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Abstract
The advance of computing and the development of modern quantum chemistry models such as Density Functional Theory
(DFT) have allowed scientists to perform fast in silico studies with accurate results. It also allowed for the achievement of
empirically unattainable quantities such as Potential Energy Surfaces (PES), a fundamental construct in various applications,
such as the study of weakly bound systems. One of DFT’s current weaknesses is a reliable description of PESs, due to a lack
of suitable exchange-correlation functionals. In general, other post-Hartree-Fock methods are employed, such as nth-order
Møller-Plesset’s Perturbation Theory (MPn) or Coupled Cluster Theory (CCSD(T)) with large basis sets. Despite producing
good results, these methods demand much computational power when applied to large systems. This work presents a novel
approach of PES description of the H2O2–Kr system using DFT by optimizing a long-range parameter present in some DFT
functionals, obtaining results similar to those of the MPn methods with somewhat less computational time necessary.
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Introduction

The Potential Energy Surface (PES) of a molecular system
is a core concept of atomic and molecular physics. A
PES shows how potential energy varies with respect to the
system’s geometric degrees of freedom. It governs every
atomic nucleus’s dynamics, dictating how they vibrate,
rotate and translate in space [1]. It can also describe
reaction paths [2] and regions of possible stable and unstable
molecular structures, as well as be used in the calculation of
several spectroscopic [3] and thermodynamic [4] properties
of a molecular system.

In the context of weakly bounded systems, such as
those in the interstellar medium, properties derived from
PES can be more easily compared to their corresponding

This article belongs to the Topical Collection: XXI-Brazilian
Symposium of Theoretical Chemistry (SBQT2021)
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experimental results [5]. Therefore, it is crucial to study this
type of systems, especially when applied to astronomical
sciences.

Given the great importance of a PES in studying a
molecular system, an accurate description of this surface is
key to deriving important properties that can be compared
with experimental results [2–4]. For this matter, the
description of PESs for small molecules can be done
using post-Hartree-Fock methods such as nth-order Møller-
Plesset Perturbation Theory (MPn) [6–9] or Coupled
Cluster Theory (CCSD(T)) [9, 10], along with large basis
sets such the Dunning basis [11]. The data acquired is then
fitted to an analytical form in order to study molecular
dynamical properties of the system [6].

Such methods require more time and computational
resources to evaluate the energy corrections of post-HF,
even when considering small molecules. For instance, when
studying collision dynamics of molecules such as propylene
oxide [9, 12], the concept of PES becomes less effective
due to the increased dimensionality of the hypersurface. As
such, a full description is compromised and, instead, the
PES is restricted to only some degrees of freedom.

On the other hand, Kohn-Sham (KS) Density Functional
Theory (DFT) adopts a different approach by considering
the energies and operators as functionals of the electron
density ρ(�r) [13]. This approach reduces the dimensionality
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of the problem from 3N variables to just 3 (N being
the number of electrons) and makes calculations faster
[14]. Despite the fact that some exchange-correlation
functionals describing optical and electronic properties of
several molecular systems [15–18] successfully, there is an
absence of appropriate functionals that can reproduce the
theoretically accurate MPn results for PESs [10].

The exchange-correlation functional Exc[ρ(�r)], a key
component of KS-DFT, is often approximated using a
plethora of different methods [19]. As an example of the
latter, a particular class known as long-range corrected
(LRC) hybrid density functionals, introduces a range
separation parameter ω that splits and modulates short- and
long-range interactions as follows [20]:

1

r
= erfc(ωr)

r
︸ ︷︷ ︸

SR

+ erf(ωr)

r
︸ ︷︷ ︸

LR

, (1)

The long-range parameter ω modulates the distance
where the range separation occurs. The lower the value of ω,
the farther this separation occurs. Usually, LR interactions
are modeled by HF exchange and correlation, while the
hybrid, semi-local exchange-correlation energies model the
SR interactions [21]. The substitution indicated in (1) is
done directly in the KS hamiltonian.

This class of functionals initially gained notoriety for
its implementation in correcting the HOMO-LUMO gap
calculations in organic materials [18]. Their respective
default ω values were determined by optimizing each LRC
functional against a training set of different molecular
systems in order to obtain more accurate thermochemical
and kinetic properties in mind [20, 22].

Since then, ω optimization has been used for calculating
optical properties [15–17] and binding energies [23] of
molecular systems. However, in principle, the ω parameter
could be tuned to fit an existing MPn reference PES via
optimization algorithms.

The present work aims to analyze ω optimization as an
alternative solution for the construction and description of
PESs for weakly bound systems. We compare the results
using both the default and optimized parameters with the
reference calculations using MP4, with the goal of obtaining
results similar to those of perturbative methods while
requiring less computational time.

