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A probable means to an end: exploring P131 pharmacophoric
scaffold to identify potential inhibitors of Cryptosporidium parvum
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Abstract
Compound P131 has been established to inhibit Cryptosporidium parvum’s inosine monophosphate dehydrogenase
(CpIMPDH). Its inhibitory activity supersedes that of paromomycin, which is extensively used in treating cryptosporidiosis.
Through the per-residue energy decomposition approach, crucial moieties of P131 were identified and subsequently adopted to
create a pharmacophore model for virtual screening in the ZINC database. This search generated eight ADMET-compliant hits
that were examined thoroughly to fit into the active site ofCpIMPDH via molecular docking. Three compounds ZINC46542062,
ZINC58646829, and ZINC89780094, with favorable docking scores of − 8.3 kcal/mol, − 8.2 kcal/mol, and − 7.5 kcal/mol, were
selected. The potential inhibitory mechanism of these compounds was probed using molecular dynamics simulation and
Molecular Mechanics Generalized Poisson Boltzmann Surface Area (MM/PBSA) analyses. Results revealed that one of the hits
(ZINC46542062) exhibited a lower binding free energy of − 39.52 kcal/mol than P131, which had − 34.6 kcal/mol.
Conformational perturbation induced by the binding of the identified hits to CpIMPDH was similar to P131, suggesting a
similarity in inhibitory mechanisms. Also, in silico investigation of the properties of the hit compounds implied superior
physicochemical properties with regards to their synthetic accessibility, lipophilicity, and number of hydrogen bond donors
and acceptors in comparison with P131. ZINC46542062 was identified as a promising hit compound with the highest binding
affinity to the target protein and favorable physicochemical and pharmacokinetic properties relative to P131. The identified
compounds can serve as a basis for conducting further experimental investigations toward the development of
anticryptosporidials, which can overcome the challenges of existing therapeutic options.
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Introduction

Cryptosporidiosis is an opportunistic parasitic disease and a signif-
icant cause of diarrhea in humans [1, 2]. Immunocompromised
populations such as infants, HIV, and T-cell immunodeficient
patients are primarily at risk [3–5]. Clinical manifestation of the
infection includes abdominal pain, nausea, watery diarrhea, and

low-grade fever. If not managed properly, the symptoms can be
life threatening [6–9]. Cryptosporidiosis takes the second position
after rotavirus as the leading cause of diarrheal related death in
children less than 5 years old [10]. In sub-Saharan Africa, where
the disease is highly endemic, it accounts for around 2.4 million
deaths in children young of > 24 months [11]. Most human cryp-
tosporidiosis is caused by Cryptosporidium hominis and
Cryptosporidium parvum [4, 12].

Presently, there is a therapeutic challenge in treating cryp-
tosporidiosis [13]. The only FDA-approved drug for the dis-
ease is nitazoxanide, a compound that contains both a thiazole
ring and a benzamidine ring [4]. Although nitazoxanide is
well tolerated and does not present with a significant adverse
drug reaction, it is not effective in immunodeficient
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individuals [14]. Other non–FDA-approved drugs adminis-
tered in treating cryptosporidiosis but with limited success
include paromomycin, azithromycin, and rifaximin [13,
15–17]. The side effects of these drugs include nephrotoxicity,
hepatotoxicity, hearing loss, seizures, etc. [18, 19]. In light of
the inadequacies of the current anticryptosporidials, it is there-
fore urgent to discover therapeutic compounds that have the
propensity to overcome the deficiencies of these drugs.

Hedstrom et al.’s research group tackled this by synthesiz-
ing several thiazole-based ligands inhibiting Cryptosporidium
growth [20–30]. These efforts produced a potential drug mol-
ecule, P131, which demonstrated excellent anticryptosporidial
activity in vivo. In the in vivo experiment using a murine
model, paromomycin was used as a control as nitazoxanide
is not bioavailable. P131 at a single dose had the same thera-
peutic outcome when administered at 250 mg/kg body weight
compared to the control group, which was treated with
paromomycin at 2000 mg/kg body weight. With a thrice-
daily administration of both drugs at the same concentration
stated above, P131 elicited a superior parasiticidal activity
when compared to paromomycin [22].

