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Abstract
We applied the method of coarse-graining the intermolecular vibrations to molecular heterodimers assembled by double hydro-
gen bonding. This method is based on principal component analysis, by which the original atomic displacement vectors are
projected onto a lower-dimensional space spanned by a basis set of translations, librations, and intramolecular vibrations of the
constituent molecules. Compared with homodimers, the following points are particularly noted: (1) alignment of the constituent
molecules in a non-symmetric atomic arrangement of the whole system and (2) the scheme of reordering the bases to construct an
optimal coarse-grained space. We tested three schemes for reordering the intramolecular vibration vectors to determine that the
best one is equivalent to size reduction based on the singular value decomposition. The coarse-graining analysis affords three
parameters, Φintra, Φinter, and Φapp, which are relevant to the mechanical nature of the molecular assembly. The Φintra values
account for the internal stiffness of molecules, while the Φinter values are true stiffness constants of the intermolecular force and
show a good correlation with the association energies of the dimers. The Φapp values are the apparent intermolecular stiffness
smaller than Φinter, as a result of compensation for neglecting intramolecular vibrations. All these values are consistent with each
other under the coupled oscillator model, showing that the present coarse-graining analysis is valid for heterodimers as well as
homodimers.
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Introduction

Material properties are governed by both molecular structure
and the packing of molecular species in the solid state; hence,
the design, synthesis, andmodification of novel materials with
unique physicochemical properties are a significant pursuit for
crystal engineering in many fields [1–3]. Indeed, crystal poly-
morphs, which possess identical chemical compositions but
exist in different molecular arrangements and/or conforma-
tions, display distinct physical and chemical properties, in-
cluding energetic properties and bioavailability [4–7].
Therefore, polymorphism has been an important consideration
in many fields, including pharmaceuticals [8], food science
[9], dyes/pigments [10], and organic electronics [11].
Although it is not always possible to observe a sufficient

number of polymorphs and pseudopolymorphs [12–15], re-
searchers have employed sophisticated techniques to this
problem, including cocrystallization [16–20] and salification
[21–23]. Furthermore, in recent years, the elastic or plastic
behavior of molecular crystals, some of which may involve
local changes in molecular arrangement, has attracted increas-
ing attention [24]. For these reasons, analyzing supramolecu-
lar synthons or heterojunctions in molecular assemblies, in
terms of elastic bodymechanics, is of considerable importance
[25]. The nature of intermolecular forces is typically reflected
in the vibrational modes ofmolecular assemblies, especially in
the low-frequency (LF) region. Recently, several spectroscop-
ic methods, including terahertz absorption [26–30], Raman
scattering [31–34], and resonant two-photon ionization
[35–37], have been used to directly observe LF-mode vibra-
tions. These methods cover the detection of hydrogen bond-
ing, van der Waals interactions, overall molecular distortion,
and libration in systems such as hydrated sugars, nucleobase
pairs, and crystal polymorphs of some drugs.

Currently, the number of reports on normal-mode analysis
of large molecular assemblies such as crystals is increasing
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[38–41]. Several high-level quantum chemical calculations
with explicit full-atom representation have proven to be quite
successful [42–46]. However, strict atomistic models often
face problems related to the computational cost of the associ-
ated calculations. Unlike the intramolecular vibrations ob-
served by infrared spectroscopy, no appropriate simple
models are available for intermolecular vibrations. What
makes it difficult to reduce the computational cost is the
non-negligible coupling among the intermolecular and intra-
molecular vibrations in LF-mode vibrations. In an attempt to
reduce the computational cost while maintaining high accura-
cy, we have been developing a method of coarse-graining
atomic displacement vectors for normal vibrational modes
[47–50]. From the coarse-grained displacement vector and
frequency for each vibrational mode, we can evaluate the
stiffness constant of intermolecular hydrogen bonds. To date,
we have demonstrated that this size-reduction method is ap-
propriate for reproducing homodimers that are assembled
through double hydrogen bonding. For an assembly com-
posed of rigid molecules, in which only small coupling among
the intra- and intermolecular vibrations is expected, the dis-
placement vectors can be sufficiently represented in a coarse-
grained space spanned by twelve bases corresponding to
translational and rotational motions of the constituent mole-
cules [47]. For an assembly with an LF-mode intramolecular
vibration, such as methyl libration, the inclusion of certain
vibration modes in the coarse-grained space drastically im-
proves the representation of the original vibration motions
[48].

