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Abstract
The structural and antioxidant activity of two flavonols, namely, Fisetin and Robinetin, have been investigated employing the 
density functional theory (DFT) using B3LYP functional and 6–311++G (d, p) basis set. The calculations were performed 
in the gas phase and under the solvent effect of water, dimethylsulfoxide (DMSO), methanol, and benzene. The hydrogen-
atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron 
transfer (SPLET) mechanisms were investigated to rationalize the radical scavenging capacities and to identify the favored 
antioxidant mechanism. Hence, the bond dissociation enthalpies (BDE) ionization potential (IP), IE, proton dissociation 
enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) related to each mechanism were reported and 
discussed in function of the solvent effect. For both flavonols, the results showed that 4′-OH hydroxyl is the preferred 
active site following the trend 4′-OH > 3′-OH > 3-OH > (5′-OH) > 7-OH. Besides, the HAT mechanism is energetically 
the most favored pathway. The energetically favored solvents follow the trends water > DMSO > benzene > methanol and 
benzene > DMSO > methanol > water, for Fisetin and Robinetin, respectively.
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Introduction

Flavonoid compounds were discovered in 1936 by the Hun-
garian Nobel laureate Albert Szent-Györgyi [1]. They are 
omnipresent in green plant cells and, therefore, expected 
to take part in the photosynthetic process [2]. Since their 
discovery, the study of these compounds has drastically 
increased, mainly because of their health benefits [3–5]. Fla-
vonoids are mainly found in fruits, vegetables, propolis, and 
honey; they represent a common constituent of the human 
diet [2, 6–10]. Nutritionists estimate the average human 
intake of flavonoids on a normal diet by 203.0 ± 243.2 mg/
day, with mostly quercetin and kaempferol [11–13]. The 
flavonoids’ structure is composed of two aromatic rings 
denoted A, B connected through three carbons in an oxy-
genated heterocycle supplement. Multiple groups could be 
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attached to the core structure, commonly hydroxyl, methoxy 
groups, and sugar. Differences in the structure of the hetero-
cycle (C ring) classify them as flavonols, flavones, flavanols, 
flavanones, and isoflavones (Fig. 1). Flavonols are character-
ized by a 2, 3-double bond, a 4-keto group, and a 3-hydroxyl 
group in the C-ring. The flavonol structures of Fisetin and 
Robinetin are depicted in Fig. 2.

Flavonoid compounds have various properties including 
the antiradical activity or free radical scavenging property 
[14, 15], anti-cancer [16–18], the control of cellular growth 
[19–21], the destruction of pathogen organisms [22, 23], 

and the inhibition of human immunodeficiency viruses [24, 
25]. Fisetin has been found in plants like Arbutus unedo 
L. [26, 27]; it is also abundant in strawberries and in some 
other fruits and vegetables [28]; and it has several biologi-
cal activities such anticancer activity [29] anti-inflammatory 
[30], anti-HIV [31], and enhances memory [32]. Robinetin 
which has been isolated from Intsia bijuga plant [33] showed 
a powerful inhibitory action on lipid peroxidation [28].

Flavonoid compounds including Fisetin and Robinetin 
have various biological activities but their ability to scav-
enge free radicals is still the most interesting [28, 34, 35]. 

Fig. 1  Structures of flavonols, flavones, flavanols, flavanones, and isoflavones
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These free radicals are dangerous and can damage biomol-
ecules such as proteins, membrane lipids, and nucleic acids 
[36, 37]; thus, they are involved in several diseases [38]. 
Fisetin [39–47] and Robinetin [47–49] have been reported 
for their antiradical activity but the solvent effect on this 
activity is investigated in details here for the first time.

Therefore, in this study, we report the antiradical activity 
of Fisetin and Robinetin by the use of density functional 
theory (DFT) applying the most known mechanisms: hydro-
gen-atom transfer (HAT), single electron transfer followed 
by proton transfer (SET-PT), and sequential proton loss 
electron transfer (SPLET) [50–52], together with the sol-
vent effect of polar, non-polar, protic, and aprotic solvents: 
benzene, DMSO, methanol, and water.

