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Abstract
Glyphosate is an herbicide widely used in agricultural activities causing contamination of soils and bodies of water and dam-
age to the biodiversity of ecosystems. In this context, the present study aimed to theoretically study the adsorption potential of 
the biopolymer cellulose (CE) and its diethylaminoethyl cellulose derivative (DEAEC) with the herbicide glyphosate (GLY). 
Theoretical calculations were performed using the density functional theory. Molecular electrostatic potential and frontier 
molecular orbital analyses were performed, which allowed identifying the possible sites of interaction of biopolymers that 
were in the functional groups –OH and  O− of cellulose and in the groups –O− and –NH+(CH2CH3)2 of the DEAEC. Reactivity 
indices chemical softness and hardness showed that both adsorbents could interact with adsorbate. Simulated IR indicated 
that the interactions could be evinced in experimental measurements by changes in the bands of glyphosate (ν(P = O), δ(P-
O–H), δ(C-N–H)) or in the bands of CE and DEAEC (ν(C–O), ν(C–H), ν(N–H)). The binding energies showed that the 
GLY interacts more effectively with CE than DEAEC. The ΔH prove that all processes are exothermic and the CE-GLY1 
interaction showed value of ΔG < 0. The topological results showed a greater number of interactions with electrostatic nature. 
The results found in the study show that the theoretical data provides useful information to support the use of biopolymers 
as matrices for glyphosate adsorption or other contaminants.
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Introduction

Resistance to herbicides by weeds has resulted in an increase 
in the concentration used of these pesticides [1]. The world 
estimate of losses in agricultural production by weeds is 

34% higher than the estimated losses with animal pests and 
pathogens (18 and 16%) [2], making the use of pesticides 
necessary from an economic and agricultural point of view.

In order to reduce the environmental impacts of agri-
cultural activities, environmental legislation for the use of 
pesticides and herbicides is becoming increasingly stringent 
[3–5]. The excessive use of herbicides has been related to 
the contamination of water bodies and soils, promoting an 
accumulation of these persistent contaminants, result of its 
high stability in the environment [6, 7].

An herbicide that has been extensively used since 1974 
is glyphosate (N-(phosphfometila) glycine —  C3H8NO5P) 
(Fig. 1), which is an organophosphate with a broadly effec-
tive spectrum, non-selective, and being one of the most used 
herbicides in the world [6–8]. The solubility of glyphosate 
in water is 12 g  L−1 [9] which justifies, together with its 
extensive use, its frequent detection in aquatic environments, 
especially groundwater from soils with shallow water table 
and/or low in oxides [6].

This paper belongs to the Topical Collection VIII Symposium on 
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Glyphosate can cause numerous environmental problems 
because it blocks an enzymatic pathway that exists only in 
plants and bacteria and has a toxic effect on animals [8, 10]. 
In this context, ways to remove this pollutant, mainly from 
water bodies, are of paramount importance for the protection 
of ecosystems and maintenance of biodiversity, requiring 
efficient methods with technological and economic feasi-
bility of application [11]. Among the most used removal 
methods are adsorptive processes, which give good qual-
ity to the treated effluent, operational flexibility, possibil-
ity of adsorbent regeneration, and effective and economical 
method [12].

Activated charcoal, as adsorbent, is still widely used, 
removing dyes [13], metals [14, 15], and radionuclides [16], 
among other pollutants; however, it is a high-value alterna-
tive [8]. Thus, the search for low-cost adsorbents [11], such 
as agricultural waste [17, 18] and industrial by-products 
[19], and natural substances such as minerals [20, 21] and 
biopolymers [22, 23] have increased.

In the biopolymers class, cellulose stands out because it is 
abundant [24], presents good potential as adsorbent material, 
and is a non-toxic, hydrophilic, biodegradable, and chemi-
cally modifiable material [25–27]. Its application extends to 
some derivatives such as cellulose acetate, diethylaminoetil 
cellulose, cellulose xanthate, methylcellulose, and nitrocel-
lulose among others that have applications in several areas 
besides adsorption [28–36].

Cellulose, together with some derivatives such as cellu-
lose acetate, carboxymethylcellulose, and cellulose xanthate, 
were theoretically studied by Reis et al. [22, 37] using cal-
culations based on the density functional theory (DFT). The 
biopolymers proved to be excellent adsorptive matrices for 
 Cd2+,  Cu2+, and  Cr3+ metals, providing promising prospects 
for the application of cellulose and its derivatives.

