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Abstract
In this research, we have reported the electrical sensitivity of pristine C60 and silicon doped on C60 (SiC59) nanocages as 
sensors that can be used for detecting the presence of alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) cations. 
The computations are carried out at the B3LYP level of theory with a 6-31G(d) basis set. The atoms in molecules (AIM) 
and natural bond orbital (NBO) analyses are performed to evaluate the intermolecular interactions between cations and 
nanocages. The physical properties of the selected complexes are also analyzed by the frontier molecular orbital, energy gap, 
electronegativity, chemical hardness, softness, and other quantities such as work function, number of transferred electron, 
and dipole moment. The results show that the adsorption process is exothermic and with increasing the charge of cations, the 
adsorption energies enhance. Our findings also reveal a decrease in the energy gap along with an increase in the electrical 
conductivity of the respective complexes. Finally, the density of state calculations is presented to confirm the obtained results.
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Introduction

Fullerenes are a significant group of molecules in which 
large numbers of carbon atoms are locked together in an 
almost spherical shape. They have a graphite-like structure, 
but instead of all hexagonal sections, they also contain pen-
tagons of carbon atoms that form a sheet in the shape of a 
sphere, oval, or cylinder. Putting these pentagons and hexa-
gons together is essential for forming a spherical structure. 
A fullerene must have exactly 12 five-sided faces to close 
it in a spherical shape, but the number of hexagonal faces 
can be very different. It is an interesting molecule due to its 
symmetrical structure and reactivity to a variety of reagents.

Buckminsterfullerene [1] is one type of fullerene. Its 
molecules are spherical and contain 60 carbon atoms (12 
pentagons and 20 hexagons). The most stable and abundant 

fullerenes are C60 and C70. Therefore, most of the proper-
ties mentioned in the case of fullerenes are focused on these 
two types. In the C60 structure, the carbon atoms of wall 
have a hybridization between the π and σ orbitals. This is 
due to its spherical structure, which limits the conjugate π 
bonding among the carbon atoms. Hence, this phenomenon 
leads to high reactivity of C60 [2].

Among the various nanostructures, fullerenes have 
received a great deal of attention due to their unique proper-
ties, which has made them attractive in a wide range of pur-
poses. Known biomedical applications for fullerenes include 
the design of high-performance MRI contrast agents, X-ray 
imaging contrast agents, and photodynamic therapy [3–9]. 
They may also be used for drug and gene delivery systems in 
the body, in lubricants, and as catalysts. Other applications 
of fullerenes are mainly in the electronics, nanotechnology, 
materials science, and solar cells [10–12]. The doping fuller-
ene has also attracted a lot of interest for its exploration due 
to its exclusive assets. For example, the K and Rb doping 
with C60 (KxC60 and RbxC60) causes these compounds to 
become superconductors [13–18]. In addition, the antibacte-
rial activity [19], HIV-P inhibition [20], and photo cytotox-
icity [21] are some of the potential applications of the C60 
derivatives.
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Fullerenes are known as zero-dimensional closed-cage 
nanomaterials. Hence, the spherical shape of fullerene 
nanomaterials gives this nanomaterial a large surface area 
[22–25]. This feature is important for biosensors and sensor 
systems. Although fullerenes can be dissolved in a variety 
of solvents, surface modification is an effective way to use 
them for biosensor and sensor technology. The most use-
ful characteristic of the double bonds formed by the carbon 
structure in fullerenes is that they can be modified because 
they are able to easily respond to chemical reactions. Due to 
its spherical structure and 30 double bonds, it has the capac-
ity to form 30 bonds that need to be modified with various 
chemical agents [26].

The choice of C60 in this study is due to the fact that it 
is one of the most plentiful fullerenes which is owing to 
minimize the strain of related instability by reducing the π 
overlap at adjacent pentagons sites [27]. C60 is an effective 
acceptor component with high electron affinity for charge 
transfer. The significant influences of chemical adsorption 
of the cations on the electrical sensitivity of pristine C60 
and SiC59 nanocages could be the basis of new generation 
of electronic sensor design. It is well known that the heter-
oatom substitution of foreign atoms can modify and enhance 
the selectivity and sensitivity of C60s due to the different 
interactions of dopant and adsorbed factors [28]. The doping 
of C60 with the Si atom could modify the electronic prop-
erties due to inducted distortions in the neighboring posi-
tions. It can also alter the charge transfer and modifies the 
mechanic, chemical, and optic properties of C60.

