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Abstract
Direct NDDO-based Born-Oppenheimer molecular dynamics (MD) have been implemented in the semiempirical molecular
orbital program EMPIRE. Fully quantum mechanical MD simulations on unprecedented time and length scales are possible,
since the calculation of self-consistent wavefunctions and gradients is performed in a massively parallel manner. MD simulations
can be performed in the NVE and NVT ensembles, using either deterministic (Berendsen) or stochastic (Langevin) thermostats.
Furthermore, dynamics for condensed-phase systems can be performed under periodic boundary conditions. We show three
exemplary applications: the dynamics of molecular reorganization upon ionization, long timescale dynamics of an endohedral
fullerene, and calculation of the vibrational spectrum of a nanoparticle consisting of more than eight hundred atoms.
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Introduction

EMPIRE is a highly parallel semiempirical molecular orbital
program [1, 2]. It usesMNDO-like neglect of differential diatom-
ic overlap (NDDO) [3, 4] methods to calculate the electronic
structure, geometry, and properties of molecules and periodic
systems [5–12]. Themain incentive behind combining these very
efficient methods with massively parallel programing is that this
allows the full quantum mechanical simulation of systems
consisting of tens of thousands of atoms. Such system sizes are
quickly reached in realistic simulations of biological systems,
nanostructures or condensed, amorphous structures such as liq-
uids or organic solids [13].

Thanks to specialized codes and increased computer pow-
er, quantum mechanics-based MD simulations (particularly

using DFT) have become common [14]. Their high accuracy
makes DFT-basedMD simulations very attractive, but the cost
of such calculations restricts their use to small systems and
short simulation times. This can be problematic because poor
sampling undermines the quality of the results. At the other
end of the spectrum, classical MD simulations allow very long
MD trajectories to be calculated for millions of atoms. Here,
the quality of the simulation depends strongly on the quality of
the empirical potential energy function, which can be difficult
to determine. Additionally, many important effects such as
polarization, charge transfer, and bond breaking cannot be
included routinely because the electrons of the system are
effectively coarse grained in the force field.

NDDO- or tight-binding density-functional theory (TBDFT)
[15]–based semiempirical methods present an ideal compromise
between these extremes; they have therefore been used exten-
sively in quantum mechanical molecular dynamics studies.
Historically, the use of these methods is strongly connected to
mixed QM/MM simulations [16], where only a part of the sys-
tem is treated quantummechanically (e.g. the reaction center of a
protein), while the rest is treated classically. Thus, the popular
classical MD codes CHARMM and AMBER actually include
specific modules for semiempirical calculations [17, 18].
Particularly modern dispersion-corrected semiempirical methods
like PM6-DH2 [19, 20] and OMx-D3 [21] have emerged as
economical and accurate methods in QM/MM simulations of
biological systems [19, 22–25].
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However, the full potential of the semiempirical methods is
realized in fully quantum mechanical MD simulations, where
they can tackle systems that are simply too large for DFT or ab
initio methods. Grimme recently used OM2-D3 MD simula-
tions to predict the fragmentation of molecules in mass spec-
trometers accurately [19, 26]. Bartlett et al. used a system-
specific “transfer Hamiltonian” to study the breaking of a silica
nanorod under tensile stress at near coupled-cluster accuracy
[27–30]. Another interesting aspect of is the use of semiempir-
ical MD to study the dynamics of excited states [31, 32].

Despite the efficiency of semiempirical techniques, moving
to system sizes beyond a few hundred atoms has proven to be
difficult with NDDO or TB-DFT standard implementations.
As a consequence, several linear-scaling schemes have been
developed, based on the partial localization of the
wavefunction [33, 34]. While these schemes allow impres-
sively large calculations on a simple desktop computer, the
localization is not necessarily a valid approximation for cer-
tain systems. This is particularly true for conjugated systems
or any systemwith a lowHOMO-LUMO gap, including zwit-
terionic proteins [35].