P131 potentiates its therapeutic action by inhibiting
C. parvum’s inosine monophosphate dehydrogenase
(CpIMPDH). It does this by binding to the NAD+ site (co-
factor binding site) of the enzyme [31–34]. Inosine
monophosphate dehydrogenase (IMPDH) is an essential en-
zyme for almost all organisms [33]. It catalyzes the conversion
of inosine monophosphate (IMP) to xanthine monophosphate
(XMP), which is the first and the rate-limiting step in the
biosynthesis of guanine nucleotides [33]. Guanine nucleotides
function as precursors for glycosylation, RNA, DNA, and
tetrahydrobiopterin synthesis [35, 36]. Therefore, the inhibi-
tion of IMPDH hinders proliferation and eventuates in cell
death.

Pharmacophore modeling is gaining ground as one of the
paths to discovering novel drug candidates with favorable
pharmacokinetic and pharmacodynamic properties [37].
These properties will altogether function to overcome the
drawbacks limiting the efficacy of existing drug molecules.
Among many others, these downsides include cross-resis-
tance, toxicity, and adverse drug reaction [38]. The primary
application of pharmacophore modeling is virtual screening,
which is a shorter but efficient route to otherwise capital-
intensive and time-consuming processes of drug discovery
[39].

Although an abstract concept, pharmacophore modeling is
an approach that elucidates and identifies the common chem-
ical moieties of a set of ligands, which are crucial in eliciting a
biological function [40–47]. In the present study, the per-
residue energy decomposition (PRED) method was employed
in the pharmacophore modeling of P131 coupled with a vir-
tual screening of the ZINC database. The screening is to gen-
erate compounds with the potential to treat cryptosporidiosis.

We examined the physicochemical and therapeutic suitability
of the compounds as anticryptosporidials. Finally, to under-
stand the molecular mechanism of these new drugs’ action,
molecular dynamics simulation of the new compounds was
carried out using the parent compound P131 as a comparative
reference. The conclusions from this might give the experi-
mental research groups potential drug leads that probably
would overcome the limited efficacy of nitazoxanide.

Computational methods

Pharmacophore model generation and virtual
screening

At the initial step, we obtained Cryptosporidium parvum
IMPDH (CpIMPDH) co-crystallized with P131 at the co-
factor site and inosine monophosphate at the active site from
Protein Data Bank (PDB code 4RV8) [31]. Although a tetra-
mer, only chains A and D with 652 residues were used to
reduce computational resources. The target protein structure
(CpIMPDH) was prepared using the graphical user interface
(GUI) of UCSF Chimera [48], which involved the removal of
ions, crystal waters, and non-standard residues. Missing resi-
dues were added using MODELLER [49]. A molecular dy-
namics simulation run of 20 ns was carried out to stabilize the
pose of P131 in the co-factor pocket of CpIMPDH and serve
as the corners tone for the generat ion of a P131
pharmacophoric model. The total binding free energy of
P131 to CpIMPDH was computed. After that, the PRED
was analyzed by manually adding the binding residues of
P131 to the MMPB/SA.py script integrated with
Amber18Tools. PRED estimates the binding free energy each
binding site residue contributes to the ligand’s overall binding
free energy to the protein. Extrapolating from the PRED, the
residues which contributed most to the binding of P131 and
the moieties these residues interacted with in P131 were used
to build a pharmacophore model (Fig. 1a–d). The
pharmacophore query was uploaded in ZINCPharmer [50]
to screen the ZINC database [51] for hits that possess these
pharmacophoric moieties. The inclusion criteria were as fol-
lows: molecular weight of < 500 g/mol, hydrogen bond ac-
ceptors < 10, hydrogen bond donors < 5, and rotatable bonds
< 5. The output was further filtered down to exclude non–
drug-like hits by further screening with Lipinski’s rule of five
and ADMET properties [52, 53].

Molecular docking

With the prior definition of the P131 binding site in
CpIMPDH, we performed molecular docking of the hits gen-
erated through virtual screening. Molecular docking was done
to ascertain the complementarity of the hits to the co-factor

35    Page 2 of 14 J Mol Model (2021) 27: 35



binding site in CpIMPDH [54]. With Autodock Vina, the
ligand docking estimations were carried out [55]. Employing
the Autodock Graphical user interface by MGL tools,
Gasteiger partial chargers were assigned, and atom types were
defined [56]. The docked conformations were produced using

the Lamarckian Genetic Algorithm [57]. In converting the
ligand SDF file to the mol2 format, Maestro software was
used [58], and to pdbqt format, we employed Raccoon inte-
grated with AutoDock suite [56]. Autodock Vina was used in
defining the dimensions and coordinates of the grid box. The

Fig. 1 P131 pharmacophore model creation. a 2D layout of binding site
residue interaction with P131 after 20-ns MD simulation. b The
pharmacophoric moieties selected in P131, which interacted with the
lowest energy contributing binding site residues. c Per-residue energy

decomposition showing different energy components; each binding site
residue contributed to the total binding free energy of P131. d Per-residue
plot showing only the total binding free energy contributed by each bind-
ing site residue.

