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Abstract
Rising mortality due to cancer has led to the development and identification of newer targets and molecules to cure the disease.
Telomerase is one of the attractive targets for design of many chemotherapeutic drugs. This research highlights the designing of
novel telomerase inhibitors using ligand-based (3D-QSAR) and structure-based (molecular docking and molecular dynamics
simulation) approaches. For the development of the 3D-QSAR model, 37 synthetic molecules reported earlier as telomerase
inhibitors were selected from diversified literature. Three different alignment methods were explored; among them, distill
alignment was found to be the best method with good statistical results and was used for the generation of QSAR model.
Statistically significant CoMSIA model with a correlation coefficient (r2ncv) value of 0.974, leave one out (q

2) value of 0.662
and predicted correlation coefficient (r2pred) value of 0.560 was used for the analysis of QSAR. For the MDS study, A-chain of
telomerase was stabilised for 50 ns with respect to 1-atm pressure, with an average temperature of 299.98 k and with potential
energy of 1,145,336 kJ/m converged in 997 steps. Furthermore, the behaviour study of variants towards the target revealed that
active variable gave better affinity without affecting amino acid sequences and dimensions of protein which was accomplished
through RMSD, RMSF and Rg analysis. Results of molecular docking study supported the outcomes of QSAR contour maps as
ligand showed similar interactions with surrounded amino acids which were identified in contour map analysis. The results of the
comprehensive study might be proved valuable for the development of potent telomerase inhibitors.
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Introduction

Telomerase is a ribonucleoprotein reverse transcriptase,
consisting of telomerase reverse transcriptional template
RNA (hTR), telomerase reverse transcriptase (hTERT) and
related protein [1, 2]. It has already been identified that 85–
90% of cancer cells show overexpression of telomerase,
which prevents telomere shorting and enables them to divide
uncontrollably [3, 4]. Therefore, telomerase is an attractive
oncological target that shows a distinctive role in cancer cell
growth, high selectivity towards inhibitory mechanisms of
cancer cell proliferation and multi-target ability.

Multiple anti-telomerase approaches are explored in the
form of chemotherapy, gene-therapy, immunotherapy, com-
bination and stem cell therapy [5]. Additionally, G-
quadruplex ligand-based and heat shock protein (HSP-90) in-
hibitors are reported as the mechanistic approach for targeting
telomere [6]. Following the abovementioned approaches, var-
ious natural and synthetic heterocyclic moieties are identified
as an anti-telomerase agents. Among all anti-telomerase
agents, only few small molecules like BIBR1532 [7], MST-
312 [8] and BARCO-19 [9] have reached in the pre-clinical
trial stages, as shown in Fig 1. However, none of the above
telomerase inhibitors is successful in getting the FDA approv-
al until date; it might be due to lower potency, lower selectiv-
ity or toxicity constraints [10].

In this study, we performed structure-based and ligand-
based drug design approaches for the identification of struc-
tural features of small molecules required for telomerase
inhibition.
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3D-QSAR is a ligand-based drug design approach used to
generate a reliable statistical model for the prediction of the
potency of new chemical entities [11]. It provided the corre-
lation of molecular properties of the compound with its
ligand-binding affinities [12]. CoMFA (Comparative
Molecular Field Analysis) and CoMSIA (Comparative
Molecular Similarity Indices Analysis) [13] are the most com-
mon and standard methods used for the development of the
3D-QSAR model [14]. In the CoMFA, columbic potential in
terms of electrostatic field and Lennard-Jones potential in
terms of the steric field are calculated. Like the CoMFA, the
CoMSIA also helps to evaluate both the electrostatic and ste-
ric fields of the molecule, and additionally, it involves hydro-
phobic, hydrogen bond donor (HBD) and hydrogen bond ac-
ceptor (HBA) fields [15]. The CoMSIA differentiated from
CoMFA through the Gaussian function and the steepness of
the Gaussian function is controlled by an attenuation factor α
at 0.3 as a standard value [16].

MDS (molecular dynamics simulations)-aided molecular
docking helps to validate the QSAR model [17]. The MDS
studies are performed for the identification of stable confor-
mation of protein that helps to understand the behaviour and
activity of biomolecule [18]. During the simulation process,
changes in protein conformation in the presence of potential
energy, pressure and temperature are calculated with respect
to time. The results of MDS studies are validated by RMSD
(root-mean-square deviation) value, RMSF (root-mean-
square fluctuations), Rg (radius of gyration) analysis and
Ramachandran plot [19, 20]. RMSD is the similarity measure
used for the tracking of protein modifications during molecu-
lar dynamic studies. RMSD helps in the comparative studies
of structural change of simulated and unsimulated protein
molecules, while the RMSF analysis is useful to calculate
the flexibility of enzyme residues of the given target through-
out the simulation. The findings of the RMSF analysis suggest

changes in protein flexibility pattern in the presence of
analysed variants. Structural displacement of protein atoms
from their common mass centre is measured by the Rg anal-
ysis and, therefore, the Rg analysis helps to describe the effect
of MDS over the proteins dimension [21, 22]. Furthermore,
the Ramachandran plot helps to analyse the change in the
torsional angle between the amino acids of the protein due
to molecular simulation. In addition to the results of MDS,
molecular docking is performed to explore the possible inter-
action of inhibitors with the target protein [23, 24].