The adsorption of metal ions on nanostructure surfaces 
has been observed in several theoretical and experimental 
studies [29–41]. The purpose of this work is to evaluate 
the adsorption of the alkali and alkaline–earth metal cati-
ons (M = Li+, Na+, K+, Be2+, Mg2+, Ca2+) on the pristine 
C60 and SiC59 nanocages. The titled interactions are theo-
retically investigated in terms of geometry, energies, and 
electronic structures using density functional theory (DFT). 
The topological parameters and charge transfer interactions 
are evaluated by AIM and NBO analyses, respectively. The 
effect of adsorbed cations on the electronic properties of 
pristine C60 and SiC59 nanocages is evaluated by frontier 
molecular orbital, energy gap, and chemical hardness and 
softness. These results may be useful for further studies on 
functionalization of the pristine and modified C60 nanocage 
as a sensor for the new compounds or drugs.

Computational details

In this paper, the structure of SiC59 is obtained by replacing 
the C atom at the head of a pentagon ring with the Si atom 
(Fig. 1). The complete optimization of geometry and the cal-
culation of properties on the pristine C60 and SiC59 surfaces 

with and without the metal cations of Be2+, Mg2+, Ca2+, 
Li+, Na+, and K+ are done using the B3LYP function [42, 
43] combined with the standard 6-31G(d) basis set. B3LYP 
has been revealed to be a reliable and commonly used func-
tional for the study of different nanostructures [44–53]. The 
quantum chemistry package GAMESS [54] has been used 
to carry out all these calculations. The adsorption energies 
(Eads) of metal cations on the nanocages are determined by 
the following equations:

where E(M@C60) and E(M@SiC59) are the total energies of the 
metal cations adsorbed on the pristine C60 and SiC59 nanoc-
ages, and E(C60), E(SiC59), and E(M) are referred to the energies 
of an isolated pristine C60, SiC59, and the mentioned metal 
cations, respectively. The adsorption energies of complexes 
are corrected for basis set superposition error (BSSE) using 
the counterpoise correction scheme predetermined by Boys 
and Bernardi [55]. The atoms in molecules (AIM) theory of 
Bader [56] is applied to evaluate the nature of the intermo-
lecular interactions by means of AIM 2000 software [57]. 
In this calculation, the B3LYP/6-31G(d) wave functions are 
used as input. The NBO analysis [58, 59] is also performed 
at the same level of theory in order to evaluate the natural 
electron configuration of adsorbing metal cations and the 
electron charge transfer between metal cations and nanoc-
ages. The GaussSum program [60] is applied to calculate 
the density of state (DOS) results and to get a more pre-
cise insight into the electronic properties of the analyzed 
structures. Finally, the quantum molecular descriptors of 
complexes such as softness (S), chemical hardness (η) [61], 
and electronegativity (χ) [62] are analyzed using the highest 
occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) energies.

Results and discussion

Molecular geometry and interaction energy

The complete optimization of geometry in the pristine C60 
and SiC59 structures as well as metal cations adsorbed on 
pristine C60 (M@C60) and SiC59 (M@SiC59) nanocages 
(M = Li+, Na+, K+, Be2+, Mg2+, and Ca2+) are performed 
using the DFT calculations at the B3LYP level of theory 
with the 6-31G(d) basis set. Figures 1, 2, and 3 show a num-
ber of the structures considered in this study. In the C60 
nanocage, the two typical bond lengths C–C and C = C are 
about 1.453 Å and 1.395 Å, respectively. The single bond 

(1)Eads = E(M@C60) − E(M) − E(C60)

(2)Eads = E(M@SiC59) − E(M) − E(SiC59)

148   Page 2 of 13 Journal of Molecular Modeling (2022) 28: 148



1 3

exists between the pentagonal and hexagonal rings, whereas 
the double bond is present in the hexagonal rings.

