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Abstract

The domain of application of the G3(MP2)//B3-SBK theory was expanded, and its efficiency was evaluated to determinate
enthalpies of formation of forty-one iodine compounds. The results were compared to those obtained with the G2 theory
for the same set of molecules. The G3(MP2)//B3-SBK theory showed a mean deviation and deviation standard equal to
3.7 kcal mol™! and 6.0 kcal mol~!, respectively. The G2 theory (mean deviation=3.1 kcal mol™' and standard devia-
tion =4.9 kcal mol~") presented a lower error and standard deviation, but at a significantly higher computational cost. For a
more complete evaluation, as a secondary part of the work, it also used different functionals B3LYP, M06-2X, WB97XD,
and MP2 method with four different basis sets 6-311G(d,p), LANL2DZ, jorge-ADZP, and CEP-31G(d). The best density
functional/basis set combination was obtained with M06-2X/CEP-31G(d) among the three mentioned functionals. However,
the produced mean deviation is significant and equal to 17.3 kcal mol™!, with a standard deviation equal to 23.0 kcal mol~".
The 6-311G(d,p) basis achieved the best performance with the MP2 method, generating an equally significant mean devia-
tion of 12.8 kcal mol~! with a standard deviation equal to 18.7 kcal mol~".
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Introduction

Iodine is an element that belongs to group 17 of the periodic
table [1]. Its compounds can be widely applied [2, 3], with
emphasis on the medical-pharmaceutical area: antiseptic/dis-
infectant (iodine tincture, polyvinylpyrrolidone); expectorant
(potassium iodide solution, KI). Potassium iodate (KIO3) is pre-
scribed to people affected by radiation to prevent or reduce the
radioactive iodine absorption by the thyroid [2]. Another great
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application is in the analytical area, where iodine compounds
are used to determine the oils and fats unsaturation level, as one
of the reagents of the Karl Fischer method or in qualitative and
quantitative analyses and organic syntheses [3]. In addition,
iodine has also been used in the development of new materials,
such as polarizing film for liquid—crystal display (LCD) and
electrolytes for dye-sensitized solar panels [1].

However, theoretical studies involving high-level calcu-
lations to obtain the thermochemical properties of iodine
compounds have been little explored mainly due to compu-
tational difficulties, even though there are reliable experi-
mental data on their compounds in the gas phase.

Recently, Leal and Custodio formulated the G3(MP2)//B3-SBK
theory [4], combining the CEP pseudopotential and the respective
31G basis set developed by Stevens, Basch, and Krauss to replace
the P31G basis functions used in the G3(MP2)//B3-CEP method.
The main differences are in the fact that the G3(MP2)//B3-CEP
theory adapts the pseudopotential to the basis set used in the corre-
sponding original method that considers all electrons (CEP-P31G,
it was the notation given to the basis function adapted in reference
to Pople basis functions) and the G3(MP2)//B3-SBK theory uses
the basis set developed for the respective pseudopotential (SBK or
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CEP-31G). Furthermore, each method has its values for the reop-
timized parameters of the s, p, and sp functions in the large basis
set of carbon, nitrogen, oxygen, fluorine, phosphorus, and chlorine
atoms, as well as for the parameters used in the calculation of the
high-level empirical correction. The G3(MP2)//B3-SBK theory
was initially tested, according to the respective corresponding ver-
sions G3(MP2)//B3 [5] and G3(MP2)//B3-CEP [6], for a set of 446
systems containing representative elements up to the 4th period
[H-Kr] of the periodic table. The best combination of adjusting the
G3(MP2)//B3-SBK theory produced a mean absolute error for all
tested properties of 1.43 kcal mol ™. This deviation is essentially
equal to that presented by the all-electron theory G3(MP2)//B3
(1.41 kcal mol™") with savings of up to 45% CPU time and it has
better accuracy than the corresponding theory that uses adapted
pseudopotential G3(MP2)//B3-CEP (1.60 kcal mol™ 1 with equiva-
lent CPU time. Unlike the G3(MP2)//B3 and G3(MP2)//B3-CEP
theories, the G3(MP2)//B3-SBK theory allows the calculation of
thermochemical properties of compounds for some elements of
the 5th line of the periodic table, like Sn and Sb. Thus, the idea of
expanding the application domain of this method for calculations
of compounds containing heavier elements, such as iodine, arose
due to its relevance in many chemical and biological processes.

Other papers can be used as a reference to demonstrate the
efficiency of using composite methods. As an example, Silva [7,
8] recently used the composite methods EnAtl, EnAt2, G3X-
CEP, G3X(CCSD)-CEP, and G4 [9] to determine the enthalp-
ies of formation of 29 aluminum compounds. The Stuttgart/
Dresden pseudopotential was used in the G3(MP2,CSSD,rel)
theory for 20 compounds containing transition elements from
scandium (Sc) to zinc (Zn) [10]. The G4(CEP) theory [11, 12]
was used to accurately determine the pKa of 22 monocarbox-
ylic acids. Other examples of applications can be found in the
study of Diels—Alder reaction mechanisms [13], phenol nitra-
tion [14], rotation barriers [15], and among others.