Materials and methods

A data set of 37 synthetic molecules, reported as telomerase
inhibitors in various literature, were selected for the develop-
ment of the 3D-QSAR model, as shown in Table 1 [25–27].
Structures of all molecules were drawn and minimised by
utilising tripose force field in SYBYL-X, and minimised
charges were calculated through the Gasteiger-Huckel meth-
od. The reported IC50 values of all molecules were converted
into pIC50 (= −log IC50) because pIC50 values traversed a wide
range that help in the preparation of modified derivatives with
enhanced activity [28]. This pIC50 was utilised as the depen-
dent variable. Data set was divided into training set for the
generation of the QSAR model and test set for validation of
the QSAR model. In this work, 28 molecules were used as a
training set and nine molecules were used as test set [75:25].
The selection of test and training set was carried out in such a
manner that compounds of test set resembled the compounds
of the training set in multi-dimensional descriptor space. Thus,
a test set was a true demonstrator of a training set (mol 2
structures of all compounds are provided as Supplementary
Information data).

Fig. 1 Telomerase inhibitors
reported in the pre-clinical trial
state
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Table 1 Structure of telomerase inhibitors with biological activity

Compound No. X R IC50 in M PIC50

1* N 0.55 6.2596

2 N 1.12 5.9508

3 N 0.44 6.3565

4 N 2.35 5.6289

5 N 1.55 5.8097

6* O 4.38 5.3585

7 O 7.11 5.1481

*Test set molecules
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8 O 3.29 5.4828

9 O 12.3 4.9101

10 O 8.12 5.0904

11* 12.8 4.8928

12 7.3 5.1367

13* 2.8 5.5528

14* 0.8 6.0969

15 1.1 5.9586

16 3.1 5.5086
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17 5.5 5.2596

18* 3.0 5.5229

19 0.9 6.0458

20 10.8 4.9666

21* 9.3 5.0315

22 5.1 5.2924

23 3.1 5.5086

24* 2.9 5.5376

25 4.8 5.3188
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26 5.8 5.2366

27 8.2 5.0862

28 2.8 5.5528

29 5.2 5.2840

30 2.7 5.5686

31 2.6 5.5850

32* 1.35 5.8697

33 4.4 5.3565

34 5.4 5.2676

35 4.1 5.3872

36 8 5.0969

37 3.1 5.5086
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Before starting the QSAR analysis, molecular alignments
were performed, as revealed in Fig. 2. Molecular alignment is
the key factor for generating a reliable model as it helps to
generate a better statistical result [29, 30]. In the present study,
distill- or rigid body-based, pharmacophore-based and
docking-based alignments were performed to find out the best
alignment method for the generation of the 3D-QSAR model.
In distill alignment method (Fig. 2a), a common core moiety
from the data set of all 37 molecules was identified. After the
identification of common core, the highest active molecule
from the data set, viz. molecule 3, was selected as a template
molecule and the rest molecules of data set were aligned over
this template. In pharmacophore-based alignment (Fig. 2b),
different conformers of every molecule were generated with
the help of DISCOtech module of SYBYL-X. Conformers
were aligned over each other for the generation of a common
pharmacophore. Docking-based alignment (Fig. 2c) was car-
ried out with the help of the Surflex module of SYBYL-X, in
which ligand of telomerase (PDB ID 5CQG) [31] was selected
from RCSB-PDB. A binding pocket was generated into the

ligand structure by protomol generation technique, and all
molecules were docked in the binding pocket. From all these
alignment techniques, distill alignment gave better statistical
results as reported in Table 2, which was utilised for the de-
velopment of a reliable 3D-QSAR model for further studies.

The CoMFA and CoMSIA were reported as efficient tools
in ligand-based drug design which were used for contour map
generation as well as for the identification of favourable and
unfavourable regions in a moiety [32]. The CoMFA and
CoMSIA of five defined fields were calculated at regular grid
space of 2.0 Å in Cartesian directions and the grid points were
generated using +1 charge as well as Vander Waal’s radius of
1.52 Å. Energy cutoff for all fields was set as default at 30
kcal/mol. In the case of the CoMSIA study, the Gaussian
function utilised for the determination of the distance between
molecular atom and probe atom inside and outside of grid
points [33].

For the estimation of linear correlation between struc-
tural parameters and biological activity, PLS (partial least
squares) analysis was performed [34]. In the PLS analysis,

Table 2 Statistical results of CoMFA and CoMSIA models by PLS analysis using three different alignment methods

Statistical parameter Alignment I (distill alignment) Aligment II (docking aligmnment) Aligment III (pharmacophore aligment)

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

NC 6 6 6 6 6 6

r2ncv 0.983 0.974 0.977 0.928 0.988 0.996

q2 0.476 0.662 − 0.466 − 0.629 0.071 0.285

SEE 0.051 0.063 0.060 0.105 0.043 0.026

r2cv 0.446 0.660 − 0.411 − 0.586 0.111 0.314

r2bs 0.986 0.981 0.991 0.970 0.992 0.996

r2pred 0.453 0.560 − 0.038 − 0.098 0.044 0.112

Contributors

Steric 0.446 0.093 0.388 0.131 0.502 0.124

Electrostatic 0.554 0.217 0.612 0.203 0.498 0.213

Hydrophobic - 0.193 - 0.213 - 0.206

HBD - 0.384 - 0.261 - 0.348

HBA - 0.113 - 0.192 - 0.109

NC number of components, r2 ncv non-cross-validated correlation coefficient, q
2 cross-validated correlation coefficient, SEE standard error of estimation,

r2 cv cross-validation correlation coefficient, r2 bs mean r2 of boostrap analysis (10 runs), HBD hydrogen bond donor, HBA hydrogen bond acceptor

Fig. 2 Different molecular alignments. a Distill alignment. b Pharmacophore alignment. c Docking alignment