Our findings also show that in the SiC59 nanocage, the 
bond lengths of C–C and C = C connected to the Si atom are 
1.456 Å and 1.397 Å, respectively. These results are close 
to the same bonds in pristine C60 and do not change sig-
nificantly. On the other hand, the calculations indicate that 
the C–Si–C angle in the SiC59 nanocage is 90.7°, which is 
less than the C–C–C angle with sp3 hybridization (109.5°) 
in the C60 nanocage. When metal cations are adsorbed on 
the SiC59 nanocage, the C–Si–C angle for alkali and alka-
line earth cations changes during the complexation. It can 
be expressed as Li+ (88.3°), Na+ (88.5°), K+ (89.0°), Be2+ 
(83.6°), Mg2+ (86.9°), and Ca2+ (87.7°).

The adsorption energies (Eads) of M@C60 and M@
SiC59 are also computed to evaluate the stability of the 

considered complexes. The negative value of Eads indicates 
the exothermic character of the adsorption process. There-
fore, the addition of M cations leads to the formation of 
stable configurations. The theoretical results display that 
the alkaline earth cations increase the stability of all com-
plexes more than the alkali ones. As shown in Table 1, Eads 
is highly dependent on the nature of the different cations. 
For each ion group (alkali metal and alkaline earth), the 
calculations demonstrate that the Eads values for the M@
C60 and M@SiC59 complexes are approximately close to 
each other (see Table 1). Since these complexes are largely 
electrostatic in nature, it is easy to see that cations with 
higher charge density interact more strongly with nanoc-
ages. The data also show that the adsorption of alkaline 
earth cations on the SiC59 nanocage is stronger than the 
C60 one. However, the large values of Eads denote that the 

Fig. 1   The optimized structures and DOS plots of a fullerene C60 and b SiC59
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adsorption process is chemisorption and the related nanoc-
ages are highly sensitive to divalent cations.

Electronic properties

Density of state (DOS) analysis is performed on the pristine 
C60 nanocage, SiC59, and the different M@C60 and M@
SiC59 complexes to provide a comprehensive investigation 
of the effects of X-doping (X = Si) on the electronic structure 
and adsorption behavior of the metal cations on the C60 
nanocages. As shown in Table 1, the energy gap value for 
the pristine C60 nanocage is equal to 2.76 eV, which means 
that it is a semiconductor material. The calculated DOS plots 
(Figs. 1, 2, and 3) exhibit that the electronic properties of 
the C60 and SiC59 nanocages significantly change with the 
addition of metal cations. According to the M@C60 and 
M@SiC59 DOS plots (Figs. 2 and 3), the Eg and Fermi level 
(EFL, middle of the Eg at 0 K) of the alkaline earth complexes 
considerably change and shift toward lower energies. On the 
other hand, the results show that in the alkali complexes, Eg 
changes slightly downwards, which is negligible; thus, the 
DOS plots of alkali-adsorbed nanocages (plots not shown) 
are approximately close to the C60 and SiC59 nanocages.

The work function (ϕ) of a semiconductor can be calcu-
lated as the difference between the Fermi level energies and 
the vacuum level, which is the minimum energy required 
to separate one electron from the Fermi level to the infinite 
distance from the surface. The following equation indicates 
the calculated work function as:

where Einf is the electrostatic potential at infinity (assumed 
to be zero) and EFL is the Fermi level energy. In accordance 
with this guess, ϕ is equivalent to the negative amount of 
the Fermi level energy. It is obvious from Table 1 that the 
reduction in Fermi level is accompanied with the increment 
in work function. There is also a relationship between the 
emitted electron current density in vacuum (J) with the work 
function in exponential form (Richardson-Dushman equa-
tion), as given below:

According to this formula, A is the Richardson constant, T 
is the temperature, ϕ is the work function, and k is the Boltz-
mann constant. As can be seen, with increasing ϕ, the field 
emission properties (J) decrease. Hence, the work function 
is a major factor in evaluating the field electron emission.

(3)� = Einf − EFL

(4)J = AT2exp(−�∕kT)

The results of calculations also show that the adsorption 
of alkaline earth cations relative to the alkali ones in both 
the C60 and SiC59 nanocages leads to a significant increase 
in the work function and thus a noteworthy decrease in the 
emitted electron current density during the complexation. In 
fact, increasing the work function in these complexes can be 
attributed to the more charge transfer from the active sites 
of C60 and SiC59 nanocages to the alkaline earth cations 
compared to the alkali ones. Therefore, it can be concluded 
that adsorption of the alkaline earth cations may be more 
effective in evaluating the field emission properties of C60 
and SiC59 nanocages.