The objective of this research was to expand the applica-
tion domain of the G3(MP2)//B3-SBK theory [4] to calculate

Table 1 Enthalpies of formation at 0 K for gaseous atoms and
enthalpy corrections of the atomic elements in their standard states
from experiment. Values in kcal.mol™!

Atom AH{(0K) H°(298K) — H°(0K)
H 51.63 +0.001 1.01
B 1362 +0.2 0.29
C 169.98 + 0.1 0.25
N 112.53 +0.02 1.04
o) 58.99 +0.02 1.04
F 18.47 +0.07 1.05
Si 106.6 + 1.9 0.76
S 65.66 + 0.06 1.05
Cl 28.59 +0.001 1.10
Br 28.18 + 0.02 1.48
I 25.63 +0.01 1.48
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enthalpies of formation of iodine-containing compounds. The
calculations efficiency was performed comparatively to accu-
rate experimental data and calculated with the G2 theory [16,
17]. Other conventional methods (e.g., DFT, MPn) were com-
bined with different basis sets (e.g., Pople, Dunning) for a more
global assessment of errors produced by conventional calcula-
tions regarding experimental data available in the literature.

Computational methods

All calculations were performed using the Gaussian 09
software [18]. The enthalpies of formation were calculated,
at 298.15 K and 1 atm, according to the standard proce-
dure established in the literature [19]: (a) The first step is
to calculate the enthalpies of formation (AH?(M ,0K)) of
the molecule (M) at 0 K from the molecular atomization
energy (Z DO(M)) and heats of formation of the atoms
(X atoms YAHL(X, 0K)) at 0 K:

AH)(M,0K) = D xAH)(X, 0K) — Y Dy(M), where :

atoms

D DyM) =Y xeo(X) — £(M) = £p(M)

atoms

where Y, xeq(X) is the sum of the energies of the
constituent atoms, £,(M) is the total energy, and €,p(M)
is the zero-point energy of the molecule. X is each element
which makes up M, and x is the number of atoms of X in
the molecule M. (b) The second step is to calculate the
enthalpies of formation (AH?(M, 298K)) at 298 K:

AH}’(M, 298K) :AH}’(M, 0K) + (HY,(298K)
- HY,(0K)) — Z X(HY(298K) — HY(0K))

where (H(jf/l(298K) — Hj(l)/I(OK)) is the molecular enthalpy
correction and Y, .. x(HY(298K) — HY(0K)) is the sum
of the enthalpy corrections of the atomic elements.
Table 1 shows values used for enthalpies of formation of
the elements at 0 K and respective thermal corrections
(H°(298K) — H(0K)), at 298.15 K (25 °C) and 0.1 MPa
(1 bar), both were taken from references [8, 19-21].

Knowing that the SBK or CEP-31G basis functions [22, 23]
were not developed with polarization functions, similar to the pro-
cedure adopted by Leal and Custodio to include tin (Sn) and anti-
mony (Sb) atoms [4], the adjustment of the polarization function
for iodine was performed while minimizing the energies of a subset
of 14 molecules through the optimization at B3LYP/CEP-31G(d)
level. For this adjustment, systems available at WebNIST [24]
were selected which presented experimental values of standard
enthalpy of formation in the gas phase with an uncertainty of the
order of + 1 kcal mol~': HI, CH,1, C,HsI, CIN, CH,IS, C;Hl,
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C,H,IS, C,Hyl, C,H,IC], C,H,10, C,H,I0, C;H;IO, CF;l, and
C,H,F;I. The obtained value of 0.270 for the polarization func-
tion exponent of the iodine atom is similar to the corresponding
values of 0.266 (G2 theory, all-electron) [17], 0.279 (ECP(HW),
the shape-consistent orbital-adjusted ECPs of Hay and Wadt) [17,
25], 0.267 (ECP(S), energy-adjusted ECPs of the Stuttgart group
(S)) [17, 26] that are the values of energy-optimized exponents of
polarization d functions for augmentation of the valence basis sets
in all-electron (AE) and effective core potential (ECP) calculations
iodine-containing species. The values of the polarization functions’
exponents, used together with the CEP-31G set, for the other ele-
ments were taken from the Leal and Custodio work [4].