In this context, in view of the gradual increase in glyphosate 
concentrations in the environment and the excellent adsorp-
tive capacity of cellulose and derivatives, the present work 
aims to evaluate from theoretical calculations the interaction 
of glyphosate with cellulose and its diethylaminoethyl cellu-
lose derivative in order to verify the potential for contaminant 
removal. It is worth mentioning that the need for efficient 

adsorptive materials for removing contaminants is urgent and 
many possibilities need to be evaluated, which makes theo-
retical studies the best alternatives for directing experimental 
research, optimizing study time, and contributing with relevant 
structural information on biopolymers and glyphosate.

Computational methods

The studies of adsorptive processes were carried out using 
the DFT [38–41] with the hybrid functional wB97XD [42] 
and basis set 6–31 + G(d,p) [43–45]. The structures of the 
adsorption matrices of cellulose (CE) and diethylaminoetil 
cellulose (DEAEC) and the glyphosate adsorbate (GLY) 
were optimized to the minimum of energy. To confirm that 
optimized structures were at their minimum energy, frequency 
calculations were used and no imaginary frequency was found. 
No dispersion model was included, because the functional 
wB97XD has empirical corrections of atom–atom dispersion 
(EDFT-D = EKS-DFT − Edisp.) [42, 46–48]. The effect of water as 
solvent was considered in the optimization and in all calcu-
lations using the continuous solvent model SMD [49]. The 
basis set superposition error (BSSE) was not used because in 
previous work, it was evaluated that the effect of the solvent 
significantly modifies the results of the interaction process [50] 
and the BSSE is evaluated for gas phase.

The energies of the molecular orbitals HOMO (highest 
occupied molecular orbital) and LUMO (lowest unoccupied 
molecular orbital) were used to obtain chemical hardness (η) 
and chemical softness (S). By DFT, chemical hardness can be 
calculated by Eq. 1 [51]:

where ELUMO − EHOMO are the energies of the LUMO and 
HOMO, respectively. Equation 1 can be used taking into 
account Koopmans’ theorem [52].

Chemical softness is the inverse of hardness and was deter-
mined by Eq. 2:

Frontier molecular orbitals (FMOs) and molecular elec-
trostatic maps (MEPs) were generated with isovalue 0.02 
and density 0.001 au, respectively.

The binding energy (EBind) of the interaction process was 
quantified by Eq. 3:

where Ecomplex corresponds to the energy of the complex 
(adsorbent + adsorbate) and Eadsorbent and Eadsorbate are the 
electronic energies of the adsorbent (adsorptive matrix) and 
adsorbate (glyphosate), respectively. In the electronic energy 
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Fig. 1  Structural representation of the glyphosate molecule
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was added the zero point energy (ZPE). The Gibbs energy 
(ΔG) and enthalpy (ΔH) were also determined by the dif-
ference of the energies (Gibbs and enthalpy) of complex 
subtracted from the isolated values of the molecules, Eqs. 4 
and 5:

All calculations were performed using the Gaussian 09 
program [53] and some structures were drawn with the 
Gauss View program [54].

To characterize the interactions between glyphosate and 
biopolymers, as well as the nature of the interaction, QTAIM 
analyses [55–59] were performed. The parameters consid-
ered in the analyzes were electronic density (ρ(r)), lapla-
cian of electronic density (∇2ρ(r)), potential energy density 
(V(r)), kinetic energy density (G(r)), and energy density at 
the bond critical point (BCP) (H(r)), used for all complexes. 
The laplacian of electronic density allows analyzing the 
nature of the bond/interaction. ∇2ρ(r) < 0 refers to a covalent 
bond, while ∇2ρ(r) > 0 indicates noncovalent bond. A joint 
analysis with the energy density in BCP (H(r) = G(r) + V(r)) 
allows a more detailed description, in which ∇2ρ(r) > 0 and 
H(r) > 0 indicates that the bond, or interaction, will be elec-
trostatic, while ∇2ρ(r) > 0 and H(r) < 0 indicate that the 
interaction is partially covalent. All QTAIM analyses were 
performed using the AIMALL package [60].

Results and discussion

Structures before complexation

The biopolymers CE and DEAEC were studied using three 
monomeric units of each and the cut ends were completed 
with hydrogen atoms. This methodology was previously 
used by the research group [22, 23, 37] in order to achieve 
a lower computational cost and reduce as much as possible 
the loss of the original properties of CE and DEAEC. In 
addition to the CE, the study of the DEAEC was motivated 
by studies in the literature, which suggest that modified cel-
lulose, that is, with different functional groups inserted in its 
structure, lead to a higher adsorption potential.