Methodology

System geometry

The system of interest for this work consists of a hydrogen
peroxide molecule (H2O2) and a krypton atom (Kr), as
shown in Fig. 1. Not only is H2O2 a simple molecule, but

Fig. 1 Studied system comprised of a Kr atom (above, in blue) and a
H2O2 molecule (below), where the oxygen atoms are in red and the
hydrogen atoms are in gray. The fixed parameters D, d, χ are shown,
as well as the variables R and θ

it is also the smallest molecule in nature to present chirality
[8, 24]. Besides, its PESs are already well characterized and
adjusted to an analytical form [6].

We performed a rigid scan on the system using the
Gaussian 16 software [25], where the fixed parameters were
the O − O and H − O distances D = 1.450, Å and d =
0.966, Å, respectively, as well as the angle of incidence, set
to 90o. This was done to reduce the system’s dimensionality
and make comparisons with previous studies [6].

Only the dihedral angle θ , defined as the angle between
the two planes defined by the H − O − O bonds, and the
distance R between the Kr atom and the O − O bond’s
midpoint were the variables of interest of our PES scan.
These variables’ values ranged between 0o and 360o with
a step of 10o, and 3 Å and 5 Å with a step of 0.1 Å,
respectively.

The reference method used was the MP4 method, using
the aug-cc-pVTZ basis set. As is typical with this basis set,
we used the counterpoise correction to avoid the basis set
superposition error. This combination of method and basis
set has a good track record in producing reliable PESs [6–8].

The DFT calculations also used the same basis sets,
and the ωB97XD [20], the LC-BLYP [26], and the LC-
ωPBE [22] functionals were tentatively optimized. These
functionals were chosen for their previous use in a related
study [10].

ω optimization procedure

For the optimization procedure to be computationally
viable, an important assumption was made: for each

121   Page 2 of 7 J Mol Model (2022) 28: 121



LRC-DFT functional, there is a unique optimal, geometry-
independent long-range parameter ω such that the PES
scanned using it has the closest possible qualitative and
quantitative properties to the reference PES.

The upside of this approach is that, once the ω parameter
is optimized, no further MP4 calculations are necessary.
Therefore, one uses only DFT calculations with that opti-
mizedω value for every new point outside the reference range.

We computed the PES with an LRC-DFT functional and
a specific ω value. The same nuclear configurations were
used for MP4 and DFT PESs. Once the scan is completed,
the energy values of each and every nuclear configuration
were compared with the corresponding reference values via
a predetermined error metric.

This way, the idea of optimizing functionals is, therefore,
translated into minimizing the discrepancy � between
the reference and DFT PESs. In order to perform this
minimization, we used the Nelder-Mead [27] algorithm for
its simplicity and ease of implementation. In the present
work, we used the Mean Square Error (MSE), which returns
the root mean squared of the energy difference:

�MSE =
√

√

√

√

1

MN

N
∑

i=1

M
∑

j=1

(EMP 4
ij − EDFT

ij )2, (2)

where N = 21 is the number of radial points and M = 36
is the number of angular points.

For the ω optimization scheme described above, a Python
program was developed using the numpy [28] and scipy

[29] libraries. Additionally, we used the matplotlib [30]
library for the plots, and the os library to integrate the
Python program with the Linux operating system’s shell
and the Gaussian 16 software [25]. All programs and
scripts used here are available publically in an online
repository.

Results and discussion

MP4 Theory

By the end of MP4 calculations, the PES in Fig. 2 was
obtained. In order to facilitate comparisons, the remainder
of the graphs shown in this article will consist of cross-
sections of the PES taken along the R axis, with θ = 0o

fixed, and the θ axis, with R = 3.5 Å fixed. We will
compare the minima of both curves with their respective
DFT counterparts, as these points are relevant in several
applications of a PES [3, 6].

Fig. 2 PES of the H2O2–Kr
system with MP4/aug-cc-pVTZ
level
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Fig. 3 Radial (above) and angular (below) potential energy curves
of the H2O2–Kr system with ωB97xd/aug-cc-pVTZ calculation level
with and without ω optimization via MSE minimization compared
with the MP4/aug-cc-pVTZ level PEC

Typical behavior for interatomic potentials can be readily
observed in the radial curve: the energy rapidly increases
as the nuclei approach each other and, when they are far
apart, the energy approaches a fixed energy value (which
was taken to be 0 for θ = 0o, like all other potential surfaces
raised in this work). Between these asymptotic regions, an
equilibrium position at Re = 3.667Å can be found, whose
associated energy is De = 363.768 cm−1. These values were
estimated using an interpolated univariate spline algorithm
used for constructing the PEC plots.

For the angular section, the results obtained also agree
with similar results in the literature [6]. It is a symmetric,
periodic curve with two prominent energy barriers at the
cis (θ = 0°) and trans (θ = 180°) configurations of the
hydrogen peroxide molecule. Also, two potential wells are
present at θ = 100° and θ = 260°.

Optimized DFT

ωB97xd

After carrying out the electronic structure calculations using
the ωB97xd functional with the default ω = 0.20 Bohr−1

and optimized ω = 0.25 Bohr−1 value for the same set of
nuclear configurations as the reference PES, it is possible
to compare both the optimized (continuous lines) and non-
optimized (dashed lines) PECs present in Fig. 3, as well as
the reference PECs (in black).