The energy G3(MP2)//B3—-SBK [4] is determined through
the equation:

EGamp2)//B3-sBK =E[QCISD(T)/ CEP — 31G(d)]

+ AEGampoiaree T Eso + Enrc + Einerm

in which, E[QCISD(T)/CEP-31G(d)] is the reference
energy; AEGaypojarge = EIMP2/CEP-G3MP2large] — E[MP2/
CEP-31G(d)] is the energy component calculated with the basis
function CEP-G3MP2large, included to correct the effects of
extending the basis sets; Eq, is the spin—orbit correction for atoms
whose values were extracted from the literature [9, 17]; Ey; ¢ is
an empirical correction represented by Eyy; = —Ang—B(n,—np)
for molecules (being A=8.849 and B=4.495, mHartree) and
By o= —Cng—D(n,—np) for atoms and atomic ions (being
C=9.436 and D=1.586, mHartree), in which n, and ng are the
number of valence electrons with alpha and beta spins, respec-
tively; By 1S the energy component that contains the zero point
correction and thermal effects related to translational, rotational,
and vibrational motions. All vibrational frequencies were scaled
by a factor of 0.96. The cc-pV5z-PP basis set [27] was considered
the CEP-G3MP2large for the iodine atom.

The energy G2 [16, 17] is obtained through an improve-
ment of the G1 energy [28] stated by:

E()(G2) = E,(G1) + A + 1.14npair

in which, E,(G1) is the energy obtained through the G1 the-
ory; A=E[MP2/6-311+G(3df,2p)] — E[MP2/6-311G(2df,p)]
— E[MP2/6-311+G(d,p)+E[MP2/6-311G(d,p)] and npair is the
number of valence electron pairs. The detailed step-by-step to obtain
energy E(G1) can be directly verified in Pople et al. [28]. To obtain
the G2 energy of compounds involving the iodine element, the pro-
tocol established by Glukhovtsev et al. [17] was followed.

In addition to the G3(MP2)//B3-SBK and G2 compos-
ite methods, the performance of three popular functionals
B3LYP [29, 30], M06-2X [31], WB97XD [32], and the MP2
method [33] with the basis sets 6-311G(d,p) [17, 34, 35],
LANL2DZ [25, 36], jorge-ADZP [37, 38], and CEP-31G(d)
were also evaluated as formulated in this research, since
these methodologies also allow direct application to systems
containing iodine, which contributes to a global assessment.

Results and discussion

Table 2 shows the errors set (AH’ (exp) ~ AH; (cale)) Calculated
concerning experimental values of standard enthalpy of forma-
tion (high precision in the gas phase) available in WebNIST
[24] for 41 iodine compounds with the G2 and G3(MP2)//
B3-SBK theories. Besides, mean absolute deviation (MAD)
and standard deviation (SD) values are also reported.

The G3(MP2)//B3-SBK method presented a mean abso-
lute deviation equal to 3.7 kcal mol~! and a standard devia-
tion equal to 6.0 kcal mol™!, while the G2 method presented
values of 3.1 kcal mol~! and 4.9 kcal mol~! respectively. The
deviations obtained with the G3(MP2)//B3-SBK theory are
greater when compared to those obtained with the G2 theory,
but achieving the G3(MP2)//B3-SBK energy involves fewer
steps in addition to the smallest computational cost. There is
a balance in the individual performance between these two
composite methods, and there are 17 systems that present
errors (regarding the experimental data) outside the range
of +2 kcal mol™" when obtained with the G2 theory, against 19
systems when calculated with the G3(MP2)//B3-SBK theory.

According to the literature [4, 6, 42], obtaining thermochemi-
cal or spectroscopic properties of compounds containing fluorine
atoms usually exhibits unusual behavior and it is still a challenge
to predict these properties with high accuracy, even with the use
of composite methods. Even the G3(MP2)//B3-SBK method with
the scaling of experimental atomization energies still showed high
deviations for enthalpies of formation C,F, (4.6 kcal mol™),
PF; (—7.0 kcal mol™!), SF¢ (8.7 kcal mol™"), CIFO,
(—18.7 kcal mol "), and ionization energies B,F, (8.7 kcal mol ™),
BF, (=5.2 keal mol ™), and CH,F (5.0 kcal mol ™) of fluori-
nated molecules. In this work, high deviations respectively with
the G2 and G3(MP2)//B3-SBK theories were also observed
for the C,H;F,I (5.6 and 4.3 kcal mol™"), C,H,F;I (6.9 and
4.8 kcal mol™), CF;I (4.9 and 3.3 kcal mol™), Fsl (5.1 and
17.0 keal mol™"), and F,I (20.8 and 25.9 kcal mol™) systems.
Due to the low uncertainty associated with experimental measure-
ments, for example AH'; ) : CHoF3l=—155.0+0.9 keal mol ™,
AH® (., CF3l=—140.8+0.1 kcal mol™" [39, 40],
AH% () Fsl=—200.8+0.4 kcal mol™" [41], AH%
F,I=—-229.7+0.5 kcal mol ™! [41], higher level calculations
associated with the use of more extended basis sets are welcome
in an attempt to better reproduce the experimental behavior of
these molecules. However, the high computational cost often lim-
its the use of even more rigorous composite methods. In addition,
more than one experimental information can often be found for
the same system, making it difficult to choose a reference stand-
ard (for example: most recent measurement, measurement with
lower uncertainty, measurement leading to a lower calculated
error, among others). In this work, the measure associated with
the lowest experimental uncertainty was chosen as the reference
standard.

