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Abstract
We have obtained analytically the bound state solutions for the non-relativistic Schrodinger equation for the Eckart plus inversely
quadratic Yukawa potential (EIQYP) using the parametric Nikiforov-Uvarov (NU) method. In order to validate our approxima-
tion, the bound state energies were computed and predicted for some selected diatomic molecules at different adjustable
screening parameters from the available spectroscopic model parameters. The fact-finding obtained are in agreement with
previously reported results available in literature. Furthermore, the graphs of the effective potential against inter-nuclear distance
for low and high values of the screening parameters were reported. From our graphs, we observed that the approximation is best
fit for very low values of the screening parameter α ≪ 1.
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Introduction

Recently, much attention has been drawn towards the Eckart-
type potential model as a molecular potential model due to its
wide applications in physics and chemical physics [1]. It is
expressed as

−η
e−∝r

1−e−∝rð Þ þ ζ
e−∝r

1−e−∝rð Þ2 ð1Þ

where ζ and η are the potential depths of the Eckart poten-
tial and α is an adjustable positive screening parameter. Sari
et al. in 2015 studied the analytical approximations to the
bound state solutions of the Dirac equation with the Eckart
potential by using the asymptotic method [2]. Also the l-wave

scattering state solutions of the Schrödinger equation for the
Eckart potential has been studied analytically by using this
same approximation scheme proposed by Greene and
Aldrich [3, 4]. Ikhdair and colleagues solved the D-
dimensional radial Klein-Gordon equation for any orbital an-
gular momentum quantum number and for the scalar and vec-
tor Eckart-type exponential potentials using a general mathe-
matical model of the Nikiforov-Uvarov method [5].
Hassanabadi et al. in 2013 obtained the bound state solutions
by studying the s-wave Klein–Gordon equation with equally
mixed Eckart potentials [6]. Zhang in 2008 investigated the
bound state solutions of the Klein–Gordon equation with
equal vector and scalar Eckart potentials using the approxima-
tion for the centrifugal term proposed by Greene and Aldrich
for any orbital angular momentum quantum number [7].
Taskin and Kocak investigated the solution of the
Schrodinger equation for the Eckart potential by using the
approximation for the centrifugal term given by Greene and
Aldrich for any arbitrary l state [8]. Akpan et al. studied the
Klein-Gordon equation subject to equal q-deformed scalar and
vector Eckart potentials to obtain the bound state solutions
using an improved approximation scheme proposed by
Qiang and Dong [9, 10]. Surpami et al. investigated the bound
state solutions to the three-dimensional Schrodinger equation
for Eckart plus trigonometric Poschl-Teller non-central
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potential approximately using Romanovski polynomials with
suitable coordinate transformation [11]. Unfortunately, ana-
lytical solutions for the s-wave Eckart potential is only possi-
ble for zero angular momentum state because of the presence
of the centrifugal term.

Another potential that has attracted attention recently is the
inversely quadratic Yukawa potential expressed as

−
V0e−∝r

r2
ð2Þ

Where V0 represents the potential depth. This potential was
first studied by Hamzavi and coworkers where they obtained
the approximate analytic spin and pseudospin solutions of the
Dirac equation for the inversely quadratic Yukawa potential
with a Coulomb-like tensor interaction through the Nikiforov-
Uvarov method [12]. The bound state analytical solutions of
both the Schrodinger and the Klein-Gordon equations with
Manning-Rosen potential plus a class of Yukawa potential
of the Pekeris-type approximation of the Coulomb term via
the Nikiforov-Uvarov method have been also studied in the
literature [13, 14]. The solutions of the Schrodinger equation
with inversely quadratic Yukawa plusWoods-Saxon potential
(IQYWSP) have been also presented using the parametric
Nikiforov-Uvarov (NU) method. The bound state energy ei-
genvalues and the corresponding un-normalized eigen func-
tions were obtained in terms of Jacobi polynomials [15].