For molecular homodimers that consist of two identical
molecules, maintaining an appropriate symmetry (centric,
two-fold, mirror), the construction of the coarse-grained space
is rather straightforward: one can select the intramolecular
vibrations (alternately from two units in the assembly) in in-
creasing order of frequency until the dimension reaches the
number of the LF-mode vibrations of the original system.
However, the situation is not that simple for heterodimers that
consist of two different molecules or two identical molecules
in a non-symmetric orientation. It is necessary to overcome
this inevitable problem to apply our idea of coarse-graining to
molecular crystals and other assemblies. In this paper, we
describe our attempt to analyze the vibrations of 21 homo-
and heterodimers that are composed of six different molecules
(Fig. 1). The results are examined using a fidelity index that
we have proposed to evaluate the quality of the coarse-grained

space [50]. In addition, based on the coupled oscillator model,
we demonstrate that the intermolecular vibrations can be un-
derstood in terms of rigid-body mechanics, but far beyond the
conventional pseudodiatomic model.

Theory

For the Hessian analysis of molecular vibration, the displace-
ment vectors C are obtained by diagonalizing the mass-
weighted Hessian matrix (M−1/2 KM−1/2) with the eigenvalue
matrix Ω that contains the corresponding frequency ω.

M−1=2KM−1=2
� �

M1=2C
� �

¼ M1=2C
� �

Ω2 ð1Þ

The mass-weighted displacement (MWD) vectors W are
prepared by multiplying M1/2 with C and normalized with
matrix L−1, where L2 is the modal mass matrix [51]. The hat
(^) onC,W, etc., denotes that thesematrixes are normalized at
least with respect to each column.

cW ¼ M1=2bCL−1

L2 ¼ bCT
MbC

(
ð2Þ

The dimensions of the mass (M) and stiffness (K) matrixes
are 3 N × 3 N, where N is the number of constituent atoms.
Size reduction based on the idea of principal component anal-
ysis (a priori Karhunen-Loève analysis) leads to the following
formulation [47].

Γ1=2ΦΓ1=2
� �

Γ1=2Ξ
� �

¼ Γ1=2Ξ
� �

Ω2 ð3Þ

The matrices Γ−1 and Φ, which were named after the GF
method [52], contain coarse-grained inertial loads and force
constants, respectively. These matrices are given by basis
transformation from the Cartesian to an internal coordinate
system, using a transformation matrix (coarse-graining
matrix) B (3 N × n), which is composed of a reduced number
of atomic displacement vectors (n ≤ 3N) as basic motions [49].

The coarse-grained displacement bΞ is constructed using bC
(3N × n), which is a partial matrix of the original displacement
vectors, in case n < 3 N.

Γ−1 ≡ BTMB n� nð Þ ð4Þ
Φ ≡ BTKB n� nð Þ ð5Þ

Fig. 1 Molecular structures of monomers studied. Formic acid (FA), acetic acid (AA), trichloroacetic acid (TC), formamide (AD), formamidine (AN),
and urea (UR) are abbreviated as indicated
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Ξ̂ ≡ ΓBTMĈ n� nð Þ ð6Þ

Again, the coarse-grained MWD vectors (columns in U)
are prepared by multiplying Γ1/2 with Ξ and normalized with
matrix Λ−1, where Λ2 is the modal mass matrix under the
reduced dimensions of motions.

Û≡ Γ−1=2 Ξ̂Λ−1 n� nð Þ
Λ2 ≡ Ξ̂

T
Γ−1 Ξ̂ n� nð Þ

(
ð7Þ

If the set of frequencies for normal mode vibrations are
determined either computationally or experimentally, the
force constants can be obtained under the reduced dimension
of the selected motions (a partial matrix of Ω2 is used if n <
3 N). This set of force constants, combined with the appropri-
ate information concerning inertial loads, such as molecular
weight or moment of iner t ia , can reproduce the
eigenfrequencies in the LF region with comparable accuracy
to that derived from the original calculations ormeasurements.

Φ ¼ Γ−1=2bUΩ2bUT
Γ−1=2 n� nð Þ ð8Þ

It is more convenient to convert Φ into eΦ by applying
weighting factors N1/2, so that we can compare the stiffness
constants of different molecules with various molecular
weights using the same standard. The matrix N1/2 is defined
so that N1/2Γ−1 N1/2 gives the molecular weight (Mm) and the
tensor of inertia (Im) of the m-th (m = I, II, ..., X) molecular
unit [47].

eΦ ¼ N1=2ΦN1=2

N1=2Γ−1N1=2 ¼

M IE
O

O
II ⋱

MxE
O

O
Ix

0
BBB@

1
CCCA

8>>>>>><
>>>>>>:

ð9Þ

For the sake of simplicity, eΦ is denotedΦ in the rest of this
paper.