Page 7 of 16     30J Mol Model (2021) 27: 30



pIC50 values were used as dependent variables and the
CoMFA/CoMSIA descriptors were employed as indepen-
dent variables for the development of the 3D-QSAR mod-
el [35]. No validation (r2), standard error of estimation
(SEE), Fischer’s statistic value (f), leave one out (q2),
cross-validation (r2cv) and boost strapping (r2bs) were cal-
culated in the PLS analysis with an optimal number of
components (N). After numerous trials, the best model
was selected based on the highest q2, value and the results

of the PLS analysis was validated through the estimation
of predictive power (r2pred) of the best-generated model.
The determination of r2pred was based on test set mole-
cules by the following equation:

r2pred = 1 − (PRESS/SD)
where PRESS is the sum \of squared deviation between the

actual and predicted biological activity (pIC50) of the test set
molecules [PRESS = Σ(Y predicted − Y mean)2] and the SD
denotes the sum of squared deviation of the actual and

Table 3 The predicted and experimental activity of the training and test set compounds for CoMFA and CoMSIA

Compound no. Actual pIC50 Predicted pIC50 for CoMFA Residual Predicted pIC50 for CoMSIA Residual

1* 6.2596 6.255 0.0046 6.074 0.1856

2 5.9508 5.57 0.3808 5.702 0.2488

3 6.3565 6.378 − 0.0215 6.381 − 0.0245

4 5.6289 5.637 − 0.0081 5.614 0.0149

5 5.8097 5.795 0.0147 5.761 0.0487

6* 5.3585 5.455 − 0.0965 5.369 − 0.0105

7 5.1481 5.164 − 0.0159 5.154 − 0.0059

8 5.4828 5.453 0.0298 5.437 0.0458

9 4.9101 4.892 0.0181 4.9 0.0101

10 5.0904 5.162 − 0.0716 5.18 − 0.0896

11* 4.8928 5.504 − 0.6112 5.516 − 0.6232

12 5.1367 5.495 − 0.3583 5.455 − 0.3183

13* 5.5528 5.337 0.2158 5.282 0.2708

14* 6.0969 5.255 0.8419 5.256 0.8409

15 5.9586 5.96 − 0.0014 5.939 0.0196

16 5.5086 5.555 − 0.0464 5.553 − 0.0444

17 5.2596 5.223 0.0366 5.231 0.0286

18* 5.5229 5.463 0.0599 5.519 0.0039

19 6.0458 6.022 0.0238 6.071 − 0.0252

20 4.9666 5.148 − 0.1814 5.168 − 0.2014

21* 5.0315 5.053 − 0.0215 5.05 − 0.0185

22 5.2924 5.287 0.0054 5.284 0.0084

23 5.5086 5.508 0.0006 5.486 0.0226

24* 5.5376 5.287 0.2506 5.336 0.2016

25 5.3188 5.329 − 0.0102 5.318 0.0008

26 5.2366 5.245 − 0.0084 5.231 0.0056

27 5.0862 5.075 0.0112 5.098 − 0.0118

28 5.5528 5.569 − 0.0162 5.541 0.0118

29 5.284 5.306 − 0.022 5.269 0.015

30 5.5686 5.563 0.0056 5.563 0.0056

31 5.585 5.57 0.015 5.591 − 0.006

32* 5.8697 5.621 0.2487 5.562 0.3077

33 5.3565 5.347 0.0095 5.374 − 0.0175

34 5.2676 5.276 − 0.0084 5.252 0.0156

35 5.3872 5.396 − 0.0088 5.415 − 0.0278

36 5.0969 5.069 0.0279 5.082 0.0149

37 5.5086 5.622 − 0.1134 5.417 0.0916

*Test set molecules
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predicted biological activity of training set molecules [SD =Σ
(Y actual − Ymean)2]. The generated 3D-QSARmodel having
high predictive ability was confirmed based on high q2 and r2

values (q2 > 0.5, r2 > 0.9, r2pred > 0.5) [36, 37].
Visual illustrations of the 3D-QSAR were performed

through contour maps, generated in a 3D grid orientation of
80% favourable and 20% unfavourable field contributions.
Contour maps give the idea about favourable and
unfavourable regions around the molecules. Structural modi-
fication, according to the contour map analysis, helps in the
alteration of physicochemical properties that might be respon-
sible for increasing or decreasing the potency of molecules
[38].

In MDS studies, a chain of co-crystallised ligand of telo-
merase (PDB: 5CQG) was stabilised in the presence of
Amber14sb force field for 50 ns with a time step of 2 fs
[39]. During the simulation process, protein structure was
stabilised at 1-atm pressure with an average temperature of
299.98 k and potential energy of 1,145,336 kJ/m converged
in 997 steps using GROMACS 2019.4 software. For the de-
termination of molecular interactions of the highest active
compound with simulated/unsimulated protein structure
[40], molecular docking was carried out in SurFlex dock mod-
ule of SYBYL-X. Based upon all studies, few novel quinoline

and acridine derivatives were designed and docked on the
same target to evaluate their comparative potentials.

Overall, in this study, we performed the 3D-QSAR and
molecular dynamics/simulation-assisted molecular docking
studies of known reported telomerase inhibitors to identify
potential spatial features for designing novel telomerase inhib-
itors and also designing few novel molecules.

Results and discussion

The experimental and predicted activity values of the
CoMFA/CoMSIA are listed in Table 3, and a correlation be-
tween experimental and predicted pIC50 is shown in Fig. 3.
Here, the correlation analysis of experimental and predicted
pIC50 value was explained by the linearity graph. In this
graph, the experimental pIC50 was used as the logarithmic
values of the biological activity (IC50) of selected molecules
as reported in the literature and the predicted pIC50 generated
through the CoMFA and CoMSIA PLS analysis. During the
linearity analysis, it was observed that the CoMSIA analysis
showed better linearity between both the parameters with the
observed R2 value of 0.7403, but in case of the CoMFA, the
linear relationship between the experiment and predicted

Fig. 3 Plot of experimental pIC50 versus predictive pIC50 of CoMFA and CoMSIA models.