To reproduce the possibilities of adsorption of the 
experimental data, two oxygen were deprotonated from CE 
and DEAEC. In this context, the DEAEC and CE present 
regions with negative charges and the DEAEC presents 
electropositive regions, which allow evaluating the adsorp-
tion potential of biopolymers under these conditions [50, 
61–63]. Only the adsorptive matrices were modified and 
the adsorbate (glyphosate) was kept in its neutral form.

(4)ΔG = Gcomplex − [Gadsorbent + Eadsorbate]

(5)ΔH = Hcomplex − [Hadsorbent + Hadsorbate]

Initially, an analysis of possible sites of interaction 
was performed and the analysis of molecular electrostatic 
potential (MEP), FMOs, and reactivity indices (RI) was 
used.

The molecular structures MEPs and FMOs for CE and 
DEAEC biopolymers are represented in Fig. 2. For MEPs, 
colors in blue tones indicate partially positive regions while 
red/orange colors are partially negative regions. MEP val-
ues are also represented in kcal  mol−1 (Fig. 2). Thus, it is 
found that for CE, the MEP shows that the regions with 
the highest negative partial charges are concentrated in 
the region of (–O−) with values of ≅  − 225.90 kcal  mol−1 
and − 213.35 kcal  mol−1. The DEAEC presents higher neg-
ative partial charges in the anionic oxygen groups (–O−) 
(≅ − 163.15 kcal  mol−1); on the other side of the DEAEC 
structure, it is possible to observe a positive partial charge 
region located in the protonated amine group (–NH+(CH2C
H3)2), ≅ 89.98 kcal  mol−1.

Analyzing the FMOs (Fig. 2), the HOMO and LUMO 
of the CE and DEAEC matrices can be observed. For CE, 
a LUMO with probability density is observed in groups 
–OH, while the HOMO have π orbitals in the anionic oxy-
gen group –O−.

The DEAEC biopolymer has a high probability density 
in the group –NH+(CH2CH3)2 for LUMO and, at the left 
end, regions with some probability density for the HOMO.

Figure 3 shows the MEP and the FMOs for adsorbate. It 
can be observed that GLY presents a LUMO orbital with 
a high probability density (Fig. 3a), which indicates that 
an interaction may occur between LUMO (adsorbate) and 
HOMO orbitals of the adsorbent. On the other hand, the 
HOMO shows possibilities of interaction with –O− group, 
nitrogen and hydrogen along the molecule chain.

Analyzing the MEP for the GLY (Fig.  3b), one can 
observe predominantly green and blue regions, that is, 
GLY has positive partial charges in most of its structure 
(values of MEPs ≅ 25.10 kcal  mol−1, 59.55 kcal  mol−1, and 
31.38 kcal  mol−1). A reddish region can be observed in the 
oxygen atom of the phosphate group (–PO(OH)2), ≅  − 45.8
1 kcal  mol−1, indicating that the molecule has a significant 
negative partial charge in this structural part.

From the energy of the HOMO and LUMO orbitals, the 
reactivity indices hardness (η) and softness (S) were deter-
mined (Table 1) and follows Pearson’s acid–base theory 
[64, 65].

The results of Table 1 show that the chemical softness 
and hardness are similar and it is possible to suggest that 
the interaction of GLY with both CE and DEAEC will be 
effective due to the proximity of the reactivity indices as 
expressed by Pearson’s concept [64, 65].

Analyzing in a general way the results of the FMO, MEP, 
and RI, it is possible to infer the importance of the quantum 
descriptors for the adsorption process because they allow 
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Fig. 2  Structural formula, molecular electrostatic potential and frontier molecular orbitals (HOMO and LUMO) for a cellulose and b diethylami-
noethyl cellulose. Values of MEPs in kcal  mol−1

Fig. 3  Representation of the 
frontier molecular orbitals 
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in (b) molecular electrostatic 
potential of glyphosate. Values 
of the MEP in kcal  mol−1
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to predict the interaction site, if the matrices will interact 
properly with the contaminate, reducing computational time, 
and are able to assist in the experimental part as described 
in several works [21, 66].

Complex structures

The post-complexation analyses were performed using the 
results obtained from the analyses of FMOs, MEPs, and 
reactivity index. The sites chosen to adsorb GLY in biopol-
ymers were terminal groups –O− and –OH for CE and for 

DEAEC in the –O− and –NH+(CH2CH3)2 groups. The study 
was carried out using optimized structures. Figures 4 and 5 
show the interaction sites analyzed.