Page 3 of 14     35J Mol Model (2021) 27: 35



grid box was defined as center (X = 2.649, Y = 21.997, Z =
77.399) and size (X = 11.165, Y = 9.462, Z = 7.323. During the
docking process, a maximum of eight conformers was consid-
ered for each compound. After screening, molecular docking,
and filtering, we selected the top three ligands with the best
binding affinities toward CpIMPDH. The docked conforma-
tion of the compounds complexed with CpIMPDH was gen-
erated and visualized in the ViewDock plugin-integrated
Chimera [48]. After that, MD simulation and post-MD analy-
sis were carried out on the docked complexes.

Physicochemical properties and bioactivity screening
of identified compounds

The pharmacokinetic (ADMET) properties of the identified
compounds and the parent compound P131 were evaluated
using validated online prediction tools, which have also been
used extensively in other studies [59–61]. These include
SWISSADME [52], which was used to predict/compute mo-
lecular weight, synthetic accessibility, lipophilicity, hydrogen
bond acceptor and donor, bioavailability score, water solubil-
ity, gastrointestinal absorption, and blood–brain barrier per-
meability. Molinspiration Cheminformatics [62] was
employed in predicting the topological surface area (TPSA)
and the number of rotatable bonds. Likewise, oral toxicities
and LD50 of the identified compounds and P131 were predict-
ed using the ProTox web server [63]. This presents a faster
approach for determining doses that are or have the potential
to be toxic. Finally, DataWarrior [64] was used to predict
ligand efficiency (LE), ligand lipophilic efficiency (LLE),
and ligand efficiency–dependent lipophilicity (LELP). All
these web servers were used to determine the pharmacokinetic
(ADMET) properties of the ligands and to evaluate how well
they adhered to Lipinski’s rule of five, which are a set of rules
that predict the drug-likeness of a molecule [53].

Molecular dynamics (MD) simulation

Sequel to the docking of the identified hits in the co-factor site
of CpIMPDH, we prepared the docked complexes for MD
simulation. Each system was subdivided into apo (IMPDH
bound to IMP in its active site) and complexes, composed of
apo bound by P131 and apo bound by the hits in the co-factor
site. Afterward, these were set up for a 200-ns MD simulation
according to previously reported protocols [65–67]. MD sim-
ulation was performed using the Graphical Processor Unit
(GPU) version of the Particle Mesh Ewald Molecular
Dynamics (PMEMD) engine in the AMBER18 suite coupled
with integrated modules [68]. FF14SB forcefield was used in
defining protein parameters. P131 parameterization was done
using the ANTECHAMBER module [69]. Afterward, the to-
pology and parameter files for P131 and the identified com-
pound complexes were generated with the LEAP module,

which neutralizes the complexes by adding counter ions and
solvates them in a 10-Å TIP3P water box. The systems were
minimized partially at 2500 steps, with the restraint potential
set at 500 kcal/mol Å2. A full minimization followed this for
5000 steps without energy restraints. Heating of the systems
took place for 50 ps from 0 to 300 K in an NVT canonical
ensemble using a Langevin thermostat [70] and at a harmonic
restraint of 5 kcal/mol Å2. The systems were then equilibrated
at 300 K for 1000 ps without energy restraints with Berendsen
barostat, keeping the atmospheric pressure at 1 bar [71]. The
MD production run was after that carried out for 200 ns [72].
The trajectories obtained were analyzed by the integrated
CPPTRAJ and PTRAJ modules [73]. Origin data analytical
tool was used in creating the needed plots [74]. 3D visualiza-
tion of the structures and corresponding analyses were carried
out on the GUI of UCSF Chimera.

Thermodynamic calculations

This calculation estimates the binding free energy (BFE) of
P131 and the identified compounds to CpIMPDH. BFE gives
information about the stability and the binding free energy of a
ligand bound to a protein [75]. In our study, Molecular
Mechanics Generalized Poisson Boltzmann Surface Area
(MM/PBSA), which evaluates ligand interaction in biological
macromolecules, was employed in estimating the BFE of the
compounds [75, 76]. It is a very robust, widely used, and
reliable analytical tool [77, 78]. MM/PBSA was calculated
via AmberTools18-integrated MM/PBSA.py python script.
This script employs continuum solvent models to automati-
cally analyze binding free energies of snapshots from MD
simulation [79].