For a given molecular assembly, its LF-mode vibrations
can be approximately represented as a linear combination of
six basic motions, namely, three translations (Tmx, Tmy, Tmz)
and three librations (Rmx, Rmy, Rmz), for the m-th constituent
molecule (hereafter called “unit m”), if they are substantially
regarded as rigid bodies. For a molecular dimer (m = I or II),
for example, the twelve basic motions in total are contained in
the matrix B°, each column of which is implicitly normalized
but not necessarily orthogonalized.

B
∘ ¼ B

∘

I O
O B

∘

II

� �
B

∘

m ¼ Tmx Tmy Tmz Rmx Rmy Rmz

� �
; m ¼ I or II

8<
: ð10Þ

When the molecules have non-negligible flexibility, matrix
B should additionally contain some displacement vectors bI,1,
bI,2, bI,3, ... bI,kI and bII,1, bII,2, bII,3, ... bII,kII, the intramolec-
ular vibration modes of units I and II, respectively [48]. When
all the intramolecular vibrations are included in the basis set
(i.e., kI = 3 NI-6; kII = 3 NII-6), the eigenvectors are virtually
identical to those obtained from the original Hessian matrix
represented in the Cartesian coordinate system. However,
when the number of bases is restricted to a certain number,
the order of incorporating bases should be carefully selected to
optimize the coarse-grained space. In other words, for the
column numbers {j | 1 < j < 3(NI +NII)} of matrix B, it is nec-
essary to determine a new series of column vectors using
permutation mapping σ (Eq. 12).

fB∼ ¼ B
∘
b1⋯bkIþkII

� �
; b j

¼ bI;σ jð Þ
O

� �
or

O
bII;σ jð Þ

� �
ð11Þ

σ ¼ 1
σ 1ð Þ

2
σ 2ð Þ

⋯ j
σ jð Þ

⋯ 3 N I þ N IIð Þ
σ 3 N I þ N IIð Þð Þ

� �
ð12Þ

The squared elements ofΞ represent contributions from the
basic motions and individual intramolecular vibrations to the
normal mode vibration of the entire molecular system. To
maintainΞ as a regular matrix, the row dimension ofB should
coincide with that ofC. Therefore, for a given truncatedC that
contains displacement vectors of selected vibration modes, it
is necessary to retain the suitable components of the basis
transformation matrix, so that every displacement vector is
satisfactorily represented as a linear combination of the col-

umn vectors of eB: The tilde (~) on B, C, etc. denotes that they
are partial matrixes of the original ones.

eC ≃ eBbΞ 3N � nð Þ ð13Þ
The construction of the eB matrix requires selection of the

bm,k vector, which is accomplished by extracting eigenvectors
for the normal mode vibrations of an isolated single molecule
as a model of the unit m (hereafter called “model m”).
However, the structure of the model may change slightly after
forming an assembly, especially when hydrogen bonding is
involved. To remove the arbitrariness in choosing the coordi-
nation axes of the monomer, we determined the orientation of
the models so that their principal axes of inertia coincide with
those of the corresponding units arranged in the assembly
(Fig. 2). Such an alignment is more important in handling
heterodimers than in homodimers to minimize the error that
may arise from the decreased symmetry. In addition, the def-
inition of the coordinate system of the assembly is important
because the coarse-grained force constants such as ΦTx,Tx cor-
respond to the directions in a given coordinate. In the present

Page 3 of 14     140J Mol Model (2021) 27: 140



study, we defined the xy plane as the least-square plane of the
four atoms participating in the double hydrogen bond and the
x-axis as the average of two hydrogen-bonding vectors
projected onto the xy plane.

To obtain an appropriate permutation mapping σ, we ex-
amined three ways of augmenting the matrix B, where the
twelve basic motions are preferentially arranged in the original
order (Fig. 3). First, similar to a previous study regarding
homodimers [50], we incorporated the vectors in increasing
order of the frequency of intramolecular vibration (mapping
#1). Because the dimensions of the intramolecular vibration
differ between the two units, the vectors cannot be alternately
acquired from the two models. Second, we noted the elements
of Ξ as a measure of the contributions of the bases to
reproduced atomic displacement vectors in C (Eq. 13) (map-
ping #2). Third, we noted the elements of U as a measure of
the contributions of the MWD bases to the reproduced atomic
MWDvectors inW (mapping #3). This permutation reorders j
such that the sum of squared (σ(j), k) components of U (1 < k
< j) is the maximum of {Uσ(j) k

2 | σ(j) < k < 3(NI +NII)}.
When we note the selected atomic displacement vec-

tors contained in C, the MWD vectors are calculated
using Eq. 14.