Theoretical and computational methods

The geometries of neutral molecules and the related species 
were firstly preoptimized by the PM7 semiempirical method 
as implemented in MOPAC2009 [53]. DFT calculations of 
optimization and vibrational frequencies were performed 
using B3LYP functional [54–56]; the exchange–correlation 
functional level was used without constraints, employing the 
6–311 +  + G(d,p) basis set [57–59] using Gaussian09 soft-
ware [60]. The B3LYP level of theory is commonly used for 
organic molecule property calculations, especially the anti-
radical properties of flavonoids and nanostructures derived 
from them [61–65]. The solvents’ effect was computed by 
DFT in the framework of the self-consistent reaction field 
polarizable continuum model (SCRF-PCM) [66–68], using 
the UAHF [69] set of solvation radii to build the cavity for 
the solute in its gas-phase equilibrium geometry. As imple-
mented in Gaussian09 software to mimic experimental 

conditions, the following dielectric constants were used; 
ε = 78.3553 was chosen to perform calculations in water 
solution, ε = 2.2706 for benzene, ε = 46.826 for dimethyl-
sulfoxide (DMSO), and ε = 32.613 for methanol.

The harmful action of free radicals (R⋅) can be avoided 
by scavenging them with flavonoids (FlOH) as shown in 
reaction (1):

The product of this reaction is flavonoid phenoxyl radi-
cal (Fl–O•). A higher stability of the radical (Fl–O•) corre-
sponds to a better efficiency of the antioxidant (Fl–OH). It 
is assumed that the resonance makes (Fl–O•) non-reactive 
(or less harmful) [70].

This reaction could happen through at least three mecha-
nisms [71, 72]:

a- The hydrogen-atom transfer (HAT) as shown in reac-
tion 2: this mechanism is characterized by the homolytic 
bond dissociation enthalpy (BDE) of OH group calcu-
lated as shown in Eq. 3

H(Fl-O•) is the enthalpy of the flavonoid phenoxyl radi-
cal generated after H abstraction, H(H) is the enthalpy 
of the hydrogen atom, and H(Fl–OH) is the enthalpy of 
the parent flavonoid molecule. A lower BDE value, usu-
ally related to a greater ability to donate a hydrogen atom 
from the hydroxyl group, results in an easier free radical 
scavenging reaction [40].

(1)FlOH + R
∙
→ FlO

∙ + RH

(2)FlOH → FlO
∙ + H

∙

(3)BDE = H(FlO
∙
) + H(H∙) − H(FlOH)

Fig. 2  a Robinetin and b Fisetin structures
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b- The single electron transfer followed by proton transfer 
(SET-PT): this mechanism occurs via two steps, starting 
from a single electron transfer characterized by the ioni-
zation potential (IP) as shown in reaction 4 and Eq. 5, 
respectively.

The second step is characterized by a proton transfer as a 
proton dissociation enthalpy (PDE) as shown in reaction 6 
and equation 7, respectively.

c- The sequential proton loss electron transfer (SPLET): 
this mechanism has two steps, starting from a deprotona-
tion characterized by the proton affinity (PA) as shown 
in reaction 8 and Eq. 9, respectively.

The second step consists of an electron transfer charac-
terized by the electron transfer enthalpy (ETE) as shown in 
reaction 10 and equation 10, respectively.

Starting from neutral Fisetin in the gas phase, an 
H-atom is removed from the 7-OH position, giving rise to 
the 7-O• radical. Likewise, 3-O•, 4′-O•, and 3′-O• radical 
species (four radicals) are generated (Fig. 2). Then, each 
neutral structure and radical species was optimized under 
B3LYP/6–311++G (d, p) theory level in gas phase, water, 
benzene, and DMSO. Thus, the generated radical species 
generated from Robinetin were assigned as 7-O•, 3-O•, 
3′-O•, 4′-O•, and 5′-O•. All the calculations were performed 
at 298.15 K.

DFT‑based reactivity descriptors

According to Koopman’s theorem [73], the following DFT-
based descriptors are defined as follows:

(4)FlOH → FlOH
∙+ + e

−

(5)IP = H
(

FlOH
+∙
)

+ H(e−) − H(FlOH)

(6)FlOH
∙+

→ FlO
∙ + H

+

(7)PDE = H(FlO
∙
) + H

(

H+
)

− H
(

FlOH
∙+
)

(8)FlOH → FlO
− + H

+

(9)PA = H(FlO
−
) + H

(

H+
)

− H(FlOH)

(10)FlO
−
→ FlO

∙ + e
−

(11)ETE = H(FlO
∙
) + H(e−) − H(FlO

−
)

The first ionization energy (I) and the highest occupied 
molecular orbital energy  (EHOMO)

The electron affinity (A) and the lowest unoccupied 
molecular orbital energy  (ELUMO)

where μ is the chemical potential, and χ is the 
electro-negativity.