The main idea behind EMPIRE is to be able to simulate
unprecedented system sizes fully quantum mechanically,
without resorting to linear-scaling algorithms. This is achieved
by using massively parallel computer clusters. This philoso-
phy can easily be extended to MD simulations, since the rate-
determining step is the already parallel SCF procedure. In this
software report, we discuss the implementation and perfor-
mance of Born-Oppenheimer MD (BOMD) in EMPIRE,
and show some examples of successful applications.

Theory

The Born-Oppenheimer approximation [36] states that the dy-
namics of electrons and nuclei in a molecule can be decoupled
due to the large mass difference between them. In the context
of MD simulations, this means that electrons in a molecule
instantaneously adapt to changes in the configuration of the
nuclei, i.e. the electronic wavefunction remains exactly in the
variational ground state. In a BOMD simulation, a full SCF
calculation of the wavefunction is therefore conducted at each
timestep. This procedure requires more computation time per
timestep than the Car-Parinello scheme [37], in which the
electronic degrees of freedom are propagated together with
the atom positions in the MD, but allows a larger time incre-
ment to be used. As a result, the computational demand of the
two approaches is comparable.

The forces acting on each atom are calculated at every
timestep, t, based on the current wavefunction and molecular
geometry. Using this information, the geometry at the next
timestep t + Δt is determined via numerical integration of
Newton’s equations of motion, using the Velocity-

Verlet algorithm [38]. In particular, for each atom A,

rA t þΔtð Þ ¼ rA tð Þ þ νA tð ÞΔt þ aA tð ÞΔt2

2
;where ð1Þ

aA t þΔtð Þ ¼ FA t þΔtð Þ
mA

and

νA t þΔtð Þ ¼ νA tð Þ þ Δt aA tð Þ þ aA t þΔtð Þ½ �
2

ð2Þ

where rA, aA, vA are the position, acceleration, and velocity
vectors of atom A, and FA and mA are its force vector and
mass.

The Velocity-Verlet algorithm performs dynamics in the
microcanonical ensemble (also called the NVE ensemble,
since the number of particles, volume, and total energy are
conserved). In many cases, however, simulations at constant
temperature (i.e., NVT, the canonical ensemble) are desirable,
because they provide a more realistic model of common ex-
perimental conditions. This is achieved by modifying the
equations of motion using a thermostat.

According to the Maxwell-Boltzmann equation, the
temperature is proportional to the average kinetic energy
of the particles in a system. Maintaining constant tem-
perature therefore requires a mechanism that allows the
transfer of kinetic energy to and from an external heat
bath whenever the average temperature deviates from
the desired value. We can calculate the instantaneous
temperature at a given point in time using the kinetic
energy of all atoms in the system:

T ¼ 2Ekin

N f kB
ð3Þ

where Nf is the number of degrees of freedom in the
system. The average of the instantaneous temperature T
corresponds to the thermodynamic temperature T0.
Please note that sampling the canonical (NVT) ensemble
does not mean that the instantaneous temperature re-
mains constant. In fact, fluctuations of the instantaneous
temperature are expected, particularly for systems with
few degrees of freedom. A proper thermostat should
keep the average temperature constant and allow fluctu-
ations of the instantaneous temperature with a standard
deviation given by:

σ Tð Þ ¼ T 0

ffiffiffiffiffiffiffi
2

N f

s
ð4Þ

In practice, thermostating is achieved through additional
terms in the equation of motion, which effectively accelerate
or slow the particles. The fundamental equation for this pro-
cess is the Langevin equation:
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dνA

dt
¼ FA tð Þ

m
−γνA tð Þ þ R tð Þ ð5Þ

This equation extends Eq. (2) by two additional terms. The
first describes the loss of kinetic energy to the environment
due to friction. The second is a random process and represents
collisions with particles in the environment. If γ and R(t) are
chosen so that they obey the fluctuation-dissipation theorem,
correct sampling of the canonical ensemble is achieved.