W
~ ≡ M1=2C

~
L
~ −1

L
~ 2 ≡ C

~ T
MC

~

(
ð14Þ

Substituting C in Eq. 14 with that in Eq. 13, we can obtain

the MWD vectors W
� �

reproduced in the coarse-grained
space.

W≡M1=2eBbΞΛ−1

¼ M1=2eBΓ1=2bU ð15Þ

The quality of the coarse-grained space can be evaluated by
comparing the MWD vectors on the original atomistic
Cartesian coordinate bases with those reproduced on the re-
duced bases. We previously proposed the severest criterion
F4, which is the determinant of the correlation matrix R. The

matrixR can be further rewritten as the product of eL−1
andΛ,

and the diagonal elements are the ratio of the reproduced
modal masses to the original ones.

R ≡ W
~ T

W ¼ L
~ −1

Λ ð16Þ

model I

model II

unit I
unit II

assembly

y

x

y

x

z

z

y

x
z

Fig. 2 Definition of terms used in
this work (e.g., TC +AD dimer).
Normal mode analysis is
performed for an assembly that
consists of two molecular units.
Each model of the units is
calculated independently, after
which its orientation is adjusted to
the corresponding unit in the
assembly so that their principal
axes (arrows in red, green, and
blue) coincide
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F4 ¼ det Rð Þ ð17Þ

If the matrix W is identical to fW, the matrix R is equal to
the unit matrixE, meaning that F4 is maximized to unity when
the coarse-grained space is complete to describe the normal-

mode vibrations of the assembly. Therefore, fW is properly

approximated by W; which is further rewritten from Eq. 15

into its singular value decomposition (SVD), where eH is a
partial matrix containing MWD bases modified by Löwdin
symmetry orthogonalization, J is an orthonormal matrix, and
ρ1/2 is a set of singular values.

W
~ ≃W≡H~ρ1=2 JT

H
~ ≡ M1=2 B

~
Γ1=2

JT ≡ ρ−1=2 Û

8>><
>>: ð18Þ

By definition of SVD theory, the square of singular values

is obtained by diagonalizing WW
T
(Eq. 19). Consequently,eH is a partial matrix of bH; an orthonormal matrix that diago-

nalizes WW
T
; of which the eigenvalues are the diagonal el-

ements of UUT, namely, unity.

ρ ¼ bHT
WW

T
� �bH ¼ bUbUT

ð19Þ

In a coarse-grained space, some of the eigenvalues of

WW
T
become substantially zero (rank deficient), meaning

that we can pick up some non-zero singular values (ρi) that

can properly approximate fW based on Eq. 18. The singular

value is given by Eq. 20, which is actually an indicator max-
imized when selecting the intramolecular vibration vector in
mapping #3.

ρi ≃ U
~
U
~T

� �
ii
¼ ∑

i

m
Uim

2 ð20Þ

The above formulation supports the use of mapping #3 in
reordering matrix B. Mapping #2 also appears rational to
some extent, but the non-orthonormality of the Ξ matrix
shows that the diagonal elements of ΞTΞ cannot be singular
values of any form of SVD.

Computational details

According to the formulation described in the “Theory” sec-
tion, we modified our in-house program to calculate the Φ
matrix, so that it is applicable to heterodimers. The molecules
shown in Fig. 1 were used to construct 21 combinations, in-
cluding 6 homodimers and 15 heterodimers (Fig. 4). The ge-
ometry of these dimers was optimized using the Hartree-Fock
method with the 6-311G** basis set and subsequently sub-
jected to normal vibration analysis at the same level of calcu-
lation. The energies of the monomers and dimers were used to
calculate the dimerization energy (Eassoc) according to Eq. 21,

Eassoc ¼ Emodel I þ Emodel IIð Þ−Eassembly ð21Þ

where Emodel I and Emodel II are the energies of models I and II,
and Eassembly is that of the dimer. The basis set superpositional
error was corrected by the counterpoise method. These

Fig. 3 Flowchart for constructing
the coarse-grained space. The
cards titled mappings #1, #2, and
#3 can replace each other to
compare the validity of those
methods for selecting the bases
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molecular orbital calculations were performed in the
GAUSSIAN 09 W programs [53]. Visualization of the mole-
cules was performed with Jmol ver.14.4.0 [54].