Using a finite difference approximation and Koopmans’s 
theorem, the above expressions can be written as follows:

Results and discussion

HOMO–LUMO energy gaps

Figure 3 depicts the optimized geometries and the frontier 
orbitals HOMO and LUMO of Fisetin and Robinetin at 
B3LYP/6–311++G(d,p) theory level in gas phase.

HOMO and LUMO magnitudes are directly associated with 
the ability of the molecule to donate electrons and to accept 
electrons, respectively. Moreover, large HOMO–LUMO gap 
energy  (Egap) indicates a high molecular stability; in contrast, 
a small gap energy indicates a high chemical reactivity. The 
values of HOMO, LUMO, and their related energy gaps are 
shown in Table 1. The  Egap changes slightly in the gas phase, 
 Egap of Fisetin is calculated as 3.931 eV, whereas the  Egap for 
Robinetin is 3.932 eV. Robinetin has the lowest  Egap values 
3.676, 3.701, and 3.648 eV; in contrast, Fisetin has the fol-
lowing  Egap values 3.938, 3.950, and 3.912 eV in benzene, 
DMSO, and water, respectively. In contrast, Fisetin has shown 
(Fig. 4) in methanol lower  Egap value (3.753 eV) compared 
to Robinetin  Egap (3.843 eV). These  Egap values are in the 

(12)I ≈ −EHOMO

(13)A ≈ −ELUMO

(14)ΔEgap = ELUMO − EHOMO

(15)� = −x

(16)The chemical potential � ∶ � ≈
1

2
(E

LUMO
+ E

HOMO
)

(17)The global hardness η ∶ � ≈
1

2
(E

LUMO
− E

HOMO
)

(18)The global sof tness S ∶ S =
1

�

(19)The electrophilic index ω ∶ � =
�
2

2�
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same range as previous works which adopted the same level 
of theory and different basis sets [49, 74–76].

To evaluate the antioxidant properties of Fisetin and Robine-
tin, it is important to analyze the DFT-based reactivity descrip-
tors, especially the chemical hardness, chemical softness, and the 
ionization potential (Table 2). The chemical hardness is a meas-
ure of resistance to charge transfer; it is remarkable that there 
is a slight reduction in the magnitude of hardness of Robinetin 
(1.8470 eV) compared to Fisetin (1.8815 eV). Consequently, the 

magnitude of softness of Robinetin (0.5414 eV) is greater than 
that of Fisetin (0.5315 eV). Electronegativity is a measure of the 
tendency to attract electrons. It is observed that the IP value of 
Robinetin (5.8534 eV) is lesser than Fisetin (6.1805 eV), which 
indicates that electron donating capability of Robinetin is higher 
than that of Fisetin. The calculated molecular properties clearly 
confirm that Robinetin acts as an electron donor rather than 
electron acceptor better than Fisetin.

Fig. 3  The optimized geome-
tries of (a) Fisetin and (b) Robi-
netin at B3LYP/6–311++G(d, 
p) theory level in gas phase

Table 1  HOMO, LUMO, and 
gap energies (eV/molecule) 
of Fisetin and Robinetin at 
B3LYP/6–311++G(d,p) in the 
gas phase, water benzene, and 
DMSO solvents

Energy (eV) Gas phase Benzene DMSO Methanol Water

Fisetin HOMO  − 6.2243  − 6.1645  − 6.1419  − 5.9473  − 6.1805
LUMO  − 2.2934  − 2.2267  − 2.1913  − 2.1946  − 2.2686
Gap 3.9310 3.9378 3.9505 3.7527 3.9119

Robinetin HOMO  − 6.2755  − 5.8464  − 5.8722  − 6.0793  − 5.8534
LUMO  − 2.3437  − 2.1698  − 2.1709  − 2.2354  − 2.2049
Gap 3.9318 3.6765 3.7013 3.8439 3.6485

Fig. 4  Gap energy values of Fisetin and Robinetin in eV/molecule

Table 2  DFT-based reactivity descriptors: ionization potential (IP), 
electronic affinity (EA), chemical potential (μ), electronegativity (χ), 
hardness (η), softness (S), and the electrophilic index evaluation (w) 
for Fisetin and Robinotin at B3LYP/6–31++G(d, p) theory level in 
water in eV

Parameter Fisetin Robinetin

Ionization potential (IP) 6.1805 5.8534
Electronic affinity (EA) 2.2686 2.2049
Electro-negativity (χ) 4.0965 4.0666
chemical potential (μ)  − 4.0965  − 4.0666
Hardness (η) 1.8815 1.8470
Softness (S) 0.5315 0.5414
Electrophilic index (w) 4.4596 4.4769
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BDE, IP, PDE, PA, and ETE energies

Flavonoid compounds have the capability to protect cells 
from oxidative stress by scavenging the free radicals either 
by donating an H-atom. It is well known that the easiest 

homolytic cleavage of an O–H bond  (BDEmin, (IP + PDE)min, 
and (PA + ETE)min) indicates specifically the most favorable 
radical for the antioxidant activity.