In the DOS diagrams of the C60 and SiC59 nanocages 
containing alkaline earth cations compared to alkali cati-
ons, the valence level appreciably shifts to lower energies, 
which is in accordance with a significant reduction in their 
band gaps (see Figs. 2 and 3). This means that the selected 
nanocages are more sensitive to alkaline earth cations with 
respect to alkali ones; thus, the Fermi level for alkaline earth 
cations adsorbed on nanocages would diminish from − 4.60 
and − 4.73 eV in C60 and SiC59 to − 11.16 and − 11.21 eV 
in Be2+, − 11.24 and − 11.03  eV in Mg2+, and − 10.51 
and − 10.43 eV in Ca2+, respectively.

The energy gap (Eg) is a major factor in determining the 
electrical conductivity of the materials, and a classic relation 
between them is as follows [63]:

where values of σ and k are the electric conductivity and 
the Boltzmann constant, respectively. It is clear that there is 
an inverse relationship between the energy gap values and 
their corresponding electrical conductivity. In other words, 
a decrease in Eg is associated with an increase in the elec-
trical conductivity (σ) and vice versa. Table 1 presents the 
obtained values of Eg for the pristine C60 and SiC59 nanoc-
ages and their analogous complexes. By comparing the Eg 
values, it is found that after the adsorption of metal cations 
on the nanocages, the energy gaps in both systems change to 
some extent, so that these changes are more in the alkaline 
earth cations than in the alkali ones.

AIM analysis

The AIM theory allows one to study the concept of chemical 
bond and the bond strength in terms of the electron density 
distribution function [56, 64]. It exploits the topological 
features of electron density, ρ(r), and thereby the definition 
of chemical bonding through the bond path and the bond 
critical point (BCP). The Laplacian of the electron den-
sity, 2ρ(r), is also a measure of the local concentrations of 
electron density and may be positive or negative. The total 

(5)��exp(−Eg∕2kT)

Fig. 2   The optimized structures and DOS plots of fullerene C60 with 
divalent metal cations (M = Be2+, Mg2+, and Ca2+) adsorbed at the 
center of a pentagon ring

◂
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energy density in a BCP, H(r), is another useful topological 
descriptor that provides supplementary information about 
the nature of the interactions.

A negative value of 2ρ(r) (i.e., covalent interactions) 
denotes the electron concentration at a particular point, 
while a positive value of 2ρ(r) (i.e., ionic interactions, van 
der Waals or hydrogen bonds) implies electron depletion 
[56]. The former interactions have a high value of the elec-
tron density in BCP of the order > 10−1 a.u., and for the lat-
ter cases, the value of ρ is quite small (~ 10−2 a.u. or less). 
It has also been reported that if 2ρ(r) > 0 and H(r) < 0, this 
interaction is at least partly covalent in nature [65–68]. Fig-
ure 4 shows the typical molecular graphs obtained from AIM 
analysis for the Be2+@C60 and Be2+@SiC59 complexes.

The calculated topological parameters for the M@C60 
and M@SiC59 complexes are shown in Table 2. As shown 
in this table, for all M@SiC59 complexes, the BCPs of inter-
action have low ρ, 2ρBCP > 0 and HBCP > 0. These values indi-
cate that the cation–π interaction in the studied complexes 
may be classified as the van der Waals interactions. How-
ever, in the Be2+ complex, the corresponding HBCP value 
is negative, meaning that this interaction is at least partly 
covalent (see Table 2). It is also apparent from this table that 
the values of ρSi…M and 2ρSi…M for the divalent complexes 
are greater than the values of the monovalent. This denotes 
that the interaction between the divalent cations and SiC59 
nanocage is stronger than the monovalent cations.

In the M@C60 complexes, the low ρC…M values and 
positive 2ρC…M also indicate a decrease in the electronic 
charge along the bond paths, which is specification of the 
van der Waals interactions (see Table 2). The interaction of 
the Be2+ complex is also the partially covalent in nature, due 
to the negative HBCP in this compound. It is also observed 
that for each ion group (alkali metal and alkaline earth), 
with an increase in the cation size from up to down, the 
values of ρBCP and 2ρBCP decrease as one goes from Be2+ 
(Li+) to Mg2+ (Na+) then to Ca2+ (K+) (Table 2). For the 
analyzed complexes, this trend corresponds to a decrease in 
the cation–π interactions strength in each group.