Results and discussion

As a representative heterodimer, the results of TC +AD are
described here. Figure 5 plots the fidelity index (F4 in Eq. 17)
as a function of the dimension of the coarse-grained space that
was constructed according to methods #1–3 in the “Theory”
section. In Fig. 5a, where the bases were arranged in increas-
ing frequency order, the F4 value swings between high and

low levels at random, indicating that the bases were not prop-
erly selected, especially for the space of less than 25 dimen-
sions. In Fig. 5b, where the bases were arranged in decreasing
(ΞΤΞ)ii order, the F4 value seems much improved, maintain-
ing a sufficiently high level, although there are moderate de-
pressions at 20, 24, 27, and 32 dimensions. As shown in Fig.
5c, where the bases were arranged in decreasing (UΤU)ii order,
the F4 value maintains a high level as well, and the depression
at 24–27 dimensions was significantly improved. As men-
tioned in the “Theory” section, the sorting scheme of mapping
#3 seems quite reasonable, so that we can properly construct a
coarse-grained space for a given dimension, although there are
some occasional collapses. Such collapses imply a serious

Fig. 4 Molecular structures of
homo- and heterodimers studied
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unsatisfactory basis set, namely, a lack of a certain vibrational
motion crucial to the normal mode vibrations, which is partly
due to the restriction of Ξ and U to square matrixes. For all
reordering methods, the fidelity index is extremely low when
the dimension is 12, which can be explained by the lack of C–
C bond libration (#1 vibration mode of TC model).

As demonstrated previously, we are interested in intermo-
lecular stiffness with respect to a double hydrogen bond di-
rection, namely, the diagonal element ofΦ with respect to Tx,
Ty, and Tz motions. Figure 5 overlays the elements ΦTx,Tx,
ΦTy,Ty, and ΦTz,Tz as a function of the column dimension of
B [55]. The line graph shows a stepwise increment with the
increasing number of bases employed. This discontinuity in-
dicates that the translational motions of the two units are
coupled with a limited number of intramolecular vibrations:
in a poor basis set, an apparent stiffness with respect to this
motion is to some extent underestimated to compensate for the
neglected intramolecular flexibility [49]. The step height be-
tween the neighboring plots is a measure of coupling with the
added vibration mode. Similar to the case already reported for
homodimers, the continuity of Φ elements is not greatly dis-
turbed, even if the fidelity index sharply decreases, except for
the 12-dimensional space, which lacks an essential basis re-
sponsible for the molecular flexibility. Thus, we can define the
minimum coarse-graining dimension to be 13 for the TC +
AD case.

Similar results were obtained for the other homo- and het-
erodimers, suggesting that reorderingmapping #3was reliable
for constructing the coarse-grained space. The results of the
ΦTx,Tx plots against the dimension of the space, together with
the fidelity index F4, are shown in Fig. S1. For all dimers, the
trend of theΦTx,Tx plot was similar to that of TC +AD, and the
F4 value remained at a moderately high level in many dimen-
sions. For the dimers that contain either AA or TC, there was
an LF vibration mode that strongly contributed from intramo-
lecular C–C libration mode; hence, the minimum coarse-
grained space comprised 13 dimensions. For AA+AA, AA+
TC, and TC + TC dimers, the minimum dimensionality was
14. For the other dimers, coarse-graining in the 12-
dimensional space afforded a sufficiently high value for the
fidelity index.

Figure 6a displays a heatmap representation of the full ma-
trixU for a dimer composed of TC and AD before reordering.
The column index i designates a consecutive number of trans-
lations (1 ≤ i ≤ 3), librations (4 ≤ i ≤ 6), and normal mode vi-
brations (7 ≤ i ≤ 42) of the TC + AD dimer, while the row
index j designates a consecutive number of translations and
librations, as well as normal mode vibrations of TC (1 ≤ j ≤ 6,

�Fig. 5 Fidelity index (blue lines, right axis) and stiffness constants ΦTx,Tx

(■),ΦTy,Ty (●), andΦTz,Tz (▲) (black lines, left axis) for TC +ADdimer as
a function of the dimension of the coarse-grained space that was con-
structed by a mapping #1, b mapping #2, and c mapping #3
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13 ≤ j ≤ 30) and AD (7 ≤ j ≤ 12, 31 ≤ j ≤ 42). We can see from
this figure that the modes of unit motion largely contribute to
the mode of vibration of the assembly, while it becomes clear-
er when the rows are reordered according to the basis set

selection scheme, mapping #3 (Fig. 6b). For example, the #5
vibrational mode of the dimer (i = 11) is predominantly attrib-
uted to Tx motions of TC (j = 1) and AD (j = 7) with an op-
posite sign, together with an additional contribution from
the Rz motion of AD (j = 12). This can be visually under-
stood from the molecular model (Fig. 7a), which shows that
the #5 vibration is attributed to the stretching mode between
TC and AD, although the center of mass is quite biased
toward the TC side; hence, it is well approximated with
the Tx motion of the AD model (Fig. 7b). In other words,
regarding the TC + AD dimer, the #5 vibration directly re-
flects information about the intermolecular force of their
double hydrogen bonding.