Tables  3 and 4 show the computed thermodynamic 
parameters BDE, IE, PDE, PA, and ETE associated with the 

Table 3  Fisetin IP, BDE, PDE, 
PA, and ETE energy values in 
kJ/mol

The values in bold typeface indicate the lowest value for a given solvent

Fisetin Gas phase Benzene DMSO Methanol Water

IP 2.654 593.43 449.58 450.56 429.45
BDE 3-OH 338.20 335.98 320.92 325.80 319.01

3′-OH 307.46 313.90 312.56 316.08 310.37
4′-OH 296.46 302.53 300.73 304.72 299.13
7-OH 347.50 352.15 348.27 360.59 354.58

PDE 3-OH 44.37 154.28  − 10.11 63.15 78.92
3′-OH 95.70 132.20  − 18.47 53.44 70.29
4′-OH 19.19 120.83  − 30.30 42.07 59.05
7-OH 31.73 170.46 17.24 97.94 114.50

PA 3-OH 1368.98 430.25 127.59 147.90 181.16
3′-OH 1420.31 385.27 94.99 173.51 156.61
4′-OH 1343.80 365.24 80.70 137.32 146.87
7-OH 1356.34 375.95 92.26 153.35 163.18

ETE 3-OH 296.97 317.46 311.88 365.81 327.21
3′-OH 214.90 340.35 336.12 330.49 343.12
4′-OH 280.41 349.02 338.59 355.31 341.62
7-OH 318.91 387.93 374.56 395.14 380.77

Table 4  Robinetin IP, BDE, 
PDE, PA, and ETE energy 
values in kJ/mol

The values in bold typeface indicate the lowest value for a given solvent

Robinetin Gas Phase Benzene DMSO Methanol Water

IP 454.00 594.79 452.58 450.82 439.11
BDE 3-OH 311.34 337.79 321.85 330.03 328.09

3′-OH 340.43 317.97 316.97 321.26 324.44
4′-OH 347.21 282.31 282.69 291.06 294.25
5′-OH 274.98 345.69 332.21 330.26 344.21
7-OH 347.99 352.73 349.29 364.47 366.87

PDE 3-OH 1185.10 154.73  − 12.18 67.11 78.35
3′-OH 1214.19 134.91  − 17.06 58.35 74.70
4′-OH 1220.96 99.25  − 51.34 28.15 44.50
5′-OH 1148.73 162.63  − 1.82 67.35 94.47
7-OH 1221.75 169.67 15.26 101.56 117.13

PA 3-OH 1102.01 430.17 125.28 149.51 186.41
3′-OH 1121.34 382.75 93.83 169.66 167.06
4′-OH 1082.66 348.23 66.94 129.57 147.71
5′-OH 1126.64 436.10 127.16 172.37 191.69
7-OH 1105.83 375.61 91.64 153.01 170.90

ETE 3-OH 537.08 319.35 315.13 368.42 331.04
3′-OH 546.84 346.94 341.69 339.50 346.74
4′-OH 592.30 345.81 334.29 349.40 335.90
5′-OH 476.09 321.32 323.60 345.81 341.89
7-OH 569.92 388.85 376.21 399.37 385.34
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major three radical-scavenging mechanisms: HAT, SET-PT, 
and SPLET. Therefore, the most active site for the radical-
scavenging reaction and the thermodynamically preferable 
reaction pathway could be predicted. In addition to the gas 
phase, these parameters were computed in the presence of 
polar, non-polar, protic, and aprotic solvents. The solvents 
are organized from non-polar and aprotic to polar and protic 
starting from benzene, DMSO, methanol, then water.