Fig. 4 Comparison of CoMSIA descriptors’ results
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pIC50 was observed lower with the R2 value of 0.6546. The
graph helped to validate the predictive power of the generated
QSAR model. In this study, statistical outcomes of the
CoMFA was found to be lower than the standard limits; there-
fore, the statistical significance of the CoMSIA was utilised
for the generation of the QSAR model [12, 17].

The CoMSIA models with good statistical values were
generated by permutation combination of all descriptors, viz.
steric, electrostatic, hydrophobic and donor as well as acceptor
fields. The statistical results of all descriptors’ combination of

the CoMSIA model are shown in Fig. 4 (and also in
Supplementary Information Table ST-1). From all these de-
scriptors’ combinations, SEHD (steric, electrostatic, hydro-
phobic and donor) showed best statistical results with q2 value
of 0.667, r2 value of 0.975, r2cv value of 0.659, r

2
bs value of

0.988,F value of 134.336, SEE value of 0.062 and r2pred value
of 0.570. Combination of SEHDA (steric, electrostatic, hydro-
phobic, donor and acceptor) also showed almost equivalent
result as SEHD with q2 value of 0.662, r2 value of 0.974, r2cv
value of 0.660, r2bs value of 0.981, F value of 129.633, SEE

Fig. 5 CoMSIA contour maps with structure of compound 3 shown
inside the field. a CoMSIA steric contour map: favourable region refers
to green colour while yellow colour refers to a disfavourable region; b
CoMSIA electrostatic contour map: red colour represents negatively
charged and blue represents positively charged substituents; c

hydrophobic field: yellow colour refers to favourable and white colour
refers to disfavourable substitution; d hydrogen bond donor field: cyan
and purple colours refer to favourable and disfavourable, respectively; e
hydrogen bond acceptor field: magenta and red colour contour map
supports favourable and disfavourable substitutions

Fig. 6 MDS study of a chain of telomerase (PDB ID; 5CQG) concerning a potential energy versus time; b pressure versus time; c temperature versus
time
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value of 0.063 and r2pred value of 0.560, with the field contri-
bution value of 0.093, 0.217, 0.193, 0.384 and 0.113 for steric,
electrostatic, hydrophobic, donor and acceptor field, respec-
tively. Because SEHDA combination covered all the fields as
well as it gave optimum statistical results, this combination
was utilised for the generation and analysis of counter maps.

Highly potent molecule (molecule 3) overlaid on the con-
tour maps of steric, electrostatic, hydrophobic, donor and ac-
ceptor fields as shown in Fig. 5. Based on favourable and
disfavourable regions, the contour map analysis was per-
formed. As shown in Fig. 5a of a steric contour map, the green
colour referred to the favoured region and the yellow colour
indicated disfavoured region for bulky group substitution

which could be explained by a comparison of compounds 3
and 9. Compound 3 (IC50 value of 0.44 μM) consisted of the
methyl-substituted aliphatic amide side chain at the 4th posi-
tion of the quinoline ring which was found to be sterically
favourable due to the presence of –CH3 group. Compared to
compound 3, compound 9 with less bulky and polar –OH
substitution was found to be significantly less potent (IC50

value of 12.3 μM). This was also proved by the comparison
of compounds 14 and 11; where substitution of o-fluoro
benzamide-oxadiazole at 2nd position of quinoline ring in
compound 14 was responsible for higher potency (IC50 value
of 0.8 μM) as compared to compound 11 where benzamide-
oxadiazole-linked quinoline moiety showed lower potency

Fig. 7 Effect of MDS analysis over the active and inactive ligand. a MDS study of compound 3; b MDS study of compound 11
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(IC50 value of 12.8μM). CoMSIA electrostatic contour map is
shown in Fig. 5b. Here, the blue colour region favoured elec-
tropositive substitutions while red colour favoured electroneg-
ative substitutions. Substitution of electropositive –NH of in-
dole ring at 3rd position of quinoline ring favoured the activity
while electronegative oxygen of benzofuran at the same posi-
tion decreased the activity. This was confirmed by all selected
molecules of series one. Thus, it is concluded throughout the
series that negatively charged nitrogen atom, which is present
in the quinoline ring, is essential for its activity and the same is
confirmed by the red colour contour map. Additionally, elec-
tronegative halide substitution is also favourable for the activ-
ity which is supported by compound 14 (IC50 value of 0.8
μM).

In the hydrophobic contour map, the yellow colour
region favoured hydrophobic substitution while white col-
our favoured hydrophilic substitution, which is shown in
Fig. 5c. The contour map of the hydrophobic region was
validated by compounds 1 and 10. In compound 1, the
substitution of nonpolar morpholinoethanamide side chain
favoured activity (IC50 value of 0.5 μM) while polar
aminoethanol substitution in compound 10 disfavoured
activity (IC50 value of 8.1 μM). The abovementioned

compounds additionally helped in cross-validation of the
electrostatic contour map, where hydrophilic contour map
was shown in place of electropositive region or in the
place of –NH substitution. Donor field contributors are
shown in Fig. 5d, where the cyan colour represented
favourable donor substitution while purple colour repre-
sented the substitution of disfavour electron donor group.
Amine group of indole at 3rd position of quinoline moiety
favoured electron donor property as found in compounds
1 to 5. Electropositive and hydrophilic contour maps sym-
pathetically supported to favourable donor substitution.
All selected molecules are comprised of electronegative
nitrogen atom which was responsible for disfavoured do-
nor field contribution. Contour map of the CoMSIA ac-
ceptor field is shown in Fig. 5e, where the magenta and
the red colour region represented favourable and
disfavourable substitutions, respectively. Acceptor region
was validated by compounds 12 and 19. In the case of
compound 19. p-chloromethyl aniline favoured the activ-
ity due to the presence of electron-withdrawing halide
group (IC50 value of 0.9 μM). In contrast, electron-
donating methyl atom of dimethylaniline in compound
12 disfavoured the activity (IC50 value of 7.3 μM).