NBO analysis

The NBO analysis [58] is achieved to provide a complete 
investigation of the adsorption behavior of the metal cati-
ons on the C60 and SiC59 nanocages. It is originally devel-
oped as a way to quantify the contribution of the resonance 
structure to molecules [69–77]. Table 3 shows the results of 
the NBO analysis including the second order perturbation 

interaction energy, E(2), and the occupation numbers of the 
donor and acceptor orbitals at the B3LYP/6-31G(d) level 
of theory. As shown in this Table, the charge transfer takes 
place from C60 and SiC59 nanocages to the alkali and alka-
line cations. In other words, the dominant interaction in the 
analyzed complexes is between the σ-electrons of the donor 
species and an antibonding lone pair of the metal cations 
(σ → LP*). The result of calculations demonstrates that σC–C 
of the C60 and σC–Si of the SiC59 nanocages participate as 
donors and LP*cation acts as acceptor.

Based on the results of E(2) obtained from the NBO anal-
ysis, the interaction between cations with C60 and SiC59 
nanocages decreases with an increase in the atomic number 
and the size of the metals cations from up to down (see 
Table 3). The order of E(2) in the M@SiC59 complexes is as 
Be2+  > Mg2+  > Ca2+ ≈ Li+  > Na+  > K+. Hence, the results 
confirm that the SiC59 surface has the stronger interaction 
with the alkaline earth cations with respect to the alkali 
ones; as a result, larger values of E(2) are associated with 
stronger donor–acceptor interactions and greater stability 
of the complexes [28].

Frontier molecular orbital analysis

Our final study in this paper is to evaluate the reactivity of 
C60s by analyzing their electronic structure. Figures 5 and 
6 show the schematic diagrams of the HOMO and LUMO 
orbitals of the pristine C60, SiC59, and M@C60 and M@
SiC59 complexes related to Be2+ as the most stable structure 
studied in this work. Table 1 shows variable information 
about quantum molecular descriptors such as softness (S), 
chemical hardness (η) [61], and electronegativity (χ) [62], 
which can be expressed as follows:

As can be seen, these parameters are computed using 
HOMO and LUMO energies (EHOMO and ELUMO) accord-
ing to Koopman’s theorem equations [78].

According to the principle of electronegativity equali-
zation, formulated primarily by Sanderson [79–82], “when 
two or more atoms initially different in electronegativity 
are combined chemically, their electronegativities become 
equal in the molecule.” In the studied complexes, due to 
different electronegativity and chemical hardness, the 

(6)� =
(ELUMO − EHOMO)

2

(7)� =
−(ELUMO + EHOMO)

2

(8)S =
1

2�

Fig. 3   The optimized structures and DOS plots of SiC59 with diva-
lent metal cations (M = Be2+, Mg2+, and Ca2+) adsorbed at the center 
of a pentagon ring

◂
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electron density flux is from that of with less χ to that 
with more χ. In other words, the electron is transferred to 
the lower electronic chemical potential, until the electronic 
chemical potentials become equal. Because, the electron-
egativity of Mulliken is characterized by the negative of 

electronic chemical potential (χ =  − µ); thus, it must be 
constant everywhere. Hence, the values of χ and η obtained 
for calculating the number of electrons transferred (ΔN) 
from one system (nanocages) to another system (cations) 
[83] are applied as follows:

Table 1   Adsorption energies of 
alkali and alkaline earth cations 
on C60 and SiC59 nanocages 
(Eads, in eV), energies of 
HOMO and LUMO (in eV), gap 
energy (Eg, in eV), energy of 
Fermi level (EFL, in eV), change 
of Eg upon adsorption of cations 
(ΔE (%)), work function (ϕ, in 
eV), electronegativity (χ, in eV), 
hardness (η, in eV), softness (S, 
in eV−1), number of electrons 
transferred (ΔN), and dipole 
moment (μ, in debye)