The different positions of hydroxyls on A, B, and C rings 
of the flavonoid main structure directly impact on its radi-
cal scavenging potency. The most-active OH group of each 
studied flavonol was determined by the minimal sum of 
the enthalpies of the specific reaction pathways including 
 BDEmin, (IP + PDE)min, and (PA + ETE)min related to HAT, 
SET-PT, and SPLET mechanisms, respectively (based on 
the histograms in Fig. 5b and c and Fig. 6b and c). Robinetin 
exhibits a higher antioxidant activity than Fisetin and the 
4′-OH hydroxyl was found as the preferred active site for 
both flavonols, independently of the solvent nature and the 
adopted mechanism.

Robinetin is more active than Fisetin as revealed by BDE 
(Tables 3 and 4); this is in agreement with the experimental 

published results for the reduction of DPPH radical (IC50: 
11.02 ± 0.56 µM and 14.06 ± 0.21 µM) by Robinetin and 
Fisetin, respectively [77]. The most stable radical is 4′-O•, 
which results from a homolytic removal of the hydrogen 
atom from the OH group attached to the C4’ position; it is 
mainly due to the hydrogen bond between 3-OH and the 
4-oxo group and the keto-enol tautomerism via the 2,3-dou-
ble bond and the benzyl cycle. For Fisetin, B-ring has the 
most active antioxidant hydroxyls then A-ring followed by 
C-ring: B-ring > C-ring > A-ring. It exhibits the follow-
ing BDE, IP + PDE, and PA + ETE favorable hydroxyls 
4′-OH > 3′-OH > 3-OH > 7-OH (Fig. 5a-c). For Robinetin, 
the most stable radical is also 4′-O• and exhibits the follow-
ing BDE, IP + PDE, and PA + ETE order for the hydroxyl 
groups: 4′-OH > 3′-OH > 3-OH > 5′-OH > 7-OH (exception-
ally 5′-ArO• in the gas phase) as depicted in Fig. 6a, b and 
c. Several studies of solvent effects on flavonoids showed 
that the most favorable hydroxyl associated with the antioxi-
dant activity is 4′-OH as found in quercetin [78], myricetin 
[79], kaempferol [70], apigenin [80], and in diglycosylated 
flavonoids such isorhamnetin-3,5′-O-β-D-diglucoside and 
isorhamnetin-3,7-O-β-D-diglucoside [81].

275
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4'-OH
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c

Fig. 5  Fisetin energy values in kJ/mol. a BDE. b IP + PDE. c PA + ETE
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Compared to SET-PT and SPLET mechanisms, HAT is 
thermodynamically the most favored pathway [81] for the 
antioxidant activity of Fisetin and Robinetin (Tables 3 and 
4). Fisetin 4′-O• radical has a BDE energy need of 296.46, 
302.53, 300.73, 300.72, and 299.13 kJ/mol in gas phase, 

benzene, DMSO, methanol, and water, respectively. How-
ever, IP + PDE and PA + ETE values are higher than 400 kJ/
mol as shown in Fig. 5b and c . Robinetin has BDE energy 
need of 347.21, 282.31, 282.69, 291.06, and 294.25 kJ/
mol in gas phase, benzene, DMSO, methanol, and water 

700 750 800 850 900 950

Gas Phase

Benzene

DMSO

Water

Methanol

IP + PDE

7-OH 5'-OH 4'-OH 3'-OH 3-OH

380 580 780 980 1180 1380 1580 1780

Gas Phase

Benzene

DMSO

Water

Methanol

PA + ETE

7-OH 5'-OH 4'-OH 3'-OH 3-OH

a b

c

Fig. 6  Robinetin energy values in kJ/mol. a BDE. b IP + PDE. c PA + ETE

Table 5  4′-OH bond 
dissociation enthalpy values 
(kJ/mol) corresponding to the 
formation of radical species 
compared to reported values

4′-OH BDE Gas phase Benzene DMSO Methanol Water Theory level Ref

Fisetin 355.72 B3LYP/6–31+G(d,p) [43]
302.67 B3LYP/6–311++G(d,p) [39]
308.91 B3LYP/6–311++G(d,p) [82]
289.67 299.71 301.38 292.60 B3LYP/6–31G(d,p) [74]
301.00 310.00 302.00 B3LYP/6–311++ G(d,p) [83]
358.64 M06-2X/6–311+G(3df,2p) [85]
308.00 PM7 [47]
293.94 PM6 [84]
296.46 302.53 300.73 304.72 299.13 B3LYP/6–311++G(d,p) This work

Robinetin 310.57 B3LYP/6-311G(d,p) [49]
315.30 wB97XD/cc-pvtz [48]
298.41 PM7 [47]
347.21 282.31 282.69 291.06 294.25 B3LYP/6–311++G(d,p) This work

240   Page 8 of 14 Journal of Molecular Modeling (2022) 28: 240



1 3

respectively whereas IP + PDE and PA + ETE values are 
higher than 400 kJ/mol as shown in Fig. 6b and c.