Mathematically, binding free energy is depicted by the fol-
lowing equation;

ΔGbind ¼ ΔEMM þ ΔGsol−TΔS ð1Þ
ΔGsol ¼ ΔGpol PBð Þ þ ΔGnp ð2Þ

Therefore,

ΔGbind ¼ ΔEMM þ ΔGpol PBð Þ þ ΔGnp ð3Þ
ΔEMM ¼ ΔEint þ ΔEele þ ΔEvdW ð4Þ
ΔEint is given by the summation of ΔEangle, ΔEbond, and
ΔEtorsion. MD simulation was run on the complex only, and
a single trajectory was used. This approach minimizes error
and noise; therefore, ΔEint was canceled between receptor,
ligand, and complex [76].

ΔEMM ¼ ΔEele þ ΔEvdW ð5Þ

In the equation presented above,ΔEele and ΔEvdW represent
electrostatic and van der Waals energy contributions, respec-
tively. ΔEMM is gas-phase energy. The solvation energy
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contribution is ΔGsol, which is constituted by polar solvation
energy contribution (ΔGpol (PB)) and non-polar solvation ener-
gy contribution (ΔGnp). ΔEint represents the internal energy
contribution, and TΔS, the conformational entropy change.
To estimate the different energy each binding site residues
contributes to the stabilization and affinity of the ligand, we
analyzed the PRED, which, as earlier stated, was investigated
by manually adding the binding residues of P131 and the hits
generated to MMPB/SA.py script integrated with
Amber18Tools.

Results and discussion

PRED upon P131 binding leads to the creation of a
pharmacophore model for hit search

In constructing our PRED-based pharmacophore model, a 20-
ns MD of P131 bound to CpIMPDH was performed, and the
total binding free energy was computed. The overall binding
free energy was subsequently decomposed on a per-residue
basis to determine the energy contributed by each binding site
residue to the stability of the protein–ligand complex [80]. The
residues contributing considerably lower energy to the bind-
ing and stability of P131 were analyzed vis-a-vis the structural
features of P131 they interacted with. These residues were
deemed crucial to the interactions of P131 in CpIMPDH.
These residues and the respective binding free energies they
contributed were ASP252 (− 9.82 kcal/mol), SER164 (− 2.62
kcal/mol), ALA165 (− 1.65 kcal/mol), and MET302 (− 1.73
kcal/mol), and in the second chain (chain D), PRO26 (− 1.28
kcal/mol) and TYR358 (− 1.7 kcal/mol). The interaction be-
tween these residues and P131 is shown in Fig. 1. The moie-
ties interacting with the residues contributing these energies
made up the chemical scaffold that was used in screening the
ZINC database for potential compounds that might portend a
better therapeutic outcome than P131 (Fig. 1b).

Pharmacophore-based virtual screening

Virtual screening has evolved as a rapid and dynamic ap-
proach to produce potential drug-like compounds that may
be optimized to interact efficiently with its therapeutic target
[81]. It provides an important starting point in drug discovery
called lead identification [82, 83]. The moieties in P131
interacting with the critical amino acid residues were selected
on the ZINCPharmer platform. These included two aromatic
rings, four hydrogen bond acceptors, and three hydrophobic
rings. This pharmacophore scaffold was submitted to
ZINCPharmer for pharmacophore pattern matching. The pa-
rameters of the hits to be generated were set to have the fol-
lowing: rotatable bond of ≤ 5 molecular weight of ≤ 500 Da.
This was necessary to filter out non–drug-like hits that

deviated from Lipinski’s rule of 5. With the pharmacophoric
moieties selected as well as the filtering parameters, a total of
eight ZINC compounds were outputted. Subsequently, these
compounds were docked into the NAD+ binding site of
CpIMPDH, and their binding affinity was scored. The top three
of the identified compounds having the best docking scores
were selected for further analysis. These compounds and their
respective docking scores were ZINC46542062 (− 8.3
kcal/mol) , ZINC58646829 (− 8.2 kcal/mol) , and
ZINC89780094 (− 7.5 kcal/mol). ZINC46542062 and
ZINC58646829 docking scores were better than P131, which
was − 7.9 kcal/mol. The 2D representation of the identified hits
and their respective docking scores are presented in Table 1.