In EMPIRE, this is implemented as the LANGEVIN ther-
mostat [39], where a time constant is provided so that

γ ¼ 1

τ
ð6Þ

and

R tð Þ ¼ νA tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ 2−γð Þ kBT0

mA
W

r
ð7Þ

where W is a normal distributed random number.
It can be desirable to avoid the use of random numbers in

the thermostat, in order to obtain deterministic trajectories.
The simplest way of doing this is to rescale all velocities
periodically by a factor proportional to the difference between
the instantaneous and the desired temperature. In the extreme
case, this principle can be used to fix the instantaneous tem-
perature to the desired average temperature using:

γ ¼
ffiffiffiffiffiffi
T0

T

r
ð8Þ

As mentioned above, this is not useful for sampling the
canonical ensemble, where fluctuations of the instantaneous
temperature are expected (although it is quite useful for quick-
ly thermalizing a system to a given temperature). Berendsen
developed a damped version of the velocity-rescaling thermo-
stat, where the instantaneous temperature is scaled to approach
the desired average exponentially with a given time constant.

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Δt
τ

⋅
T−T 0ð Þ
T

r
ð9Þ

This algorithm is implemented in EMPIRE as the
BERENDSEN thermostat [40]. Please note that if the time
constant is chosen to be equal to the MD timestep, Eq. (9)
reduces to Eq. (8).

Unlike the Langevin thermostat, the Berendsen thermostat
does not strictly sample the canonical ensemble but provides a
good approximation to it if a large enough relaxation time is
chosen (typically between 100 and 400 fs). One consequence
of this is the so-called flying ice cube effect [41], which causes
energy to flow from high- to low-frequency degrees of free-
dom during the simulation, in violation of the equipartition
principle. This is particularly noticeable because it also causes

energy transfer to the translation and rotational degrees of
freedom (and therefore violates the conservation of linear
and angular momentum). The latter is avoided in EMPIRE
by periodically removing the overall translation and rotation,
but more subtle equipartition artifacts will still be present in
long simulations using the Berendsen thermostat.

The random collisions with virtual particles in the
Langevin thermostat also cause translation and rotation of
the system. However, this motion does not violate conserva-
tion of momentum of the overall system including the virtual
particles. In fact, if the translational and rotational motion is
removed, the dynamics no longer sample the canonical en-
semble correctly. Typically, center-of-motion translation for
Langevin trajectories is removed from the trajectory for anal-
ysis and visualization post hoc.

Technical aspects

SCF convergence and energy conservation

While in tegra t ing Eq. (2 ) wi th the Veloc i ty -
Verlet algorithm in principle should conserve the total
energy, this is not necessarily the case in quantum me-
chanical dynamics, because the self-consistent field ap-
proach only converges the energy to a certain threshold.
In EMPIRE, the default value is 10−4 kcal mol−1, which
is sufficient to conserve the energy if a new extended
Hückel (EH) initial guess is made at each MD step.
Using the wavefunction of the previous MD step as
the initial guess can accelerate SCF convergence but
in this case, the default convergence threshold is insuf-
ficient, since the converged wavefunction will be biased
systematically towards the previous step. In practice,
this means that NVE dynamics using the last
wavefunction as initial guess loose energy proportional-
ly to the SCF convergence criterion (see Fig. 1). This
could be avoided using an extrapolation scheme to gen-
erate the initial guess based on two or more previous
steps. However, since this increases the memory re-
quirements (which are often the limiting factor in large
simulations), we did not consider this practical.

When doing NVE dynamics, it is therefore recom-
mended to recalculate the EH initial guess at each step
(which is the default), since SCF convergence is typically
very fast. Should SCF convergence be unusually slow in a
specific system, using the previous wavefunction com-
bined with a tight convergence criterion may lead to better
performance. For NVT dynamics, the thermostat compen-
sates the energy loss, and the default convergence criteri-
on combined with the previous wavefunction as initial
guess can therefore be used.
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Comparison of thermostats

As discussed above, the instantaneous temperature in the canon-
ical ensemble should fluctuate according to Eq. (3). For the
Langevin thermostat, this condition is fulfilled (by construction)
for any thermostat time constant, although very short time con-
stants do not provide smooth trajectories and effectively resemble
Monte-Carlo simulations. To visualize this, Fig. 2 shows the
temperature distributions for simulations using Langevin thermo-
stats with time constants of 10 and 100 fs. Clearly, the time
constant does not affect the statistical properties of the ensemble,
although the actual trajectories are different.

