4] cluster are quite compatible with 
the experimental value.

To better comprehend the electronic structures of the 
nanoparticles, density of states (DOS) and partial density of 
states (PDOS) plots of [ZnO)25(H2O)4] and [ZnO)55(H2O)4] 
clusters were plotted as shown in Fig. 8. The PDOS analysis 
of the nanocluster is very important in terms of providing 
information about the contribution of atomic orbitals to the 
CB (conduction band) and VB (valence band). As can be 
seen from Fig. 8a and b, the VB edge is significantly affected 

by the change in the size of the clusters. On the other hand, 
there is no significant difference in the variation of CB edge 
energy with cluster size. However, it was found that the band 
gap decreases with the increase in the number of atoms in 
the clusters. As can be seen in previously reported studies 
[36, 50, 51, 61, 62], the systematic decrease in band gap with 
the increasing number of atoms in clusters is attributed to 
the quantum confinement effect in nanoclusters. The iden-
tification of the observed peaks may be done easily because 
the valence band structures of all the binary tetrahedrally 
coordinated semiconductors are comparable. Accordingly, 
following the notation suggested in the literature [63], the 
valence band features are labeled as Pı, Pıı and d. The peak 
labeled as Pı originates from the 2p orbitals of the O atom 
and is clearly visible in Fig. 8d, which shows the partial 
density of states analysis for the [ZnO)55(H2O)4] cluster.

Similarly, the Pıı and d peaks are associated with the 4s and 
3d orbitals of the Zn atom, respectively, and this relationship is 
shown in Fig. 8d. The 4s and 4p orbitals of the Zn atom make 

Fig. 8  DOS of (a) [(ZnO)25(H2O)4] and (b) ZnO)55(H2O)4] obtained 
by a Gaussian convolution of fwhm = 0.50  eV of the individual KS 
orbitals (green = occupied and red = virtual orbitals). Partial density 

of states (PDOS) (c-d) of [(ZnO)55(H2O)4] cluster, obtained by a 
Gaussian convolution of fwhm = 1.03 eV
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up the majority of the low-lying empty orbitals in the conduction 
band. The relationship of the Pı, Pııı and d peaks with the orbit-
als in the present study was found to be in great agreement with 
the experimental and theoretical studies in the literature [50, 51].

If the PDOS graphs are interpreted on an atom basis 
(Fig. 8c), it is seen that the Zn atom makes the highest con-
tribution to the d peak and conduction band peak, while 
the O atom makes the highest contribution to the Pı peak. 
When the DOS plots of [ZnO)25(H2O)4] and [ZnO)55(H2O)4] 
clusters are analyzed (Fig. 8a and b), it is seen that with the 
increase in the number of atoms in the clusters, a broadening 
occurs in the Pı, Pı and d peaks.

Conclusions

In this study, calculation of the structural, electronic and opti-
cal properties of [ZnO)25(H2O)4] and [ZnO)55(H2O)4] clusters 
has been carried out and the obtained results have been com-
pared with both experimental data and available data in lit-
erature. In order to create a realistic ZnO nanoparticle model, 
the lowest optical transition energies of [ZnO)25(H2O)4] and 
[ZnO)55(H2O)4] clusters were calculated by DFT/TD-DFT 
methods. The simulations showed that the [(ZnO)55(H2O)4] 
cluster was a good model for attaining the structural, optical, 
and electrical features discovered experimentally. In UV–VIS 
calculations, it was confirmed that the band gap decreases 
with the increase the number of atoms in cluster. On the other 
hand, the DOS calculations showed that the HOMO energy 
level increase with the increase the number of atoms in the 
clusters and no significant change was found in the LUMO 
energy levels. In addition, it was found that the CAM-B3LYP 
functional highly successful in reproducing the experimental 
data reported in the present study and previously reported data. 
Furthermore, the lowest excitation energy in TD-DFT calcula-
tions of the identical system is in perfect agreement with the 
experimental value with a difference of 0.1 eV.
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