The vibrational frequencies and the interaction bond 
lengths of the complexes formed were determined and 
are represented in Table 2. The bond distances deter-
mined ranged from 1.68 to 3.11 Å, indicating that the 
interaction actually occurs due to the proximity of the 
molecules. It is important to emphasize that the inter-
actions are formed predominantly by hydrogen bonds 
(Figs. 4 and 5) and that the interactions of GLY with CE 
were those with lower bond lengths when compared to 
interactions in DEAEC.

Experimental infrared (IR) data for glyphosate [68–72] 
show that the vibrational band between 1600 and 1800  cm−1 
is attributed to the –CO2 group (C = O). The  PO3H2 group 
showed stretching bands at 911–1223  cm−1 attributed to 
P-OH and bands in the region of 1090–1094   cm−1 and 
1268–1271  cm−1 corresponding to P-O− and P = O, respec-
tively. Angular deformations in the region of 830   cm−1 
(P–O–H) and between 1483 and 1563  cm−1 correspond to 

Table 1  Values of HOMO, LUMO, hardness (η), and softness (S) for 
the matrices (adsorbents) and the contaminant (adsorbate). Data in 
kcal  mol−1

HOMO LUMO (η) (S)

GLY  − 207.89 35.479 121.69 0.0082
CE  − 174.61 43.173 108.89 0.0092
DEAEC  − 177.48 42.225 109.85 0.0091

Fig. 4  Spatial arrangement and 
interaction positions for GLY 
and CE. In a configuration 01 
(CE-GLY1) and in b configura-
tion 02 (CE-GLY2)

a) b)

a

b

c

ef

d

g

Fig. 5  Spatial arrangement and 
interaction positions for GLY 
and DEAEC. In a configuration 
01 (DEAEC-GLY1) and b con-
figuration 02 (DEAEC-GLY2)

a) b)

h
i

j

l

k
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C–N–H. According to the literature, these are characteris-
tic bands for glyphosate at pH = 7 [67–71]. The theoretical 
results for glyphosate are close or within the experimental 
ranges (Table 2) proving that the calculations adequately 
describe the GLY molecule. The experimental IV for CE 
and DEAEC were not reported in the present work because 
only three monomeric units of each polymer were consid-
ered theoretically and the results may not be as suitable as 
for GLY.

Simulated IR after complexation showed that there is a 
change in vibrational bands for GLY and for the matrices 

(Table 2) and can be evidenced in experimental measure-
ments proving the interaction.

Adsorption processes involve the interaction of atoms, 
ions, or molecules with a surface and this interaction is due 
to energies derived from the electronic stability of each 
chemical species involved in the adsorption process. In this 
sense, the binding energy (EBind), Gibbs energy (ΔG), and 
enthalpy (ΔH) involved in the interactions were calculated 
and are represented in Table 3. The energies were obtained 
in order to observe the magnitude of the interactions of 
the complexes formed and the spontaneity related to each 
interaction.

From the results shown in Table 3, it can be noted that for 
EBind in general, the CE and DEAEC are good adsorption 
matrices for removing the GLY contaminant. The interac-
tion of GLY with the biopolymers CE and DEAEC in con-
figuration 01 were those that presented values EBind most 
significant for the adsorption process, which indicates that 
the interaction sites of Figs. 4a and 5a are the ones that best 
interact with the GLY molecule sites. The bond lengths for 
the complexes in configuration 01 were also the smallest as 
noted in Table 2.

The negative values ΔH prove that all processes are 
exothermic. The CE-GLY1 interaction showed value of 
ΔG < 0 indicating that this interaction is spontaneous 
(ΔG =  − 27.30 kcal  mol−1). It is noteworthy that the effect 
of the solvent significantly alters the Gibbs energy values of 
the adsorption process as highlighted by Costa et al. [50].

In order to characterize the nature of the interactions for 
the complexes formed, the topological analysis QTAIM was 
performed and the results are shown in Table 4. Table 4 
presents all topological parameters obtained from Quantum 
Theory of Atoms in Molecules by Bader et al. [56–58] for 
the interactions found (Figs. 4 and 5).