The differential binding free energy profiles of P131
and the identified compounds in CpIMPDH

Binding free energy calculations have evolved as a dynamic,
inexpensive, and extensively used tool in estimating, at the
atomic level, the interactions between a therapeutic compound
and its biological target. It elucidates the role of each binding
site residues in the ligand's stability and binding. The binding
free energies of the identified compounds were calculated af-
ter MD simulation. We excluded the conformational entropy
effect as it is computationally expensive to calculate by nor-
mal mode analysis [84] and its effect on binding free energy is
debatable [77, 85–87]. Snapshots from 100 to 200 ns exhibit-
ed relative stabilities and were sampled for the energy calcu-
lation to minimize conformational entropy. All the com-
pounds presented with favorable binding free energies
(Table 2). However, ZINC46542062 had the lowest binding
free energy of − 39.52 kcal/mol, which was better than the
reference compound P131 (− 34.61 kcal/mol). This was
followed by ZINC89780094 (− 32.68 kcal/mol) and
ZINC58646829 (− 23.15 kcal/mol). Per-residue energy con-
tribution to the overall total binding free energies of the iden-
tified compounds and prominent energy contributing residues
for each complex are presented in Fig. SI-3 and Table S1.

Exploring the interaction dynamics of P131 s the
identified compounds across the simulation period

To further understand what could have accounted for the fa-
vorable interactions of P131 and the identified compounds
evidenced by the binding free energies (Table 2), we visual-
ized the molecular interactions taking place at different time
points of the MD simulation. The snapshots were selected at
50 ns, 100 ns, 150 ns, and 200 ns, representing the initial,
intermediate, and final time points. In P131, at the initial stage
of simulation (50 ns), three conventional hydrogen bonds
were formed by GLU329, SER164, and MET302. This num-
ber thinned out as the simulation went on, leaving only
GLU329 as the only consistent hydrogen bond–forming
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residue (Fig. 2). ASP252 and ASP163 also were consistent in
forming an attractive charge interaction during the period of
simulation (Fig. 2). ASP252 and SER164 were among the
lowest energy contributing residues to the binding and stabi-
lization of P131 in the NAD+ binding site in CpIMPDH
(Table S1).

The binding sites’multiple interactions with the three fluo-
rine atoms of ZINC46542062 could have afforded it the low-
est binding free energy value than P131 and other ZINC com-
pounds. At each time point, the fluorine atoms were engaged
in forming a conventional hydrogen bond, fluorine, pi-alkyl,
and pi-sigma interactions at almost the same time. TYR358D,
ASP163, LYS73, and CYS219 formed a steady conventional
hydrogen bond throughout the simulation while MET302
maintained a constant pi-sulfur interaction.

The interaction dynamics of ZINC58646829 and
ZINC89780094 are presented in Fig. 3. In ZINC89780094,

consistent conventional hydrogen bonds were formed by
SER164, SER169, and ASN171 in the entire course of the
simulation. A favorable pi-sigma bond mediated by HIS 166
was also observed all through. On the converse, in
ZINC58646829, weaker interactions were observed when
compared to other screened compounds. Alkyl and pi-alkyl
interactions dominated the simulation period. The foregoing
could have accounted for ZINC58646829 having the highest
binding free energy than other compounds examined
(Table 2).

It is also important to note that Cryptosporidium parvum is
a eukaryotic organism; however, through lateral gene transfer,
it possesses a prokaryotic IMPDH [20, 88]. This permits
anticryptosporidials selective inhibition of CpIMPDH, leav-
ing the eukaryotic host’s IMPDH unaffected. There are two
residues in the NAD+ site of CpIMPDH and prokaryotic
IMPDH, responsible for anticryptosporidial drugs’ selectivity.

Table 1 2D representation of P131 and the identified compounds with their docking scores

Compound 2D representation

Docking scores

(kcal/mol)

P131

-7.9

ZINC46542062 -8.3

ZINC58646829 -8.2

ZINC89780094 -7.5

Table 2 Differential MM/PBSA binding free energies of Cryptosporidium parvum IMPDH in complex with P131 and the identified compounds

System Energy components
(kcal/mol)