Overall, there is a very noticeable change in behavior on
the optimized radial curve compared to the non-optimized
one, especially in the short-range, with very minimal
deviation past Re. In Table 1, the equilibrium positions
Re and dissociation energies De of the radial PECs are
compared. As expected, the optimized curve’s value of Re

Table 1 Equilibrium positions Re and dissociation energies De from
the radial PEC (with fixed θ = 0°), as well as energy barriers and wells
for the angular PEC (with fixed R = 3.5Å) and Mean Square Error

(MSE) obtained using ωB97xd/aug-cc-pVTZ level calculation before
and after optimization, along with their respective reference values

ωB97xd Non-optimized Optimized Reference (MP4)

Radial curve

Re(Å) 3.781 3.715 3.667

De (cm−1) 281.534 386.132 363.768

Angular curve

Cis barrier (cm−1) −201.923 −328.422 −326.920

Cis well (cm−1) −1963.828 −2084.677 −2070.256

Trans barrier (cm−1) −1035.049 −1183.820 −1068.637

Trans well (cm−1) −1963.828 −2084.677 −2070.256

Error metric (complete PES)

MSE (102cm−1) 0.946 0.697 –
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is closer to the reference value than the non-optimized
one.

In general, the non-optimized curve has a shallower well
compared to the reference curve, which is expected for
LRC functionals [10]. This underbinding of the system
was corrected during ω optimization. Likewise, the angular
curve was perfectly fit around the cis configuration. On the
other hand, around the trans barrier, the absolute value of
the energy difference was slightly more significant between
the reference curve and the optimized curve than the non-
optimized curve. These results are more quantitatively
displayed in Table 1.

LC-BLYP

By repeating the same procedures of the previous func-
tional, it is possible to compare both the optimized ω = 1.35
Bohr−1 and non-optimized ω = 0.47 Bohr−1 PECs for the
LC-BLYP functional, both of which are present in Figure
S1 as well as the reference PECs.

Once again, an improved description of the radial
potential can be noted, especially around the minimum
at R = 3.6 Å. For example, comparing the equilibrium
positions Re and dissociation energies De of the three
curves in Table S1, the discrepancy in both Re and De of the
optimized curve were lowered significantly in comparison
to the non-optimized one.

Also, with the values in Table S1, we noticed the behavior
of the angular curve improved noticeably, adjusting itself
perfectly around the cis configuration. However, for
points around the trans configuration, the optimized curve
approached the non-optimized curve’s behavior much more
than the reference one.

LC-ωPBE

By repeating once more the same procedures of the previous
functional, it is possible to compare both the optimized
ω = 0.55 Bohr−1 and non-optimized ω = 0.6 Bohr−1 PECs
for the LC-BLYP functional, both of which are present in
Figure S2 together with the reference PECs.

This functional had much worse performance on the
radial curve, staying almost the same as its non-optimized
counterpart, as we compare the equilibrium positions and
dissociation energies in Table S2. Similarly, comparing the
results in Table S2, the angular curve had unsatisfactory
results in the cis configuration. However, the trans
configuration was well adjusted.

Out of the three functionals analyzed, this one developed
poorly, and its use in optimized LRC-DFT is impractical.
This low performance is due to the LC-ωPBE functional not
fully contemplating the dispersion energy, which is heavily
accounted for in this weakly bound system [8].

Conclusions

Expecting to find alternative methods for obtaining PESs, an
MP4/aug-cc-pVTZ level PES was constructed for reference,
and an optimization program for long-range parameter
tuning of range-separated DFT functionals was developed
in order to reproduce MP4 level results.

In general, our results show that ω optimization can
improve DFT results, provided a single ω value can
optimize an entire PES. The functionals had an acceptable
overall performance: in particular, ωB97xd had the best
fit to the reference PES after the optimization. The
non-optimized ωB97xd underbound the system, and that
underbinding was corrected during ω optimization.

LC-BLYP had a mildly successful optimization, coming
in second place. Unlike ωB97xd and other LRC functionals
[10], it overbound the system prior to the procedure, and
afterwards, it was partially corrected. Unfortunately, LC-
ωPBE showed poor results in comparison. This was due
to the absence of dispersion corrections in this functional,
which are heavily accounted for in weakly bound systems
[8].

Qualitatively speaking, the computational time and effort
of the ω optimization were sufficient to recommend its
usage. Even though some applications require more precise
and accurate results that justify the longer, more expensive
calculations of post-HF methods, the optimized LRC-DFT
can still be viable for on-the-fly calculations involving
points near the minima, provided the optimization is done a
priori.

This consideration, along with lower computational
resource usage, promotes optimized LRC-DFT as a more
viable alternative to regular DFT, expanding the range of
possible methods for PES descriptions of weakly bound
systems. On the other hand, this research paves the way
for different functionals, minimization algorithms, and
molecular systems to be studied in the future under the same
goal of long-range optimization for PES descriptions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00894-022-05083-1.
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