From the topological parameters, there are the following 
considerations: the electronic density can give indications of 
the strength of the interaction indirectly, because a higher 
value of electronic density is related to a greater bond force 
in the interaction BCP [71]. The CE-GLY1 complex has two 
strongest interactions a and c with values of ρ(r) = 0.046006 
u.a. and ρ(r) = 0.038594 u.a. and the CE-GLY2 has only one 
strongest interaction f with value of ρ(r) = 0.049337 u.a. 
DEAEC-GLY1 has one strong interaction h (ρ(r) = 0.034768 

Table 2  Calculated interaction distances (in Å) and vibrational fre-
quencies (in  cm−1) of GLY, CE, DEAEC, and complexes formed

Adsorbate/adsor-
bent/complex

Interaction 
position

Interaction 
distance

Type/frequency

GLY d,g,k - δ(P–O–H)/874.23
c,h - ν(P = O)/1218.56
j - δ(C–N–H)/1508.51
e - ν(C = O)/1777.17

CE a - ν(C–O)/1106.41
b - ν(C–O)/1135.97
c - ν(C–O)/1240.50
d - ν(C–O)/1084.84
e - ν(C–O)/1199.74
f - ν(C–O)/1151.81
g - ν(C–H)/3060.93

DEAEC h - ν(C–O)/1208.34
i - ν(C–O)/1163.63
j - ν(C–O)/1066.99
k - ν(N–H)/3490.87
l - ν(C–H)/3213.32

CE-GLY1 a 1.68 ν(C–O)/1059.22
b 2.86 ν(C–O)/ 1137.32
c 1.74 ν(C–O)/ 1149.84

ν(P = O)/1196.50
CE-GLY2 d 1.89 ν(C–O)/1107.78

δ(P–O–H)/872.51
e 2.57 ν(C = O)/1724.34
f 1.65 ν(C–O)/1112.60
g 2.97 ν(C–H)/3022.25

δ(P–O–H)/888.02
DEAEC-GLY1 h 1.79 ν(C–O)/1224.91

ν(P = O)/1195.48
i 2.26 ν(C–O)/1191.51
j 3.11 ν(C–O)/1115.96

δ(C-N–H)/1473.15
DEAEC-GLY2 k 2.18 ν(N–H)/3459.64

δ(P–O–H)/867.53
l 2.42 ν(C–H)/3216.09

Table 3  The binding energy (EBind) at 0 K, enthalpy (ΔH), and Gibbs 
energy (ΔG) at 298 K for the complexes studied. Values in kcal  mol−1

Complex EBind ΔH ΔG

CE-GLY1  − 45.11  − 45.70  − 27.30
CE-GLY2  − 14.50  − 15.03 1.52
DEAEC-GLY1  − 11.39  − 11.81 1.52
DEAEC-GLY2  − 8.18  − 7.02 4.50
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u.a) and for DEAEC-GLY2, the interaction k is the most 
significant (ρ(r) = 0.014307 u.a.). The ρ(r) values reflect the 
proximity of the contaminate with the matrices as described 
by the bond lengths of the interactions (Table 2).

The laplacians of electronic density are positive, indicat-
ing non-covalent interaction. The interactions a, f, and i are 
partially covalent according to the values of ∇2ρ(r) and H(r). 
All other interactions found are electrostatic interactions, 
which adequately reflect the energy values found.

The interaction energies in the BCPs can also be esti-
mated by the relation Eint = V(r)/2 [62, 72]. From the results 
(Table 4), it is possible to infer that the most effective 
interactions are a and c for CE-GLY1; f for CE-GLY2. For 
DEAEC-GLY1 is the interactions h and DEAEC-GLY2 is 
the interaction k. Eint values reflect the trend found for EBind 
and the bond lengths of the interactions.

Conclusion

The study presented the results obtained from the inter-
actions of the cellulose and diethylaminoethyl cellulose 
matrices with the herbicide glyphosate, in order to verify 
the potential for removal of the contaminant. The analysis 
of MEPs, FMOs, and reactivity indices allowed to infer the 
probable sites of interaction of the matrices with the herbi-
cide that were in the groups –O− and –OH of cellulose and 
in the groups –O− and –NH+(CH2CH3)2 of DEAEC. The 
QTAIM analysis corroborated with the results obtained 
for binding energy. Thus, the use of cellulose and diethyl-
aminoethyl cellulose biopolymers as adsorption matrices 
for the removal of the glyphosate herbicide from water 
bodies is feasible from a theoretical point of view, present-
ing good results that, theoretically, enable its use as an 
adsorbent material for removing the herbicide.
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DEAEC-GLY1 h  (H33-O103) 0.034768  + 0.106464  − 0.026408  + 0.026512  + 0.000104
i  (O30-H96) 0.015842  + 0.043943  − 0.011613  + 0.011299  − 0.000313
j  (O16-H94) 0.007710  + 0.028417  − 0.005466  + 0.006285  + 0.000819

DEAEC-GLY2 k  (H55-O99) 0.014307  + 0.047791  − 0.011304  + 0.011626  + 0.000322
l  (H54-O90) 0.009942  + 0.033793  − 0.007005  + 0.007726  + 0.000722
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