ΔEvdW ΔEele ΔEMM ΔGsol ΔGbind

P131 − 51.36 ± 0.19 − 74.65 ± 0.57 − 126 ± 0.48 91.4 ± 0.45 − 34.61 ± 0.17

ZINC46542062 − 45.75 ± 0.09 − 200.86 ± 0.26 − 246.61 ± 0.2 207.08 ± 0.23 − 39.52 ± 0.01

ZINC58646829 − 38.45 ± 0.27 − 17.16 ± 0.25 − 55.6 ± 0.41 32.22 ± 0.26 -23.15 ± 0.2

ZINC89780094 − 38.74 ± 0.22 − 22.84 ± 0.29 − 61.59 ± 0.41 28.91 ± 0.20 -32.68 ± 0.28
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These are ALA165 in chain A and TYR358 in chain D. These
residues have been substituted in eukaryotic IMPDH [89]. We
examined the consistency of these residues' interaction with

P131 and the identified compounds at different time points
selected. Despite their constant motion, the ligands interacted
with at least one of these critical residues (Figs. 2 and 3). This

Fig. 2 A comparative time-based interaction dynamics of P131 and ZINC46542062 at the NAD+ binding site of CpIMPDH. Time points were selected
at 50, 100, 150, and 200 ns for both compounds

Fig. 3 A comparative time-based interaction dynamics of ZINC58646829 and ZINC89780094 at the NAD+ binding site of CpIMPDH. Time points
were selected at 50, 100, 150, and 200 ns for both compounds
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interaction further underpins their importance in the potentia-
tion of the therapeutic action of potential CpIMPDH
inhibitors.

Evaluation of the drug-likeness and pharmacokinetics
of P131 and the identified compounds

Early in drug discovery stages, drug leads’ pharmacokinetic
properties must be determined to funnel down to compounds
that can be optimized to a favorable range of optimal absorp-
tion, distribution, metabolism, excretion, and toxicity
(ADMET). Sixty percent of drug failures have been attributed
to ADMET challenges [90]. The conventional rules of 5 by
Lipinski summarily posits that for a drug to be orally active, it
must violate not more than two criteria from the following: not
more than 10 hydrogen bond acceptors and 5 hydrogen bond
donors, octanol–water partition effect of not greater than 5,
lipophilicity not greater than 5, and a molecular weight of less
than 500 g/mol [53, 91]. Going by the rule above, the molec-
ular weight of P131 and the identified compounds were within
the range of acceptable limits (≤ 500). ZINC46542062 had the
highest (435.37 g/mol), while ZINC89780094 had the lowest
(351.38 g/mol).

One of the vital indices in determining the pharmacokinetic
properties of drugs is lipophilicity (logP). For a drug to poten-
tiate its action, it must interact with its specific target protein. In
doing this, it must cross cell membranes, which are almost
always lipophilic; therefore, the drug must be soluble in non-
polar solvents, fats, and lipids [92]. Lipophilicity impacts drug
potency, solubility, permeability, selectivity, and toxicology
[93–97]. Lipinski places the logP benchmark as 5 [91].
Compounds with logP higher than 5 have higher toxicity,
poorer absorption, lower solubility, and excretion [98, 99].
Also, a very low logP value of compounds presents with
ADMET challenges [92]. Generally, drug leads having a logP
ranging from 2 to 3 are favorable [100]. ZINC89780094 had
the lowest value of logP of 2.45; however, the parent drug P131
and the other two drug leads had > 3 value of logP (Table 3).
This implies that ZINC89780094 has a higher propensity for
cell membrane permeability and bioavailability. Beyond
Lipinski's rules, other parameters have been established to play
a role in estimating the drug-likeness of compounds. These
parameters include ligand efficiency (LE), ligand lipophilic ef-
ficiency (LLE), and LELP [101]. Both LLE and LELP take
logP into account while LE does not [92]. LE is used in esti-
mating the affinity of a ligand to its therapeutic target [102]. It
also calculates and compares the potency of compounds vis-a-
vis their molecular size [103, 104].

Although it can account for the potency irrespective of their
molecular sizes, however, not factoring their lipophilicity has
its drawbacks as employing LE as an efficiency index alone
can lead to the selection of compounds with higher potency
but low ADMET characteristics [105–107]. From our results,

P131 and the identified compounds are within the LE range,
which is > 0.3 kcal/mol/heavy atom (Table 3). This depicts
that they have desired potency at the right weight, and their
ADMET properties may further be optimized without losing
their potencies.

LLE measures both the potency of the compounds and its
lipophilicity while excluding its molecular size [94, 108]. It
exploits how the potency of compounds can be improved
while at the same time maintaining low lipophilicity.[94]
With the optimal value set at > 5 [94], P131 had the highest
LLE value of 10.31, followed by ZINC89780094,
ZINC46542062, and ZINC58646829, which had 6.36, 5.4,
and 5.09, respectively (Table 3). The import of the result is
that the compounds can serve as a suitable startingmaterial for
further optimization and development.