Water is the most favored solvent (Fig. 5a); the BDE 
for 4′-O• Fisetin radical species pursues the following 
trend in solvents: water > DMSO > benzene > metha-
nol; in contrast as shown in Fig.  6a, the favored sol-
vent for 4′-O• Robinetin radical species is benzene: 
benzene > DMSO > methanol > water.

On the basis of the computed BDE, it has been dem-
onstrated that the 4′-O• radical species is more stable than 
any other radical species. These results are in agreement 

with many previous BDE determined by various scien-
tific reports [39, 47, 74, 82–84]. Through the analysis of 
the values shown in Table 5, it is possible to notice that 
the most BDE values were reported in gas phase; they vary 
in function of the level of theory: BDE values for Fisetin 
range from 289.67 [74] to 355.72 kJ/mol [43] calculated at 
B3LYP/6–31G(d,p) and B3LYP/6–31+G(d,p) levels of the-
ory, respectively. Robinetin BDE values range from 298.41 
[47] to 347.21 kJ/mol (this work) computed at PM7 and 
B3LYP/6–311+ +G(d,p), respectively.

Fig. 7  HOMO, LUMO and spin densities of Fisetin radical species
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Fig. 8  Density plot of the HOMO and LUMO compositions of Robinetin radical species
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HOMO, LUMO frontiers, spin densities, 
and the stability of the radical species

As shown in Fig. 7 and Fig. 8, the HOMO and LUMO fron-
tier compositions of all the radical species related to both fla-
vonols reveal clearly the presence of elevated charge density 
delocalization on the cinnamoyl part (C and B rings). Excep-
tionally, the 7-O• LUMO shows a charge density delocaliza-
tion on the A-ring and slightly in C-ring which is probably 
due to the resonance in just one cycle A-cycle in contrary 
for the other radicals: 4′-O•, 3′-O•, 3-O•, 5′-O• where the 
resonance exists over the cinnamoyl part.

The spin densities are an important parameter which pro-
vides information about the stability of radicals. According 
to Parkinson [86], the more delocalized the spin density in 
the radical, the easier the radical formed, and thus the lower 
is the BDE. Spin densities for Fisetin and Robinetin species 
were calculated (Fig. 7 and 8).

On one hand, Fig. 7 shows the spin densities of the Fisetin 
radical species 3-O•, 3′-O• and 7-O• corresponding to 0.306, 
0.306, and 0.298; these values are higher than the spin den-
sity of 4′-O• (0.254). On the other hand, Fig. 8 indicates that 
the spin densities of the Robinetin species 3-O•, 3′-O•, 5-O•, 
and 7-O• are 0.304, 0.309, 0.324, and 0.301 which are also 
higher than the spin density of 4′-O• (0.254). This means that 
the formation of 4′-O• is favorable, taking account that in this 
species, the spin densities are delocalized over the cinnamoyl 
part of the molecule, which contributes to the stability of the 
radical. Furthermore 4′-O• radical corresponds to the lowest 
BDE in all the studied solvents (Tables 3 and 4).

Conclusions

Quantum-chemical methods are still the reliable theoretical 
approaches to study flavonoids and their electronic proper-
ties, especially the antioxidant activity. In this work, density 
functional theory (DFT) method B3LYP/6–311++G(d,p) 
level of theory was utilized to investigate the antioxidant 
activity of two flavonols, namely, Fisetin and Robinetin, by 
comparing the following thermodynamic parameters: BDE, 
(IP + PDE), and (PA + ETE) related to the three fundamental 
mechanisms: hydrogen-atom transfer (HAT), single electron 
transfer followed by proton transfer (SET-PT), and sequen-
tial proton loss electron transfer (SPLET) mechanisms.

The results showed that 4′-OH hydroxyl is the pre-
ferred antioxidant active site for both Fisetin and Robi-
netin: 4′-OH > 3′-OH > 3-OH > (5′-OH) > 7-OH. Spin 
densities and orbital frontier analysis are in agreement 
with the stability of the 4′-O• radical species. HAT 
mechanism was found to be the most favored pathway 
besides the energetically preferred solvents, following 

the trends water > DMSO > benzene > methanol and ben-
zene > DMSO > methanol > water for Fisetin and Robinetin, 
respectively.
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