Eads EHOMO EFL ELUMO Eg ΔE (%) ΔN ϕ μ χ η S

C60 ─ -5.98 -4.60 -3.22 2.76 ─ ─ 4.60 0.00 4.60 1.38 0.36
Li+  − 1.57  − 8.73  − 7.46  − 6.19 2.53  − 8.33  − 0.516 7.46 11.06 7.46 1.27 0.79
Na+  − 1.07  − 8.52  − 7.23  − 5.93 2.59  − 6.16  − 0.529 7.23 14.52 7.23 1.30 0.77
K+  − 0.66  − 8.33  − 7.01  − 5.70 2.63  − 4.71  − 0.500 7.01 17.97 7.01 1.31 0.76
Be2+  − 12.07  − 11.99  − 11.16  − 10.33 1.66  − 39.86  − 0.631 11.16 11.75 11.16 0.83 1.20
Mg2+  − 7.05  − 11.57  − 11.24  − 10.91 0.66  − 76.09  − 0.723 11.24 18.88 11.24 0.33 3.04
Ca2+  − 4.28  − 11.11  − 10.51  − 9.92 1.19  − 56.88  − 0.745 10.51 26.93 10.51 0.59 1.69
SiC59 ─  − 5.82  − 4.73  − 3.65 2.17 ─ ─ 4.73 0.20 4.73 1.08 0.46
Li+  − 1.48  − 8.68  − 7.69  − 6.69 1.98  − 8.76  − 0.519 7.69 10.68 7.69 0.99 1.01
Na+  − 1.04  − 8.51  − 7.51  − 6.52 1.98  − 8.76  − 0.534 7.51 13.73 7.51 0.99 1.01
K+  − 0.64  − 8.30  − 7.28  − 6.26 2.04  − 5.99  − 0.508 7.28 17.44 7.28 1.02 0.98
Be2+  − 12.25  − 11.95  − 11.21  − 10.46 1.49  − 31.34  − 0.633 11.21 9.84 11.21 0.75 1.34
Mg2+  − 7.50  − 11.59  − 11.03  − 10.48 1.12  − 48.39  − 0.729 11.03 15.80 11.03 0.56 1.79
Ca2+  − 4.47  − 11.15  − 10.43  − 9.72 1.44  − 33.64  − 0.754 10.43 24.08 10.43 0.72 1.39

Fig. 4   The molecular graphs 
of a Be2+@C60 and b Be2+@
SiC59 complexes obtained from 
the DFT calculation

Table 2   Topological parameters 
of the metal cations adsorbed 
on C60 and SiC59 nanocages 
(in a.u.)

C60 SiC59

Bond ρBCP
2ρBCP HBCP Bond ρBCP

2ρBCP HBCP

C∙∙∙Li+ 0.0154 0.0851 0.0044 Si∙∙∙Li+ 0.0105 0.0433 0.0022
C∙∙∙Na+ 0.0114 0.0556 0.0030 Si∙∙∙Na+ 0.0095 0.0353 0.0017
C∙∙∙K+ 0.0091 0.0369 0.0019 Si∙∙∙K+ 0.0067 0.0216 0.0011
C∙∙∙Be2+ 0.0588 0.2426 -0.0053 Si∙∙∙Be2+ 0.0530 0.0759 -0.0079
C∙∙∙Mg2+ 0.0286 0.1346 0.0035 Si∙∙∙Mg2+ 0.0311 0.0672 0.0015
C∙∙∙Ca2+ 0.0223 0.0920 0.0026 Si∙∙∙Ca2+ 0.0231 0.0532 0.0021
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In this equation, χSiC59 or C60, χM and ηSiC59 or C60, ηM are 
the electronegativity and chemical hardness of the SiC59 
or pristine C60 nanocages and the M cations, respectively. 
A positive value of ΔN shows that charge flows from the 
cations to the nanocages and the nanocages act as electron 
acceptors, while a negative value of ΔN displays that charge 
flows from the nanocages to the cations and the nanocages 
act as electron donors. Table 1 shows the number of elec-
trons transferred (ΔN) in the studied systems. As shown in 
table, the absolute values of ΔN in the divalent complexes 
are more than the monovalent ones. Hence, the electron-
donating ability in the former cases is greater than the latter.