Fig. 8 Analysis of molecular simulation study. a Backbone RMSD of
5CQG: unstimulated protein is represented by the black colour while
simulated protein is represented by the red colour; b RMSF per residue

of 5CQG with its variants: black colour represents the fluctuation in
presence of active variant and red colour represents the fluctuation in
presence of inactive variants; c Measure of Rg after simulation

Fig. 9 Docking interactions of highest active ligand with a simulated and b unsimulated protein structure (PDB-5CQG)
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Additionally, in the case of compounds 1, 6 and 24;
electron-withdrawing oxygen atom of the morpholine ring
supported the acceptor region and activity.

During MDS study, effects of concerned pressure, temper-
ature and potential energy over the stabilisation of protein at a
particular time duration were observed, as shown in Fig. 6.
The binding site residues, at around 6 Å of the ligand, were
compared for compounds 3 and 11, before and after MD sim-
ulation and are shown in Fig. 7. In the case of compound 3, the
ligand showed better interaction affinity towards the protein
which was significantly changed with the change in dynamic
environment of protein. The tail of the ligand displaced to-
wards the exposed solvent and the main core of the ligand
mainly lied towards the hydrophobic pocket. Before the sim-
ulation, the compound showed the pi-stacking interactions
with the residue of Phe494 and Tyr551 which was absent at
the 50-ns pose and it might be due to the fluctuations in amino
acid sequences. The compound showed pi-cation interaction
with Arg486, and the –NH of fused indole ring showed the H-
bond interaction with the carbonyl group of Asn492 at the
distance of 2.05 Å after the simulation. The compound 11
showed low interaction affinity towards the target as it showed
only a single pi-interaction with Phe494 and none of the sig-
nificant changes in the interaction was observed after the sim-
ulation. The findings suggested that the changes in the dynam-
ic environment of the protein led the variation in ligand-
protein interaction affinity, which helped to gain an idea about
the phenomenon behind ligand designing for the significant
inhibition.

Furthermore, the reliability of the molecular dynamic
studies was checked through the RMSD, RMSF and Rg
analysis, as shown in Fig. 8. Resultant RMSD analysis is
shown in Fig. 8a. Here, similar alignments of simulated
and unsimulated protein with zero RMSD value helped to
understand that the amino acid sequence of the
unsimulated protein remained unchanged after simulation.

Effect of active compound 3 and comparatively inactive
compound 11 variants of selected QSAR series over the
flexibility of simulated protein were analysed by the
RMSF analysis as shown in Fig. 8b. Less fluctuations in
the presence of compound 3 indicated more stable con-
former, whereas more fluctuations in the presence of com-
pound 11 indicated less stable conformer. The measure of
the compactness of protein by the Rg analysis is shown in
Fig. 8c where the Rg values were reasonably unchanged
in their compact (folded) region over the course of 50 ns
at 300 k, which defined that the structure of the protein
was stable in the dynamic environment. Amino acid se-
quenc ing was rechecked wi th the he lp of the
Ramachandran Plot (Supplementary Information as
Figure SF-1). The resultant similarity of simulated and
unsimulated protein was the number of residues in the
favourable region 1103 (92.8%), the number of residues
in the allowed region 68 (5.7%) and the number of resi-
dues in the outlier region 17 (1.4%). This explained that
the amino acid sequence of unsimulated protein remained
unchanged after the simulation.

Molecular docking studies of the active ligand with
unsimulated and simulated proteins are shown in Fig. 9, and
they supported cross-validation of the CoMSIA contour maps.
Docking of compound 3 with unsimulated and simulated pro-
teins showed the interactions of nitrogen atom of alkyl amide
side chain with hydrophobic Gly553 and positive charge
Lys416, respectively. These interactions explained the impor-
tance of the hydrogen bond acceptor and favourable hydro-
phobic interactions in this region which was supported by
magenta colour contour map of acceptor field around nitrogen
atom. After simulation, the number of hydrogen bond interac-
tions increased as the –NH– of indole ring substituted at 3rd

position and –NH– substituted at 4th position of quinoline core
moiety interacted with Phe443. These interactions supported
an electropositive functional group required for the activity

Fig. 10 Important structural
requirements of quinoline
moieties as per the ligand-based
3D-QSAR and structure-based
MDS-assisted molecular docking
study
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Fig. 11 Docking interactions of
potent molecules along with
design compounds
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which was validated by the blue colour counter map around
these ‘N’ atom. Based on the 3D-QSAR studies and MDS-
assisted molecular docking studies, the essential structural re-
quirements of quinoline moiety is shown in Fig. 10.

By utilising overall data of the study, we have designed ten
molecules, five with quinoline and five with acridine as core
moiety. All designed molecules were docked in A-chain of
telomerase active site (PDB-5CQG) in SurFlex Dock module
in SYBYL (results are shown as Supplementary Information
Table ST-2). Docking interactions of potent molecules along
with design compounds are shown in Fig. 11. Comparative
docking study of the designed molecules with marketed anti-
cancer drug 5-FU and standard anti-telomerase agent
BIBR1532 was also performed. The designed molecules
showed better interaction affinity then marketed drug and it
is similar to BIBR1532. As the same in BIBR1532, in the
design molecules, negatively charged oxygen was facing pos-
itively charged Arg484.