@ Springer
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Table 2 Experimental enthalpies of formation and calculated errors
with G2 and G3(MP2)//B3-SBK theories concerning the experimen-
tal data. Values in kcal mol™!

Molecules AHOf Exp.? G2 G3(MP2)//
B3-SBK
Todomethane (CH;I) 3.5+0.2 0.8 1.2
Todoethane (C,Hsl) -1.7+£0.2 1.6 1.8
3-Iodo-1-propene (C;HsI) 21.5+0.3 -1 -07
(E)-1-Iodo-1-propene (C3HsI) 223+09 0.0 0.6
(Z)-1-Iodo-1-propene (C;HI) 20.7+0.9 -13 =05
1-Iodopropane (C;H,I) -74 1.5 1.3
2-Todo-2-methylpropane (C,HgI) —-17.2+0.2 3.1 1.7
Todobenzene (C4HsI) 394+14 1.9 3.9
Todo-methylbenzene (C,H;I) 30.4+0.3 -1.0 03
1-Iodo-2-methylbenzene (C,H;I) 31.8+14 1.5 2.7
1-Todo-3-methylbenzene (C;H;I) 31.8+14 1.3 2.1
1-Iodo-4-methylbenzene (C,H,I) 292+1.4 -15 =06
1-Iodo-naphthalene (C,,H,I) 559+2.1 -07 22
2-Todo-naphthalene (C,H,I) 56.2+2.2 -04 25
Acetyl iodide (C,H;10) -30.4+0.5 2.0 2.0
Iodomethyl methyl ether (C,H510) -294 1.8 0.7
1-Iodoacetone (C;H;I0) -312+1.2 3.0 2.0
3-Iodo-2-butanone (C,H;IO) —38.2+0.7 4.4 3.1
Benzoyl iodide (C;H;I0) 26+1.0 -03 12
2-Iodo-benzoic acid (C;Hs10O,) —485+04 0.1 -0.7
3-Todo-benzoic acid (C;HsIO,) -523+0.5 0.6 0.6
4-Todo-benzoic acid (C;H;10,) -51.5+0.3 1.6 1.7
1-Chloro-2-iodo-ethane (C,H,CII) —-114+12 -14 =24
1,1-Difluoro-1-iodoethane (C,H;F,I) —-98.0+2.0 5.6 4.3
1,1,1-Trifluoro-2-iodoethane (C,H,F;I) ~ —155.0+0.9 6.9 4.8
Pentafluoroiodo-benzene (C¢FsI) -176.6 1.3 =27
Trifluoroiodo-methane (CF;I) —140.8+0.1° 4.9 33
Todine pentafluoride (FsI) —200.8+0.4¢ 5.1 17.0
Todine heptafluoride (F;I) —229.7+0.5° 20.8 259
Todine monofluoride (FI) -22.7 -32 =13
Hydrogen iodide (HI) 6.3+0.02 -1.0 1.1
Todine bromide (Brl) 9.8+0.0° -64 =07
Todine monochloride (CII) 42+0.0° -23 =02
Todoborane (BI) 73.0 -83 -6.6
Todosilylidyne (ISi) 75.0 9.7 14.5
Todosilane (H;ISi) -0.5 1.9 1.2
Cyanogen iodide (ICN) 53.0+0.4° 1.7 33
Methylsulfenyliodide (CH;IS) 72407 -2.1 00
Nitrosyl iodide (INO) 26.8 -36 =26
Iodotrinitro-methane (CIN;O) 39.0 3.7 17.6
1-Iodo-1,1-dinitroethane (C,H;IN,0,) 8.1 13.8 9.8
MAD* 31 37
Sh¢ 4.9 6.0

aData from [24] (298.15 K, 1 atm). "Data from [39, 40] (298.15 K).
°Data from [41] (298.15 K, 1 atm). ‘MAD is the mean absolute devia-
tion. ®SD is the standard deviation

Recently, from a modification of the G4MP2 theory [43], E.
Sookhaki and M. Namazian developed the G4MP2-ECP method
[44] specifically to allow calculations involving the iodine atom.
Among the various tested properties, they evaluated the per-
formance of the G4MP2-ECP method for standard enthalpy of

@ Springer

formation of a set of 19 iodinated organic compounds. Table 3 shows
the performance of G2 and G3(MP2)//B3-SBK theories compared
to experimental data and the G4AMP2-ECP method. The best per-
formance was achieved with the G2 theory (MAD=0.8 kcal mol !
and SD=1.1 kcal mol™), followed by the G3(MP2)//B3-SBK the-
ory (MAD=1.0 kcal mol™! and SD=1.4 kcal mol™") and finally
G4MP2-ECP (MAD=1.6 kcal mol " and SD=2.0 kcal mol ™).