This is different for the Berendsen thermostat, where the tem-
perature distribution depends strongly on the time constant. For
production calculations, it is important to choose a sufficiently
large time constant to avoid an unrealistically strong interference
of the thermostat with the dynamics. In fact, it is often recom-
mended to use the thermostat only for equilibration and to cal-
culate any properties using the microcanonical ensemble.
However, in this case, conformational changes during the

dynamics can lead to large changes in the average temperature
and possibly render the simulation invalid. As mentioned above,
time constants between 100 and 400 fs are typically appropriate.

Applications

Reorganization dynamics upon ionization

To demonstrate the use of direct semiempirical molecular dy-
namics for fast charge-transfer processes, the geometry of
compound 1 has been investigated in detail by Lambert and
Nöll [42].

The geometry of ground state 1 was first optimized using
the AM1 Hamiltonian [8] and this geometry used as the
starting point for UHF simulations of the radical cation within
an NVE ensemble. The simulation was run for 20 ns with a
timestep of 0.25 fs. Figure 3 shows a time-dependent trace of
the calculated dipole moment (relative to the center of gravity
of the cation) with plots of the molecular electrostatic potential
[43] projected onto the 0.01 a.u. isodensity surface (all calcu-
lated with AM1). The calculation gives two alternative radical
cation states localized on each of the triphenylamine moieties.

Fig. 2 Histogram for temperature distributions with Langevin thermostat
time constants of 10 (blue) and 100 fs (red)

Fig. 1 Total energy conservation for a second-generation PAMAM dendrimer with different SCF convergence thresholds
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The sign of the dipole moment indicates the oxidized
triphenylamine moiety (negative for the left-hand side and
positive for the right in the diagrams). Charge-transfer (CT)
events from one side to the other are observed in the
simulation with a longest lifetime for a single CT-state
of approximately 3.5 ns. These events are accompanied
by a breakdown of energy conservation in the NVE
ensemble. The total energy increases by approximately
3 kcal mol−1 at the first transition and 1.6 kcal mol−1 at

the second, as shown in Figure S1 of the Supporting
Information. The corresponding trace for the kinetic en-
ergy is shown in Figure S2.

Nanosecond dynamics of proton escape
from NH4

+@C60

MNDO-F [44, 45] was used to investigate the escape of a
proton through the fullerene wall for the reaction

Fig. 3 Time dependence of the dipole moment along the molecular axis
and snapshots from an NVE dynamic simulation of the radical cation of
compound 1. The UHF/AM1 calculated electrostatic potential projected

onto the 0.01 a.u isodensity surface is shown on a scale of − 70 (blue) to +
170 (red) kcal mol−1 for selected snapshots

Fig. 4 Snapshots taken at the times indicated in the NH4
+@C60 simulation at 4500 K as the proton leaves the fullerene cage
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NH4
+@C60→NH3@C60H

+ [46]. This reaction is calcu-
lated to be endothermic by 6.8 kcal mol−1 at B3LYP/6-
31G(d) [46] but exothermic by 9.6 kcal mol−1 with
MNDO-F, so that 1.5 ns NVT-simulations were started
with the MNDO-F-optimized geometry of NH4

+@C60 at
temperatures of 3000, 3500, and 4000 K. The simulations
at the two lower temperatures did not result in escape of a
proton but that at 4000 K gave a reaction after almost
27 ps, as shown in Fig. 4.

The escape reaction starts by forming an endohedral C–H
bond at T0. Two femtoseconds later, an endohedrally proton-
bridged C–C bond is observed, followed by structures at T0 +
3.0 and T0 + 3.5 femtoseconds in which the proton is shared
between N and a carbon atom of the cage. The actual escape
event starts at T0 + 5.0 femtoseconds with the proton bridging
an opened cage C–C bond endohedrally, so that it can swing
through the fullerene wall (T0 + 5.5) to give a series of
exohedrally protonated NH3@C60 structures with partially

opened cages (T0 + 6.0 to T0 + 9.0). These structures persist
for the remainder of the simulation.