LELP, on the other hand, considers the molecular size,
potency, and lipophilicity of compounds as a composite unit
[101]. It overcomes the lipophilicity exclusion of LE and the
molecular size exclusion of LLE. It has been found that drugs
having a suboptimal value of LELP did not go far in the drug
development process as their drug-likeness is negatively af-
fected [101]. P131 and the identified compounds all had
LELP value within the acceptable range of LELP (Table 3),
with the lowest being P131 (− 2.7 kcal/mol) and the highest as
ZINC46542062 (8.7 kcal/mol).

Synthetic accessibility score (SA score) is another param-
eter that evaluates how easy or difficult it is to synthesize a
compound [109]. SA score must be determined early as a
compound that might have been assessed to have excellent
ADMET properties might be challenging to synthesize. SA
score ranges from 1 (easy to synthesize) to 10 (difficult to
synthesize) [109]. From the four compounds assessed, P131
was the hardest to synthesize with an SA score of 3.85, follow-
ed by ZINC46542062, ZINC58646829, and ZINC89780094
with SA score of 3.34, 3.06, and 2.89, respectively (Table 3).
Moving forward is evaluating the topological polar surface
area (TPSA) metric of the compounds that measure the con-
tribution of oxygen, nitrogen, and hydrogens to the com-
pound’s molecular surface area [110]. It gives information
about the ability of compounds to permeate the cells.
Therefore, it has been postulated that the lower the TPSA
value, the easier will be the assimilation of the compounds
into the cell [111–113]. Although all the compounds fell with-
in the range of allowable TPSA (140 A2) [114], P131 will
have some difficulty in permeating the cell when compared
to the hits as it has the highest TPSA (117.5 A2) while
ZINC58646829 has the lowest (69.16 A2) (Table 3). The val-
ue of TPSA of P131 is not far-fetched from the higher number
of hydrogen bond donors and acceptors it possesses compared
to other identified compounds as the number of hydrogen
bonding bears a correlation with TPSA [113].

Finally, the toxicological assessment of the compounds
was done. This parameter is presented as LD50. It has been
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established that the lower the LD50, the more toxic the drug
and otherwise [63]. Extrapolating this to P131 and the identi-
fied compounds, P131 has the lowest LD50 (2000 mg/kg),
making it the most potentially toxic of all the hits, closely
followed by ZINC46542062, which has 2662 mg/kg. Both
ZINC58646829 and ZINC89780094 appear safer, having an
LD50 value of 10750 mg/kg and 11500 mg/kg, respectively
(Table 3). All the physicochemical properties that have been
evaluated and their established upper limits, both P131 and the
identified compounds, have favorable ADMET properties but
can still benefit from some improvements.

Conformational perturbations induced by the binding
of P131 and the identified compounds

When ligands bind to proteins, they induce conformational
changes that that may consequently affect the functions of
the proteins [115, 116]. The structural changes that occur
when P131 and the identified compounds bind to CpIMPDH
were evaluated by calculating the root mean square deviation
(RMSD), the root mean square fluctuation (RMSF), and the
radius of gyration (RoG) of the generated MD trajectories.

RMSD has evolved as a parameter for comparing protein
structure, characterizing related proteins conformation, and sta-
bility. It also assesses the quality of MD simulation [117, 118]. It
uses the alpha carbon of each amino acid residues that make up
the protein to estimate the conformational changes during the
simulation with reference to its initial structural conformation

[117]. From the RMSD graph (Fig. 4a), all systems attained
equilibrium at around 30 ns and exhibited variations in their
stability throughout the simulation time. The binding of P131
and the identified hits stabilized the structure ofCpIMPDHwhen
compared to the apo. The RMSD of the unliganded CpIMPDH
was 2.92 Å; the binding of P131 to CpIMPDH minimally stabi-
lized the system with RMSD value of 2.84 Å. However,
ZINC46542062, ZINC58646829, and ZINC89780094 stabi-
lized it more than P131 with an RMSD value of 2.47 Å, 2.24
Å, and 2.48 Å, respectively.