Conclusion

This study is an attempt to design novel compounds with
potent telomerase inhibitory activity. Statically significant
CoMSIA with a q2 value of 0.662 and higher predictabil-
ity with an r2pred value of 0.560 was utilised in the gen-
eration of contour maps. Substitution of steric, electrostat-
ic, hydrophobic and acceptor and donor atoms is signifi-
cant to inhibit the effect of telomerase enzyme. Molecular
dynamic and simulation-aided molecular docking study
assisted the identification of promising features of quino-
line moiety for telomerase inhibition. It was also observed
that the improvement of hydrogen bond interactions resul-
tant from a conformational change in protein structure
was not due to the changes in amino acid sequences.
The generated 3D-QSAR model helped to introduce a
new direction in designing novel quinoline and acridine
derivatives while molecular docking helped to investigate
the possible binding interactions of design molecules
which could be explored in future.
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material available at https://doi.org/10.1007/s00894-020-04648-2.

Acknowledgements Authors are thankful to Nirma University,
Ahmedabad, India, for supporting work, which is a part of Doctor of
Philosophy (PhD) research work of Keerti Vishwakarma, to be submitted
to Nirma University, Ahmedabad, India.

Authors’ contributions Keerti Vishwakarma: conceptualization; method-
ology and validation; data curation; writing—original draft

Hardik Bhatt: conceptualization; reviewing the methodology, results,
and discussion; editing—final draft

References

1. Puri N, Girard J (2013) Novel therapeutics targeting telomerase and
telomeres. J Cancer Sci Ther 5:1–3. https://doi.org/10.4172/1948-
5956.1000e127

2. Tang H, Wang H et al (2018) HuR regulates telomerase activity
through TERC methylation. Nat Commun 9:1–12. https://doi.org/
10.1038/s41467-018-05213-5

3. Ganesan K, Xu B (2018) Telomerase inhibitors from natural prod-
ucts and their anticancer potential. Int J Mol Sci 19. https://doi.org/
10.3390/ijms19010013

4. Jäger K, Walter M (2016) Therapeutic targeting of telomerase,
Genes (Basel). 7 1–24. https://doi.org/10.3390/genes7070039

5. Agrawal A, Dang S, Gabrani R (2012) Recent patents on anti-
telomerase cancer therapy, Recent Pat. Anti-cancer. Drug Discov
7:102–117. https://doi.org/10.2174/157489212798357958

6. Zhang L, Huang J, Ren L et al (2008) Synthesis and evaluation of
cationic phthalocyanine derivatives as potential inhibitors of telo-
merase. Bioorg Med Chem 16:303–312. https://doi.org/10.1016/j.
bmc.2007.09.037

7. Wang J, Liu L, Ma H (2017) Sensors and actuators B: chemical
label-free real-time investigation of the effect of telomerase inhibi-
tors based on quartz crystal microbalance measurement. Sensors
Actuators B Chem 239:943–950. https://doi.org/10.1016/j.snb.
2016.08.021

8. Seimiya H, Oh-Hara T, Suzuki T et al (2002) Telomere shortening
and growth inhibition of human cancer cells by novel synthetic
telomerase inhibitors MST-312, MST-295, and MST-199 1. Mol
Cancer Ther 1:657–665 http://mct.aacrjournals.org/content/
molcanther/1/9/657.full.pdf. Accessed 29 Dec 2017

9. Drewe WC, Nanjunda R, Gunaratnam M et al (2008) Rational
design of substituted diarylureas: a scaffold for binding to G-
quadruplex motifs. J Med Chem 51:7751–7767. https://doi.org/
10.1021/jm801245v

10. Wang Y, Cheng FX, Yuan XL et al (2016) Dihydropyrazole
derivatives as telomerase inhibitors: structure-based design,
synthesis, SAR and anticancer evaluation in vitro and
in vivo. Eur J Med Chem 112:231–251. https://doi.org/10.
1016/J.EJMECH.2016.02.009

11. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug
design-a review. Curr Top Med Chem 10:95–115. https://doi.org/
10.2174/156802610790232260

12. Zambre VP, Murumkar PR, Giridhar R, Yadav MR (2010)
Development of highly predictive 3D-QSAR CoMSIA models
for anthraquinone and acridone derivatives as telomerase inhibitors
targeting G-quadruplex DNA telomere. J Mol Graph Model 29:
229–239. https://doi.org/10.1016/j.jmgm.2010.07.003

13. Halim SA, Ul-Haq Z (2015) Structure based 3D-QSAR studies of
Interleukin-2 inhibitors: comparing the quality and predictivity of
3D-QSAR models obtained from different alignment methods and
charge calculations. Chem Biol Interact 238:9–24. https://doi.org/
10.1016/j.cbi.2015.05.018

14. Feng K, Ren Y, Li R (2017) Combined pharmacophore-guided
3D-QSAR, molecular docking and molecular dynamics studies
for evodiamine analogs as DNA topoisomerase I inhibitors, J.
Taiwan Inst. Chem Eng 78:81–95. https://doi.org/10.1016/j.
jtice.2017.06.027

15. Patel B. D, Ghate M. D, (2015) 3D-QSAR studies of dipeptidyl
peptidase-4 inhibitors using various alignment methods, Med
Chem Res 241060–1069. https://doi.org/10.1007/s00044-014-
1178-7.