Figure 6b shows that the Tx motions of TC and AD also
contribute to the #13, #15 (Fig. 7c), and #18 (Fig. 7e) vibra-
tions of the dimer, and the main components of those vibra-
tions are the Rzmotion of AD (j = 12), #3 mode of TC (j = 15)
(Fig. 7d), and #6 mode of TC (j = 18) (Fig. 7f), respectively.
Consequently, these intramolecular vibrations are moderately
coupled with the Tx motions of the constituent units through
hydrogen bonding. As described earlier, this type of coupling
is responsible for the stepwise behavior of the Φ plot. This is
easily understood if one imagines that the assembly is approx-
imated as a series connection of springs, where the apparent
force constant is underestimated because of the neglect of the
coupled springs. After dissolving all of the contributions from
coupled springs, we can obtain the true force constant of the
spring of interest. Regarding the intermolecular hydrogen
bonding interactions discussed in this study, we denote the
apparent stiffness in the minimum coarse-grained space
(mostly, the fidelity index >0.8) as Φapp and the true stiffness
in the full-dimensional space as Φinter [48]. Table 1 summa-
rizes the values of Φapp and Φinter for all molecular dimers
studied.

Concerning the physical meaning of the step height of the
Φ graphs, we previously proposed an analysis of intermolec-
ular vibrations based on a coupled oscillator model that con-
tains a series connection of three springs. The formulation of
Φintra (Eq. 22) was initially derived from the rigorous treat-
ment of a symmetric four-body model and later proved to
approximately hold for an asymmetric model. According to
Eq. 22, we can estimate the intramolecular stiffness Φintra av-
eraged over TC and AD. For example, this value is calculated
to be 115 N m−1 using Eq. 22, with values of Φapp =
35.4 N m−1 and Φinter = 44.1 N m−1. Table 2 summarizes the
average intramolecular stiffness for all the dimers studied. The
diagonal items in this table are the values from homodimers,
namely, intramolecular stiffness intrinsic to respective mole-
cules, and some of them are refinements of our previous report
[48, 56]. TC exhibits an extremely low value (86.2 N m−1),
probably because of its flexible C–Cl bond as compared with
a C-H bond. Conversely, AD gave the highest value
(370 N m−1) among the six molecules, reflecting its rigid

Fig. 6 Heatmap of the matrixU for TC +AD dimer. a Bases arranged by
frequency for each model; b bases arranged by selected order using
mapping #3. Enlarged versions of original figures are given in Figs. S2
and S3
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skeleton supported by extended π-conjugation.

Φintra ¼
Φ2
inter− Φinter−Φapp

� �2
2 Φinter−Φapp

� � ð22Þ

The idea of the averaged intramolecular stiffness is applied
to the individual one for each contribution of the intramolec-
ular vibration mode taken into account in the n-th step. In Eq.

23, eΦapp;n and eΦintra;n are the apparent stiffness and newly
contributed intramolecular stiffness, respectively, in the di-
mension of n.

Φintra;n ¼
Φ2
app;n− Φapp;n−Φapp;n−1

� �2
2 Φapp;n−Φapp;n−1
� � ð23Þ

Here, we define Φ−1
ser as the sum of Φ−1

intra;n over n from the

minimum to the full dimensions of the coarse-grained space.
This corresponds to the synthetic compliance of a series con-
nection of springs.

Φ−1
ser ¼ ∑

3N

n
Φ −1
intra;n ð24Þ

Interestingly, the plot of Φser against Φintra shows excellent
linearity over all 21 dimers, with an incline of nearly 1

Fig. 7 Schematic representation
of the molecular motion for a #5,
c #9, and e #12 vibration modes
of TC +AD dimer; bTxmotion of
AD; d #3, and f #6 vibration
modes of TC

Table 1 Values of force constants (in N m−1) for Φapp (left) and Φinter

(right)