Regarding the functional/basis set combination (Appendi-
ces Tables 4 and 5), the smallest deviations were achieved by
combining the different functionals to the CEP-31G(d) basis set,
with M06-2X (MAD=17.3 kcal mol~" and SD=23.0 kcal mol™")
as the functional with the best performance against the experi-
mental results, followed by WB97XD (MAD=20.1 kcal mol™!
and SD=28.0 kcal mol™!) and B3LYP (MAD=24.5 kcal mol~!
and SD=29.9 kcal mol™"). Functional M06-2X stands out
above all for the low deviations achieved in fluorinated sys-
tems such as C¢FsI (7.8 kcal mol™"), FsI (—6.4 kcal mol™!), F.I
(—20.8 keal mol ™), and FI (0.7 keal mol™") compared to B3LYP
and WB97XD functionals. It is also noteworthy that the M06-2X
and WB97XD functionals combined with the CEP-31G(d) set
produced the smallest deviation (only, —5.1 kcal mol™"), among
all the tested methodologies, for the C,H;IN,O, system. This
evaluation is particularly useful as it can direct and drive the
development of an alternative composite method using the
MO06-2X functional combined with the CEP-31G(d) set.

Regarding the combination of the MP2 method (Appendix
Table 5), with the four tested basis sets, the smallest deviations
(MAD=12.9 kcal mol~" and SD=18.7 kcal mol™") were achieved
when the 6-311G(d,p) set was used. This is mainly due to low errors,
including for (INO), (CIN;Og), and (C,H;IN,0,) systems that
showed a divergence of only—6.8; 4.8 and 9.0 kcal mol ! concerning
the experimental data, respectively. However, systems like (FsI) e (FI)
still showed high deviations regarding the experimental data,—50.5
and—57.0 kcal mol ™! respectively. The second smallest deviation
(MAD=21.0 kcal mol~" and SD=25.5 kcal mol™") was achieved
by combining MP2/jorge-ADZP, followed by MP2/CEP-31G(d)
(MAD=25.7 kcal mol~! and SD=29.8 kcal mol ") and, finally, MP2/
LANL2DZ (MAD=53.6 kcal mol™ and SD=63.8 kcal mol ™).

Figure 1 shows the mean absolute deviation (MAD) for
all methodologies tested considering the set of enthalpies
of formation of the forty-one iodine compounds studied.
Appendix Table 6 summarizes the energy of atoms for
each methodology evaluated in this research.

Conclusion

In this paper, the domain of application of the G3(MP2)//B3-SBK
theory was extended to study the enthalpies of formation of 41
iodine compounds. For the first time for this method and for
the iodine element, was added a polarization function in the
CEP-31G basis set, and adjusting its exponent, the value of 0.270
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Table 3 Standard enthalpy of formation (kcal mol™!) calculated with G4(MP2)-ECP [44], G2 and G3(MP2)//B3-SBK theories. The values in

parenthesis are the deviations from experimental data

Species G4(MP2)-ECP % AH’; Exp.#>2 G2 G3(MP2)//B3-SBK Exp.f
Todomethane (CH5I) 4.1 (=0.7) 3.4,3.6° 2.7 (0.8) 2.3 (1.2) 35+0.2
Todoethane (C,H;sI) -0.8 (-1.2) -2.0 -33 (1.6) -35 (1.8) -1.7+0.2
1-Iodopropane (C;H,I) -5.1 (-2.0) -7.1 -8.9 (1.5) -8.7 (1.3) -7.4
2-Todopropane (C;H,I) -7.3 (=2.5) -9.8 —-11.2 (1.4) -10.8 (1.0) -9.8%
1-Todobutane (C,H,I) -9.1 (-2.9) —12.0 —14.3 (2.3) -139 (1.9) -12.0%
2-Iodobutane (C,HgI) -10.8 (-2.9) —-13.7 -16.9 3.2) -16.2 2.5 -13.7%
2-Iodo-2-methylpropane (C,Hgl) —14.9 (=2.5) —-17.4 -20.3 3.1 -18.9 (L.7) -17.2+0.2
Diiodomethane (CH,I,) 24.7 3.5) 28.2,25.7° 254 (2.8) 23.4 4.8) 282%
1,2-Diiodoethane (C,H,I,) 14.9 (0.6) 15.5 13.6 (1.9) 13.0 2.5 155%
3-Iodo-1-propene (C;HI) 24.1 (-1.3) 22.8 22.5 (- 1.0 22.1 (—0.6) 21.5+0.3
Todobenzene (C4HsI) 38.3 (0.8) 39.1 37.5 (1.9) 35.6 (3.8) 394+1.4
1,2-Diiodobenzene (C¢H,I,) 55.7 4.5) 60.2, 60.4¢ 57.9 (2.3) 55.8 “4.4) 60.2*
1-Iodo-2-methylbenzene (C,H,I) 30.5 (1.2) 31.7 30.3 (1.5) 29.1 2.7 31.8+1.4
1-Iodo-3-methylbenzene (C,H;I) 31.3 (0.6) 31.9 30.5 (1.3) 29.7 2.1 31.8+1.4
2-Todobenzoic acid (C;HsIO,) —473 (-1.2) —48.5,-45.1° —48.5 (0.0) —47.8 (-0.7) —48.5+0.4
3-Iodobenzoic acid (C;HsIO,) -52.5 (0.2) —52.3,-49.3° -53.0 0.7) -53.0 0.7) -523+05
4-Todobenzoic acid (C;H;10,) -52.8 (-1.7) —54.5,-48.9° -53.1 (1.6) -533 (1.8) -51.5+0.3
Acetyl iodide (C,H;10) -30.7 (0.6) —30.1 -323 (1.9) -324 (2.0) -30.4+0.5
Benzoyl iodide (C;H,I0) 2.1 (0.4) 2.5 29 (=0.3) 1.5 (1.1) 26+1.0
MAD?# 1.6 - - 0.8 - 1.0 -