16. Ismail S, Mohamed AO, Abdel F et al (2012) CoMFA and
CoMSIA Studies of 1,2-dihydropyridine derivatives as anticancer
agents. Med Chem (Los Angeles) 8(2012):372–383. https://doi.
org/10.1097/COC.0b013e3182a79009.Pain

Page 15 of 16     30J Mol Model (2021) 27: 30

https://doi.org/10.1007/s00894-020-04648-2
https://doi.org/10.4172/1948-5956.1000e127
https://doi.org/10.4172/1948-5956.1000e127
https://doi.org/10.1038/s41467-018-05213-5
https://doi.org/10.1038/s41467-018-05213-5
https://doi.org/10.3390/ijms19010013
https://doi.org/10.3390/ijms19010013
https://doi.org/10.3390/genes7070039
https://doi.org/10.2174/157489212798357958
https://doi.org/10.1016/j.bmc.2007.09.037
https://doi.org/10.1016/j.bmc.2007.09.037
https://doi.org/10.1016/j.snb.2016.08.021
https://doi.org/10.1016/j.snb.2016.08.021
http://mct.aacrjournals.org/content/molcanther/1/9/657.full.pdf
http://mct.aacrjournals.org/content/molcanther/1/9/657.full.pdf
https://doi.org/10.1021/jm801245v
https://doi.org/10.1021/jm801245v
https://doi.org/10.1016/J.EJMECH.2016.02.009
https://doi.org/10.1016/J.EJMECH.2016.02.009
https://doi.org/10.2174/156802610790232260
https://doi.org/10.2174/156802610790232260
https://doi.org/10.1016/j.jmgm.2010.07.003
https://doi.org/10.1016/j.cbi.2015.05.018
https://doi.org/10.1016/j.cbi.2015.05.018
https://doi.org/10.1016/j.jtice.2017.06.027
https://doi.org/10.1016/j.jtice.2017.06.027
https://doi.org/10.1007/s00044-014-1178-7
https://doi.org/10.1007/s00044-014-1178-7
https://doi.org/10.1097/COC.0b013e3182a79009.Pain
https://doi.org/10.1097/COC.0b013e3182a79009.Pain


17. Balupuri A, Balasubramanian PK, Cho SJ (2017) 3D-QSAR,
docking, molecular dynamics simulation and free energy calcula-
tion studies of some pyrimidine derivatives as novel JAK3 inhibi-
tors. Arab J Chem 09:1–20. https://doi.org/10.1016/j.arabjc.2017.
09.009

18. Alamri MA (2020) Pharmacoinformatics and molecular dynamic
simulation studies to identify potential small-molecule inhibitors of
WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of
WNK kinases. Arab J Chem 13:5107–5117. https://doi.org/10.
1016/j.arabjc.2020.02.010

19. Sargsyan K, Grauffel C, Lim C (2017) Howmolecular size impacts
RMSD applications in molecular dynamics simulations. J Chem
Theory Comput 13:1518–1524. https://doi.org/10.1021/acs.jctc.
7b00028

20. Ho BK, Brasseur R (2005) The Ramachandran plots of glycine and
pre-proline. BMC Struct Biol 5:1–11. https://doi.org/10.1186/
1472-6807-5-14

21. Fan Z, Ho S, Wen R et al (2019) Design, synthesis and molecular
docking analysis of flavonoid derivatives as potential. Molecules.
24:1–14. https://doi.org/10.3390/molecules24173180

22. Pereira GRC, Tavares GDB, Freitas MC, Mesquita JF (2020) In
silico analysis of the tryptophan hydroxylase 2 (TPH2) protein var-
iants related to psychiatric disorders. PLoS One 15:1–23. https://
doi.org/10.1371/journal.pone.0229730

23. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular
docking: a review. Biophys Rev 9:91–102. https://doi.org/10.1007/
s12551-016-0247-1

24. Duan Y, Yao Y, Tang D (2014) Synthesis and biological evaluation
of quinoline–imidazole hybrids as potent telomerase inhibitors: a
promising class of antitumor agents, R Soc Chem 420382–20392.
https://doi.org/10.1039/c4ra01936a

25. Zhou J, Lu Y, Ou T, Zhou J, Huang Z, Zhu X, Du C (2005)
Synthesis and evaluation of quindoline derivatives as g-
quadruplex inducing and stabilizing ligands and potential inhibitors
of telomerase. JMedChem 48:7315–7321. https://doi.org/10.1021/
jm050041b

26. Sun J, Zhu H, Yang Z, Zhu H (2013) Synthesis, molecular model-
ing and biological evaluation of 2-aminomethyl-5-anticancer agent,
Eur J Med Chem 6023–28. https://doi.org/10.1016/j.ejmech.2012.
11.039

27. Harrison RJ, Gowan SM, Kelland LR, Neidle S (1999) Human
telomerase inhibition by substituted acridine derivatives,
Bioorganic Med. Chem Lett 9:2463–2468. https://doi.org/10.
1016/S0960-894X(99)00394-7

28. Borisa A, Bhatt H (2015) 3D-QSAR (CoMFA, CoMFA-RG,
CoMSIA) and molecular docking study of thienopyrimidine and
thienopyridine derivatives to explore structural requirements for
aurora-B kinase inhibition. Eur J Pharm Sci 79:1–12. https://doi.
org/10.1016/j.ejps.2015.08.017

29. Yadav DK, Saloni, Sharma P et al (2017) Studies of the benzopyran
class of selective COX-2 inhibitors using 3D-QSAR and molecular
docking. Arch Pharm Res 1–12. https://doi.org/10.1007/s12272-
017-0945-7

30. Chekkara R, Kandakatla N, Gorla VR et al (2017) Theoretical
studies on benzimidazole and imidazo[1,2-a] pyridine deriva-
tives as Polo-like kinase 1 (Plk1) inhibitors: pharmacophore
modeling, atom-based 3D-QSAR and molecular docking ap-
proach. J Saudi Chem Soc 21:S311–S321. https://doi.org/10.
1016/j.jscs.2014.03.007