The root mean square fluctuations estimate the flexibility of
the protein structure [119]. This is done by measuring the fluc-
tuation of the C-alpha atom of each of the amino acid residues
that make up the protein. It is interesting to note that in the apo
and complexes, the highest residue fluctuation occurred at chain
B (Fig. 4b). The unbound system had an average RMSF value of
12.57 Å, while P131-CpIMPDH had 8.57 Å. The average
RMSF values ofCpIMPDH complexed with the identified com-
pounds followed that of the apo closely. CpIMPDH–
ZINC46542062 had 12.40 Å whi le Cp IMPDH–
ZINC89780094 had 12.79 Å. However, CpIMPDH–
ZINC58646829 had the highest average residue fluctuation of
13.89Å. The discrepancy in the RMSF values of P131 relative to
the identified compounds might stem from the size of P131,
which is bigger than the other ligands, and the fact that it bends
at the linker region, which affords it more allowance to interact
withmore residues in the adjacent chain ofCpIMPDH (chain B),
thereby reducing the fluctuation of that particular chain.

Table 3 Comparative evaluation of the drug-likeness of P131 and the identified compounds

Parameters P131 ZINC46542062 ZINC58646829 ZINC89780094 Acceptable limit

Molecular formula C19H24CIN503 C20H12F3NO5S C20H16N2O3S C18H13N3O3S

Parameters predicted accurately

Molecular weight (g/mol) 405.88 435.37 364.42 351.38 ≤ 500

H-Bond acceptor 8 6 5 6 ≤ 10

H-Bond donor 4 0 0 0 ≤ 5

Rotatable bonds 10 4 3 3 ≤ 10

Parameters predicted to reasonable accuracy

Lipophilicity (logP) 3.19 3.20 3.11 2.45 ≤ 5

Water solubility Moderately soluble Moderately soluble Moderately soluble Moderately soluble

TPSA (A2) 117.5 86.48 69.16 82.05 ≤ 140

Parameters roughly estimated

LE (kcal/mol/heavy atom) 0.44 0.41 0.47 0.49 > 0.3

LLE 10.19 5.4 5.09 6.36 > 5

LELP -2.70 8.74 8.24 5.34 -10 to +10

Bioavailability score 0.55 0.55 0.55 0.55

LD50 (mg/kg) 2000 2662 10750 11500

Synthetic accessibility 3.85 3.34 3.06 2.89 10

GI absorption High Low High High

BBB permeability No No No No
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Closely related to the RMSD is the RoG, which also pro-
vides insight into the protein structure’s stability by determin-
ing how compact or loose the protein structure is. This is
estimated by measuring the distance of the individual atom
of the protein to their centroid. A high RoG value indicates
that the protein structure is packed loosely while a lower value
portrays the otherwise. The binding of the P131 and the iden-
tified compounds made CpIMPDH a bit loose when com-
pared with the apo (27.13 Å). The binding of P131 to
CpIMPDH increased the protein’s RoG to 28.01Å.
ZINC58646829 impacted the RoG of CpIMPDH the most,
with an average value of 28.13 Å. ZINC46542062 had 28
Å, while ZINC89780094 had the least among the ligands with
an average value of 27.96 Å (Fig. 4c). The slight difference in
the RoG values of the apo and the complexes shows an

insignificant structural deviation of the complexes from the
native structure. This conclusion also lends credence to the
information given by the average RMSD values of the apo
and the complexes. Therefore, we can safely postulate from
the RMSD and RoG indices that the identified compounds
have almost the same effect on CpIMPDH compared to
P131, which implies that they might also potentiate their ac-
tion by the same structural inhibitory mechanism.

Conclusions

The limited efficacy of nitazoxanide in treating cryptosporid-
iosis led to the synthesis of P131, which inhibits CpIMPDH.
Inferring from the total binding free energy of P131 and the

Fig. 4 A representation of the structural alterations mediated by the binding of P131 and the identified hits compounds to CpIMPDH. We estimated
across the simulation period the a root mean square deviation (RMSD), b root mean square of fluctuation (RMSF), and c radius of gyration (RoG)
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identified compounds, ZINC46542062 had a better binding
free energy to CpIMPDH than P131, suggesting that
ZINC46542062 might have better inhibitory potential than
P131. Also, from the evaluation of their pharmacokinetic pa-
rameters, the identified compounds were more therapeutically
suitable than P131, especially in their toxicity (LD50) index,
synthetic accessibility, lipophilicity, and the number of rotat-
able bonds, hydrogen bonds, and acceptors, which altogether
impact the permeability of compounds into the cell. On the
other hand, P131 and the identified compounds influenced the
conformational dynamics ofCpIMPDH, almost similarly with
negligible variations. Insight from the present study could
serve as a starting point in designing new inhibitors for
CpIMPDH with improved therapeutic properties.
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