FA AA TC AD AN UR

FA 41.2/44.8 41.5/45.8 36.5/44.7 38.0/40.7 39.5/44.5 38.7/43.1

AA 41.7/46.7 37.2/46.5 37.3/40.5 38.3/43.4 38.0/42.5

TC 32.2/42.9 35.4/44.1 37.8/51.9 36.6/47.7

AD 31.2/32.7 29.4/31.4 31.2/33.2

AN 27.1/29.3 29.1/31.4

UR 31.1/33.6

Table 2 Intramolecular stiffness of molecular dimers derived from Eq.
22

FA AA TC AD AN UR

FA 282 238 118 298 196 209

AA 215 111 261 181 199

TC 86.2 107 88.2 96.8

AD 370 248 271

AN 193 211

UR 223
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(incline = 0.999; intercept = −15.0 N m−1; R2 = 0.999)
(Fig. 8). This result suggests that the internal stiffness of the
molecule is well explained by a series connection of springs,
for each of which the force constant is Φintra,n: for a coarse-
grained space with a small dimension, most springs are
“locked” to behave as rigid bodies and the apparent stiffness
of the entire coupled oscillator is somewhat smaller than the
true Φinter. As the dimension increases, the rigid bodies are
“unlocked” to behave as springs and the apparent stiffness
approaches the true value of Φinter.

The Φinter values reflect the intrinsic nature of intermolec-
ular interactions, namely, hydrogen bonding interactions in
the present case. Therefore, we can expect some relationship
between the Φinter and the association energy of the dimer,
Eassoc. The smallest and largest association energies among
those studied were 36.7 (AN+AN) and 63.5 (TC + AN) kJ
mol−1, respectively, in which dimers had the smallest and
largest Φinter values of 29.3 and 51.9 N m−1. Figure 9 shows
that both values demonstrate a moderate positive correlation,
with an incline of 9.4 × 10−4 Nm−1/J mol−1 and an intercept of

Fig. 8 Correlation between Φser (synthetic stiffness based on a series
connection model of springs) and Φintra (averaged intramolecular
stiffness)

Fig. 9 Correlations among Φinter, Φapp, and Eassoc

Fig. 10 a Comparison of ΦPDA vs. Φapp; b comparison of ΦCOM vs. Φapp
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− 5.7 N m−1 (R2 = 0.903). It seems natural but not quite obvi-
ous that the more the assembly is energetically favored, the
higher the intermolecular stiffness is. In other words, Eassoc

and Φinter are independent parameters that determine the depth
and curvature of the potential curve. The unit of the incline can
be converted to mol m−2, implying that the inverse square root
of this value indicates a distance somewhat characteristic to
these series of double hydrogen-bonded dimers. Based on the
harmonic oscillator model, we can propose a simple relation-
ship (Eq. 25) between energy E and distance D. A character-
istic distance D0 can then be defined as the half-width of the
hypothetical quadratic potential curve at E = 0, which is a
measure of the positional tolerance of the constituent mole-
cules. The linear relationship in Fig. 9 affords an average D0

value of 1.9 Å for the series of double hydrogen-bonded di-
mers in this study. This index might change depending on the
nature of intermolecular interactions, including π-stacking,
van der Waals forces, and hydrogen bonding.

E ¼ 1

2
NAΦinterD2−Eassoc

D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eassoc

NAΦinter

r
8><
>: ð25Þ

For Φapp, conversely, there was an appreciable deviation
from the least-square line (line not shown). In view of the
nature of theΦapp, which is the apparent stiffness that has been
modified by coupling with intramolecular vibrations, it seems
natural that it shows no apparent correlation with Φinter. The
discrepancy betweenΦapp and Φinter is attributed to the follow-
ing reasons: (i) the stretching mode vibration of a molecular
dimer is not always pure antisymmetric translational motion,
but rather a mixture of shearing, libration, and so on; (ii)
neglect of the intrinsic flexibility of the constituent mole-
cules causes serious errors in calculating the force constant.
For reason (i), contributions other than antisymmetric trans-
lation became appreciably large when the symmetry axes of
the monomers did not coincide with the direction of hydro-
gen bonding. Even though a moderately symmetric AA+
AA dimer is employed, the stretching mode has a nearly
20% contribution from Rz + Rz motion, and the situation
seems similar for all the dimers studied in this paper. The
effect arising from reasons (i) and (ii) will be highlighted by
a comparison of the Φapp with the force constant ΦPDA

derived from pseudodiatomic approximation (PDA), in
which each constituent molecule is regarded as a frozen
rigid body with a given molecular weight [57]. The force
constant ΦPDA can be calculated with the angular frequency
ωstretch for stretch mode vibration and the reciprocal masses
ΓI and ΓII, which are the inverse of the molar masses of MI

and MII, respectively. Because of its simplified derivation,
it is often pointed out that there is only a poor correlation
between the force constants based on PDA and the associ-
ation energy [58]. Figure 10(a) shows a plot of the ΦPDA

values against the Φapp, demonstrating sizable deviation
from the diagonal line, although there is a moderate corre-
lation with the homodimer data.