Vibrational spectrum of a CdS quantum dot

BOMD trajectories can be used to simulate vibrational spectra.
For example, infrared (IR) absorption and transmission spectra
can be simulated via the Fourier transformation of the dipole
moment autocorrelation function. This has several advantages
compared with the more established route in the context of a
“static” normal-mode calculation within the harmonic approx-
imation. Most importantly, the full anharmonicity of the poten-
tial energy surface is taken into account in this way.
Furthermore, a full spectrum is obtained, meaning that no as-
sumptions about broadening and line shapes are made. This
also allows the investigation of thermal effects.

We follow the protocol of Kirchner and co-workers [47] for
simulating vibrational spectra from EMPIRE MD trajectories.
Briefly, this entails first (numerically) calculating the time de-
rivative of the dipole vector. Then, the autocorrelation function
of the dipole derivative is computed. Finally, this autocorrela-
tion function is Fourier-transformed to obtain the IR spectrum.

Figure 5 shows the results obtained for methanol (AM1
Hamiltonian, 214 0.5 fs MD steps, NVT ensemble at 300 K).

For comparison, the normal-mode frequencies are shown
as red bars, as computed from a conventional static frequency
calculation with AM1 within the harmonic approximation
using Gaussian 16 [48]. It can be seen that the MD-derived
peaks correlate closely with the location of the normal modes.
Here, the largest deviation is observed for the H–C–O–H tor-
sional mode below 300 cm−1, which is caused by anharmonic
effects [49]. In contrast, the relative intensities are only com-
parable with the harmonic calculation in the intermediate re-
gion between 1000 and 1500 cm−1 (see Table S1 of the ESI).
Most prominently, the OH-stretching band around 3500 cm−1

is predicted to be the most intense in the MD calculation,

Fig. 5 MD-based AM1 IR spectrum (blue line) for methanol at 300 K. The red bars indicate the calculated AM1 harmonic frequencies and intensities

Fig. 6 MNDO/D-equilibrated geometry of an acetate-capped CdS
quantum dot at 300 K
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while it is much weaker in the harmonic approximation.
Importantly, theMD-based simulation is in much better agree-
ment with experiment in this case, where this band is also the
most intense. Indeed, the same phenomenon has been ob-
served for DFT-based calculations; it was ascribed to the
prominent role of anharmonic effects for this band [47].

The big advantage of semiempirical over DFT-based MD
simulations lies in the accessible timescales and sizes. To il-
lustrate this point, the MD-derived IR spectrum of the acetate-
capped CdS quantum dot shown in Fig. 6 and consisting of
836 atoms is shown in Fig. 7.

This simulation required on average 9 s per timestep on 20
cores, making it routinely feasible even with relatively modest
resources. The MNDO/d Hamiltonian [50], which uses the
original MNDO parameters for first row atoms, was used for
this simulation. While the spectrum of isolated acetate shows
significant shifts with respect to the experimental band posi-
tions (mainly due to the limitations ofminimal basis sets for an
anionic systems), the effect of coordination on individual
bands can be well studied. For example, the symmetric and
asymmetric COO-stretching vibrations are shifted to consid-
erably higher frequencies (ca. 400 cm−1 relative to PBE/ma-
TZVP) but the difference between the two frequencies (Δ) is
in good agreement (ca. 350 cm−1). Upon coordination to the
quantum dot, this difference vanishes and a single broad sig-
nal is observed. This is due to the predominantly bidentate
ligation to surface Cd atoms. The same trend (small or
vanishing Δ) has been reported experimentally. [51, 52]

Conclusions

NDDO-based semiempirical MO theory is well suited for
Born-Oppenheimer MD simulations on systems of several
thousand atoms using parallel hardware and software.

Single-node performance of six timesteps per minute for
1000 atoms is easily achievable. Similar turnaround times
are realistic on multi-node clusters for larger systems. The
advantages of direct quantum mechanical MD therefore now
become available for large molecules and aggregates, includ-
ing those for which linear-scaling approaches through local
approximations are not applicable.
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