Sph 2.0 - 1.1 - 14

Experimental data were taken from the following references: “ref. [45], Pref. [46], ‘ref. [47], 9ref. [48], °ref. [49], and 'ref. [24]. EMAD is the

mean absolute deviation. "SD is the standard deviation

was obtained, which is in good agreement with other correspond-
ing values found in the literature. The G3(MP2)//B3-SBK method
showed a mean absolute deviation equal to 3.7 kcal mol~! and a
standard deviation equal to 6.0 kcal mol~!, while the G2 method
presented values of 3.1 kcal mol ™" and 4.9 kcal mol™" respectively.
The deviations obtained with the G3(MP2)//B3-SBK theory are
greater when compared to those obtained with the G2 theory, but
achieving the G3(MP2)//B3-SBK energy involves fewer steps in
addition to the smaller computational cost. There is a balance in
the individual performance between these two composite meth-
ods, there are 17 systems that present errors (regarding the experi-
mental data) outside the range of +2 kcal mol~! when obtained
with the G2 theory, against 19 systems when calculated with the
G3(MP2)//B3-SBK theory.

Regarding the standard enthalpy of formation of the nine-
teen iodized organic compounds set, previously studied by E.
Sookhaki and M. Namazian with the G4MP2-ECP method
(MAD=1.6 kcal mol™! and SD=2.0 kcal mol™"), it was found
that the G2 (MAD=0.8 kcal mol~! and SD=1.1 kcal mol~")
and G3(MP2)//B3-SBK (MAD =1.0 kcal mol™' and
SD= 1.4 kcal mol™") theories showed smallest deviations with
respect to the experimental data.

Concerning the performed additional tests combining dif-
ferent functionals B3LYP, M06-2X, WB97XD, and the MP2
method with different basis sets 6-311G(d,p), LANL2DZ,
jorge-ADZP, and CEP-31G(d), the best combination functional/
basis set was obtained with M06-2X/CEP-31G(d) producing

a MAD=17.3 kcal mol~! and SD=23.0 kcal mol~'. The best
performance with the MP2 method was achieved with Pople
6-311G(d,p) basis generating a MAD=12.9 kcal mol™! and
SD=18.7 kcal mol™'. These additional tests mainly serve to
reaffirm the efficiency of the composite methods in the accurate
determination of thermochemical properties, including now the
case of the standard enthalpy of formation of iodine compounds.

41 molecules

70 66745 , 33 | £zZ26-311G(dp)
7 i H] | B3 LANL2DZ
7 H | BE58 jorge-ADZP
60 1 | C—JCEP-31G(d)
O | . G3(MP2)//B3-SBK
HH | G2
50 m
-
© T
£ 40+ H
3 E
S H
=~ 304 H
Q H
= i
= H
20 E
1
H
10 H
H
1
H
abcd cdabcd

Fig.1 Mean absolute deviation (MAD) for all methodologies tested
considering the set of enthalpies of formation of the forty-one iodine
compounds studied: a B3LYP, b M06-2X, ¢ WB97XD, and d MP2
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Table 5
Table15 Experimental enthalpies of formation and calculated errors with different methods regarding the experimental data. Values in kcal
mol™
Molecules AHY Exp.? CEP-31G(d) MP2

B3LYP MO06-2X WB97XD 6-311G(d,p) LANL2DZ jorge-ADZP CEP-31G(d)