ΦPDA ¼ ω2
stretch

Γ I þ Γ II
ð26Þ

Next, we attempt to obtain an explicit representation of the
coupling of vibration with respect to the inter- and intramo-
lecular stiffness. To this end, we have previously employed a
four-body coupled oscillator model (COM) composed of four
masses, A, B, C, D, and springs between them (Fig. S4). One
monomer is approximated with a weightMI equally distribut-
ed on A and B, and a spring with a force constant of Φintra,I.
Another monomer with a weight of MII is represented by a
similar oscillator composed of C and D connected with a
spring of Φintra,II. The two oscillators are connected with a
spring with a force constant of Φinter (<<Φintra,I, Φintra,II) be-
tween B and C, and the four bodies are constrained to one-
dimensional movement. Diagonalization of the mass-
weighted Hessian matrix of this model is performed, where
the reciprocal masses ΓI and ΓII again give us a set of squared
angular frequencies as eigenvalues. The lowest non-zero so-
lution, ωLF

2, corresponds to a vibration mode primarily attrib-
uted to the stretching of B–C. Meanwhile, high-frequency
solutions ωHF(ap)

2 and ωHF(ip)
2 correspond to the anti-phase

and in-phase vibrations, respectively, localized at the A-B
and C-D pairs. Eq. 28 allows us to calculate an apparent force
constant ΦCOM for the spring between B and C. This proce-
dure assumes consolidation of the oscillators A–B and C–D
pairs, but moves far beyond the simple pseudodiatomic ap-
proximation, in that we can properly take into account the
intramolecular stiffness of the constituent molecules.

Γ IΦintra;I −Γ IΦintra;I 0 0

−Γ IΦintra;I Γ I Φintra;I þ Φinter

� �
−

ffiffiffiffiffiffiffiffiffiffiffi
Γ IΓ II

p
Φinter 0

0 −
ffiffiffiffiffiffiffiffiffiffiffi
Γ IΓ II

p
Φinter Γ II Φintra;II þ Φinter

� �
−Γ IIΦintra;II

0 0 −Γ IIΦintra;II Γ IIΦintra;II

0
BB@

1
CCAU ¼ U

0 O
ω2
LF

ω2
HF apð Þ

O ω2
HF ipð Þ

0
BB@

1
CCA ð27Þ

ΦCOM ¼ ω2
LF

Γ I þ Γ II
ð28Þ
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Because it is difficult for the eigenvalue equation, Eq. 27,
to derive an analytical solution in the case of a heterodimer,
we numerically calculated the ΦCOM values for all 21 dimers.
Figure 10(b) shows an excellent correlation between ΦCOM

and Φapp, meaning that Φapp can be explained by the lowest-
frequency mode of the coupled oscillator model. In a coarse-
grained space with the minimum dimension,Φapp corresponds
to the stiffness of the intermolecular force, but is to some
extent underestimated to compensate for the neglected intra-
molecular flexibility. As the number of bases increases, the
contributions from the monomers are gradually decoupled.
Thus, the force constant approaches Φinter, which is the true
stiffness of the central spring.

Conclusions In this study, we developed a method of coarse-
graining the intermolecular vibrations of molecular heterodi-
mers assembled by double hydrogen bonding. In contrast to
our previous study on homodimers, the coarse-grained space
for heterodimers needs to be constructed with special care so
that all normal-mode vibrations can be reproduced with a
fidelity that is as high as possible at every dimension adopted.
To this end, we tested three schemes of reordering the intra-
molecular vibration vectors to determine the best method to
note the contributions of such vectors to the mass-weighted
displacement in the coarse-grained space. This method is
shown to be equivalent to the size-reduction of the MWD
matrix based on singular value decomposition. Using this
method, we successfully obtained the apparent stiffness con-
stants at each dimension, resulting in a monotonously increas-
ing stepwise graph. The stepwise behavior is rationalized in
terms of the mechanics of a series connection of springs,
which accounts for the internal flexibility of a molecule. The
true stiffness constants of the intermolecular force were ob-
tained at the high-dimension limit of the coarse-grained space.
Interestingly, the true stiffness constants show a good correla-
tion with the association energies of the dimers, based on
which we have proposed a new parameter (a characteristic
distance D0) to evaluate the nature of the interaction. The set
of stiffness constants, Φintra and Φinter, obtained for each dimer
are consistent enough to reproduce the Φapp based on the
coupled oscillator model, showing that the model is valid,
far beyond the pseudodiatomic model, for heterodimers as
well as homodimers. The present work provides a firm foun-
dation for our coarse-graining theory with application to the
mechanical properties of molecular crystals and other hetero-
geneous molecular assemblies.
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