31. Bryan C, Rice C, Harkisheimer M et al (2015) Structural basis of
telomerase inhibition by the article structural basis of telomerase
inhibition by the highly specific BIBR1532. Struct Des 23:1934–
1942. https://doi.org/10.1016/j.str.2015.08.006

32. Díaz A, Martínez E, Puerta L et al (2014) A CoMSIA study to
design antagonist ligands for the LuxS protein, New J. Chem. 38:
1235–1249. https://doi.org/10.1039/c3nj01162c

33. Chaube U, Chhatbar D, Bhatt H (2016) 3D-QSAR, molecular dy-
namics simulations and molecular docking studies of
benzoxazepine moiety as mTOR inhibitor for the treatment of lung
cancer. Bioorg Med Chem Lett 26:864–874. https://doi.org/10.
1016/j.bmcl.2015.12.075

34. Gao J, Sun J, Wang T, Sheng S, Huang T (2017) Combined 3D-
QSAR modeling and molecular docking study on spiro-derivatives
as inhibitors of acetyl-CoA carboxylase. Med Chem Res 26:361–
371. https://doi.org/10.1007/s00044-016-1743-3

35. Duan YT, Yao YF, Tang DJ (2014) Synthesis and biological eval-
uation of quinoline-imidazole hybrids as potent telomerase inhibi-
tors: a promising class of antitumor agents. Rsc Adv 4:20382–
20392. https://doi.org/10.1039/c4ra01936a

36. Wang JL, Cheng LP,Wang TC, DengW,WuFH (2017)Molecular
modeling study of CP-690550 derivatives as JAK3 kinase inhibi-
tors through combined 3D-QSAR, molecular docking, and dynam-
ics simulation techniques. J Mol Graph Model 72:178–186. https://
doi.org/10.1016/j.jmgm.2016.12.020

37. Zhu J, Ke K, Xu L, Jin J (2019) Theoretical studies on the selectiv-
ity mechanisms of PI3Kδ inhibition with marketed idelalisib and its
derivatives by 3D-QSAR, molecular docking, and molecular dy-
namics simulation. J Mol Model 25. https://doi.org/10.1007/
s00894-019-4129-x

38. Murumkar P, Sharma MK, Miniyar P. B, Yadav M. R (2016)
Development of a credible 3D-QSARCoMSIAmodel and docking
studies for a series of triazoles and tetrazoles containing 11β-HSD1
inhibitors, SAR QSAR Environ Res 1–28. https://doi.org/10.1080/
1062936X.2016.1167774

39. Shirgahi TF, Bagherzadeh K, Golestanian S, Jarstfer M (2015)
Potent Human telomerase inhibitors: molecular dynamic simula-
tions, multiple pharmacophore-based virtual screening, and bio-
chemical assays. J Chem Inf Model 55:2596–2610. https://doi.
org/10.1021/acs.jcim.5b00336

40. Fuggetta MP, De Mico A, Cottarelli A et al (2016) Synthesis and
enantiomeric separation of a novel spiroketal derivative: a potent
human telomerase inhibitor with high in vitro anticancer activity. J
Med Chem 1–49. https://doi.org/10.1021/acs.jmedchem.6b01046

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

30    Page 16 of 16 J Mol Model (2021) 27: 30

https://doi.org/10.1016/j.arabjc.2017.09.009
https://doi.org/10.1016/j.arabjc.2017.09.009
https://doi.org/10.1016/j.arabjc.2020.02.010
https://doi.org/10.1016/j.arabjc.2020.02.010
https://doi.org/10.1021/acs.jctc.7b00028
https://doi.org/10.1021/acs.jctc.7b00028
https://doi.org/10.1186/1472-6807-5-14
https://doi.org/10.1186/1472-6807-5-14
https://doi.org/10.3390/molecules24173180
https://doi.org/10.1371/journal.pone.0229730
https://doi.org/10.1371/journal.pone.0229730
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1039/c4ra01936a
https://doi.org/10.1021/jm050041b
https://doi.org/10.1021/jm050041b
https://doi.org/10.1016/j.ejmech.2012.11.039
https://doi.org/10.1016/j.ejmech.2012.11.039
https://doi.org/10.1016/S0960-894X(99)00394-7
https://doi.org/10.1016/S0960-894X(99)00394-7
https://doi.org/10.1016/j.ejps.2015.08.017
https://doi.org/10.1016/j.ejps.2015.08.017
https://doi.org/10.1007/s12272-017-0945-7
https://doi.org/10.1007/s12272-017-0945-7
https://doi.org/10.1016/j.jscs.2014.03.007
https://doi.org/10.1016/j.jscs.2014.03.007
https://doi.org/10.1016/j.str.2015.08.006
https://doi.org/10.1039/c3nj01162c
https://doi.org/10.1016/j.bmcl.2015.12.075
https://doi.org/10.1016/j.bmcl.2015.12.075
https://doi.org/10.1007/s00044-016-1743-3
https://doi.org/10.1039/c4ra01936a
https://doi.org/10.1016/j.jmgm.2016.12.020
https://doi.org/10.1016/j.jmgm.2016.12.020
https://doi.org/10.1007/s00894-019-4129-x
https://doi.org/10.1007/s00894-019-4129-x
https://doi.org/10.1080/1062936X.2016.1167774
https://doi.org/10.1080/1062936X.2016.1167774
https://doi.org/10.1021/acs.jcim.5b00336
https://doi.org/10.1021/acs.jcim.5b00336
https://doi.org/10.1021/acs.jmedchem.6b01046

	Molecular...
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Conclusion
	References