Iodomethane (CH;I) 35+0.2 16.3 26.9 22.1 7.9 -30.3 28.0 —14.2
Iodoethane (C,HsI) -1.7+0.2 222 41.9 35.1 15.1 -51.6 40.4 —24.5
3-Iodo-1-propene (C;HsI) 21.5+0.3 6.2 322 23.7 11.2 -69.9 36.7 -39.3
(E)-1-Iodo-1-propene (C;Hsl) 22.3+0.9 6.6 333 24.5 12.0 -70.4 37.8 -38.2
(Z)-1-Iodo-1-propene (C;Hsl) 20.7+0.9 4.6 31.7 22.6 10.4 -71.9 384 -40.4
1-lodopropane (C;H,I) -74 26.7 56.0 47.3 20.9 —73.8 474 -355
2-Iodo-2-methylpropane (C,Hql) —-17.2+0.2 28.7 69.7 57.9 27.6 -96.6 63.9 —45.8
Iodobenzene (C¢Hsl) 394+14 -29.5 22.6 7.5 23.5 —113.5 61.4 -61.4
Iodo-methylbenzene (C,H;I) 304+0.3 -20.3 40.4 23.8 26.3 —137.8 56.5 —-69.1
1-lodo-2-methylbenzene (C,H;I) 31.8+1.4 -214 41.4 23.6 28.0 —136.8 69.9 -67.5
1-lodo-3-methylbenzene (C,H;I) 31.8+1.4 -20.9 40.7 24.0 28.4 —136.7 66.2 -67.1
1-lodo-4-methylbenzene (C,H;I) 292+1.4 —23.8 38.4 21.3 25.1 —1394 63.4 -70.0
1-lodo-naphthalene (C,,H;I) 559+2.1 —-543 322 8.0 332 —185.0 78.8 —89.2
2-Iodo-naphthalene (C,yH;I) 56.2+2.2 -529 33.0 9.1 33.8 —184.1 76.1 —88.3
acetyl iodide (C,H;I0) -30.4+0.5 -12 22.3 12.0 10.2 -74.0 39.3 -30.4
Iodomethyl methyl ether (C,HsIO) -29.4 17.7 45.3 31.9 11.1 —-81.9 42.5 -34.0
1-Iodoacetone (C;HsIO) -312+1.2 29 37.1 24.6 14.8 -94.2 46.4 -41.9
3-Iodo-2-butanone (C,H,10) -38.2+0.7 7.7 524 37.3 223 -116.0 59.6 -51.6
Benzoyl iodide (C;H;10) 26+1.0 —-41.8 224 2.1 22.6 —-159.4 58.6 —173.5
2-Iodo-benzoic acid (C;Hs10,) -48.5+0.4 -56.8 20.4 -7.8 20.1 —191.8 68.5 —86.4
3-Iodo-benzoic acid (C;Hs10,) -523+05 -54.1 22.6 -55 223 —189.2 67.7 -84.0
4-Jodo-benzoic acid (C;H;I10,) -51.5+0.3 -53.0 23.8 -43 234 —187.7 68.8 -82.8
1-Chloro-2-iodo-ethane (C,H,CII) —-114+1.2 7.7 353 234 8.4 -71,1 36.4 -29.5
1,1-Difluoro-1-iodoethane (C,H;F,I) -98.0+2.0 1.0 38.0 14.0 8.9 —86.2 50.0 -34.0
1,1,1-Trifluoro-2-iodoethane (C,H,F;I) —155.0+£0.9 —114 36.2 2.9 8.8 -107.3 47.7 —-38.9
Pentafluoroiodo-benzene (C4Fsl) -176.6 —86.2 7.8 —48.1 -0.9 -215.1 63.5 -97.3
Trifluoroiodo-methane (CF;I) -140.8+0.1° —17.1 19.8 -10.8 0.0 -90.7 38.9 -29.9
Iodine pentafluoride (FsI) —200.8+0.4° —49.7 —-6.4 —-60.0 -50.5 -136.3 80.6 -74.9
Iodine heptafluoride (F;I) —-229.7+05° -81.3 -208 -928 -57.0 —198.8 106.0 -112.1
Todine monofluoride (FI) —-22.7 -8.0 0.7 —10.1 —-11.4 -19.9 16.7 —-14.9
Hydrogen iodide (HI) 6.3+0.02 5.6 7.2 53 24 -144 12.4 -7.0
Todine bromide (BrI) 9.8+0.0° -0.8 7.8 0.1 -3.7 -272 5.1 -54
Iodine monochloride (CII) 42+0.0° -3.1 6.7 -23 -84 -29.0 6.0 -10.5
Todoborane (BI) 73.0 -10.6 -8.1 -85 -8.6 -284 1.6 —-132
ITodosilylidyne (ISi) 75.0 14.9 21.1 17.2 7.9 —15.1 15.6 6.8
ITodosilane (H;ISi) -0.5 14.5 23.7 19.6 1.3 —46.3 9.0 -219
Cyanogen iodide (ICN) 53.0+£0.4° -196 —-144 —122 -05 -39.8 25.6 -21.8
Methylsulfenyliodide (CH;IS) 7.2+0.7 8.1 24.0 16.8 -34 -71.1 12.4 -28.9
Nitrosyl iodide (INO) 26.8 -145 =216 —15.1 -6.8 -62.8 10.3 -29.2
Iodotrinitro-methane (CIN;Oy) 39.0 —-65.8 —-429 355 4.8 —252.4 81.4 —88.5
1-Iodo-1,1-dinitroethane (C,H;IN,O,) 8.1 -353 =51 -5.1 9.0 -201.3 72.1 —176.5
MAD? 24.5 17.3 20.1 12.9 53.6 21.0 25.7
SD¢ 299 23.0 28.0 18.7 63.8 25.5 29.8

4Data from [24] (298.15 K, 1 atm). Data from [39, 40] (298.15 K). “Data from [41] (298.15 K, 1 atm). dMAD is the mean absolute deviation.