Another major electronic property that affects the selected 
complexes is the dipole moment (μ). Table 1 shows the 
dipole moment of the pristine C60 and SiC59 nanocages 
and their complexes computed by the DFT method. It is 
well known that the large dipole moments exhibit the high 
reactivity of molecules [84, 85]. In other words, the more 

(9)ΔN =
1

2

(�SiC59orC60 − χM)

(�SiC59orC60 + �M)

Table 3   NBO analysis of M@C60 and M@SiC59 complexes, occu-
pation numbers of donor (O.N.D) and acceptor (O.N.A) orbitals and 
their energies (in kcal/mol) of some important orbitals

Mn+ Donor O.N.D Acceptor O.N.A E(2)

Li+ σC-C 1.9641 LP*Li 0.0180 1.09
Na+ σC-C 1.9660 LP*Na 0.0149 0.44
K+ σC-C 1.9650 LP*K 0.0023 0.22
Be2+ σC-C 1.9345 LP*Be 0.0572 12.70
Mg2+ σC-C 1.9609 LP*Mg 0.0122 2.20
Ca2+ σC-C 1.9652 LP*Ca 0.0026 0.69
Li+ σC-Si 1.9118 LP*Li 0.0219 0.85
Na+ σC-Si 1.9191 LP*Na 0.0107 0.19
K+ σC-Si 1.9222 LP*K 0.0026 0.07
Be2+ σC-Si 1.8415 LP*Be 0.1069 28.40
Mg2+ σC-Si 1.9186 LP*Mg 0.0224 3.52
Ca2+ σC-Si 1.9057 LP*Ca 0.0060 0.85

Fig. 5   The calculated orbit-
als localized at a HOMO and 
LUMO of isolated C60 b 
HOMO and LUMO of isolated 
SiC59
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adsorption between adsorbent and adsorbate can be attrib-
uted to the high dipole moment in the compounds [86]. It 
can be noted that during the adsorption process of metal cat-
ions on the nanocage surface, depending on the adsorption 
configurations, the size and direction of the electric dipole 
moment vector change. The results shown in Table 1 display 
that in most cases, the highest dipole moments belong to 
divalent complexes and the lowest of those correspond to 
monovalent ones.

Conclusion

In the present study, the adsorption of alkali (Li+, Na+, K+) 
and alkaline earth (Be2+, Mg2+, Ca2+) cations on the pris-
tine C60 and SiC59 nanocages as sensors with high electron 
donor is investigated, and their results are compared with 
together. The detection of these cations by the mentioned 
nanocages is considered by means of DFT calculations. 

From the obtained results, it can be understood that cati-
ons with a larger charge density interact more strongly with 
nanocages. The data show that the adsorption of alkaline 
earth cations on the SiC59 nanocage is stronger than the C60 
one. The large values of Eads denote that the adsorption pro-
cess is chemisorption and the related nanocages are highly 
sensitive to divalent cations. The results of AIM analysis 
show that the investigated interactions in complexes are from 
type of the van der Waals. It is apparent that the values of ρ 
and 2ρ for the divalent complexes are higher than those of the 
monovalent ones. This denotes that the interaction between 
the divalent cations and nanocages is stronger than the mon-
ovalent cations. The NBO analysis also shows that the SiC59 
surface has the stronger interaction with the alkaline earth 
cations with respect to the alkali ones; hence, larger values 
of E(2) are associated with stronger donor–acceptor interac-
tions and greater stability of the complexes. The calculated 
DOS plots show that the Eg and Fermi levels of the alkaline 
earth complexes considerably change and shift toward lower 

Fig. 6   The calculated orbit-
als localized at a HOMO and 
LUMO of the Be2+@C60 com-
plex and b HOMO and LUMO 
of the Be2+@SiC59 complex
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energies, while in the alkali complexes, Eg changes slightly 
downwards, which is negligible and approximately close to 
the selected nanocages. The results of calculations also show 
that the adsorption of alkaline earth cations relative to the 
alkali ones in both the C60 and SiC59 nanocages leads to a 
significant increase in the work function and thus a notewor-
thy decrease in the emitted electron current density during 
the complexation. By comparing the Eg values, it is found 
that after the adsorption of metal cations on the nanocages, 
the energy gaps in both systems change to some extent, so 
that these changes are more in the alkaline earth cations than 
in the alkali ones. Thus, the nanocages used in this study 
could be interest sensors for the detection of the alkaline 
earth cations.
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