°SD is the standard deviation
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Table 6
Table 6 Total energies (in hartrees) of atomic species with different methods
Atom 6-311G(d,p) LANL2DZ jorge-ADZP
B3LYP MO06-2X WB97XD B3LYP MO06-2X WB97XD B3LYP M06-2X WB97XD
H(S) —0.5021559 —0.4981341 —0.5026683 —0.498911 —0.4949329 —0.4994107 —0.5021743 —0.4979567 —0.5021743
C(Cp) —37.8559889 —37.8394554 —37.8391787 —37.8534165 —37.8383133 —37.8373846 —37.8561398 —37.8404744 —37.8398035
1P) —6919.505042 —6919.900403 —6919.653028 —11.3626195 —11.3054919  —11.3669921 —6914.6158167 —6915.006558 —6914.7639314
0 (P) —74.9832519 —74.9609216 —74.9577727 —74.9798199 —74.9592378  —74.9559644 —74.9851786 —74.9635255 —74.9598471
F(’P) —99.7538096 —99.7209548 —99.7265005 —99.749995 —99.719185 —99.7243533  —99.7567737 —99.7243587 —99.7296177
Br (*P) —2574.105354 —2574.127733 —2574.131159 —13.1304466 —13.0736306  —13.1338 —2574.0810383 —2574.1076516  —2574.1092284
Cl1 (*P) —460.1661605 —460.131538 —460.144597 —14.896063 —14.8416685 —14.9009875 —460.1688897 —460.1368322 —460.14753
B (°P) —24.6618697 —24.6477673 —24.6492162 —24.6597977 —24.6471177  —24.6472459 —24.6620983 —24.6489839 —24.6494592
N (*S) —54.4949639 —54.4729312 —54.4714715 —54.4907746 —54.4704966  —54.4687917 —54.4959394 —54.4746506 —54.4727774
Si °P) —289.3524139 —289.3114924 —289.3215642 —3.7192702 —3.7003881 —3.721224 —289.3510297 —289.3104705 —289.320366
S (p) —398.0706542 —398.0357799 —398.0458847 —9.974707 —9.9296245 —9.9782576 —398.0708083 —398.0362996 —398.0457561
Atom CEP-31G(d) MP2 G2 G3(MP2)//
B3-SBK
B3LYP M06-2X WB97XD 6-311G(d,p) LANL2DZ jorge-ADZP CEP-31G(d)
H(S) —0.4989111 —0.4949329 —0.4994107 —0.4998098 —0.4976372 —0.4990629 —0.4976372 —0.50000 —0.501404
C (p) —5.4072553 —5.3889199 —5.4021356 —37.7450232 —37.7081823 —37.7443295 —5.3562357 —37.784301 —5.411911
1(°P) —11.4195644 —11.3620756 —11.4234827 —6916.9965485 —11.1655703 —6912.4475638  —11.2928038 —6917.08438 —11.418326
0 (P) —15.8302314 —15.8147993 —15.8229638 —74.9181454 —74.8469202 —74.9132779 —15.7138381 —74.9820298 —15.831325
F (P) —24.0791664 —24.069276 —24.0725001 —99.5541705 —99.4647153 —99.5448709 —23.9126686 —99.6328137 —24.079057
Br (*P) —13.3432074 —13.286281 —13.3443594 —2572.6041754  —12.9305321 —2572.7779163  —13.21294 —2572.673405 —13.298831
Cl1 (%P) —14.8671357 —14.8146514 —14.8671859 —459.5851374 —14.7000294 —459.6012791 —14.7610655 —459.676627 —14.874994
B (*P) —2.6067915 —2.5938283 —2.6044398 —24.5693278 —24.5490146 —24.5689688 —2.5709085 —24.602036 —2.608324
N (*s) —9.7501765 —9.7495471 —9.7445826 —54.4750512 —54.4212013 —54.472899 —9.6880245 —54.5179596 —9.755396
Si °P) —3.7531519 —3.7253973 —3.7513013 —288.8921959 —3.6874233 —288.8986493 —3.7119526 —288.933243 —3.758968
S (p) —10.0648155 —10.0213649 —10.0636725 —397.5807252 —9.8868341 —397.5921211 —9.9839216 —397.654941 —10.073285
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