The sum of these potentials given as EIQYP is expressed as

V rð Þ ¼ −η
e−∝r

1−e−∝rð Þ þ ζ
e−∝r

1−e−∝rð Þ2 −
V0e−∝r

r2
: ð3Þ

In this present work, a mixed potential known as the Eckart
plus Inversely Quadratic Yukawa potential (EIQYP) is investi-
gated through the Nikiforov-Uvarov quantum formalism. The
motivation for the superposition of Yukawa and Eckart poten-
tials is to see how the eigenvalues vary with those of the pure
Yukawa and Eckart potentials and what information could be
obtained from the combination of potentials. We organize the
work as follows; firstly, a brief introduction in “Introduction”
(this section). In “Theoretical approach,” the parametric
Nikiforov-Uvarov method was introduced and briefly
discussed. The approximate solutions of the Schrodinger equa-
tionwas explicitly obtained in “Solutions of Eckart plus inverse-
ly quadratic Yukawa potential.” “Results and discussion” is
dedicated to the numerical analysis of the obtained bound state
solutions. Finally, the conclusion was given in “Conclusions.”

Theoretical approach

The generalization of the parametric NU method is very sim-
ilar to the more generalized expression in Eq. (4). The

parametric form is simply using parameters to obtain explic-
itly energy eigenvalues and it is still based on the solutions of a
generalized second-order linear differential equation with spe-
cial orthogonal functions. The hypergeometric NU method
has shown its power in calculating the exact energy levels of
all bound states for some solvable quantum systems.

The equation below is a Schrodinger-like second-order dif-
ferential equation of the form

ψ
00 sð Þ þ τ sð Þ

σ sð Þ ψ
0
sð Þ þ σ sð Þ

σ2 sð Þ ψ sð Þ ¼ 0 ð4Þ

Where σ(s) and σ (s) are both polynomials at most second
degree and eτ (s) is a first-degree polynomial. The parametric
generalization of the N-U method is given by the generalized
hypergeometric-type Eq. (5)

Ψ 00 sð Þ þ c1−c2s
s 1−c3sð Þ Ψ

0 sð Þ

þ 1

s2 1−c3sð Þ2 −ϵ1s2 þ ϵ2s−ϵ3
� �

Ψ sð Þ ¼ 0:

ð5Þ

Thus, Eq. (4) can be solved by comparing it with Eq. (5)
and the following polynomials are obtained

τ sð Þ ¼ c1−c2sð Þ;σ sð Þ ¼ s 1−c3sð Þ; σ sð Þ
¼ −ϵ1s2 þ ϵ2s−ϵ3 ð6Þ

The parameters obtainable from Eq. (5) serve as important
tools to finding the energy eigenvalues and eigenfunctions.

The function π(s) and the parameters λ required for the NU
method are given as follows:

π sð Þ ¼ σ
0−eτ
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0−eτ
2

 !2

−σþ kσ

vuut ð7Þ

λ ¼ k þ π sð Þ: ð8Þ

Now substituting Eq. (6) into Eq. (7), we find

σ sð Þ ¼ c4 þ c5s� c6−c3k�ð Þs2 þ c7 þ k�ð Þsþ c8
� �1

2 ð9Þ

where

c4 ¼ 1

2
1−c1ð Þ; c5 ¼ 1

2
c2−2c3ð Þ; c6 ¼ c52 þ ϵ1; c7

¼ 2c4c5−ϵ2; c8 ¼ c42 þ ϵ3; c9 ¼ c3c7 þ c32c8 þ c6

ð10Þ

The resulting value of k in Eq. (9) is obtained from the
condition that the function under the square root be square
of a polynomial and it yields,

k� ¼ − c7 þ 2c3c8ð Þ � 2
ffiffiffiffiffiffiffiffiffiffi
c8c9:

p ð11Þ
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The new π(s) for k− becomes

π sð Þ ¼ c4 þ c5s−
ffiffiffiffiffi
c9

p þ c3
ffiffiffiffiffi
c8

pð Þs− ffiffiffiffiffi
c8

p½ � ð12Þ
for the k− value,

k− ¼ − c7 þ 2c3c8ð Þ−2 ffiffiffiffiffiffiffiffiffi
c8c9

p ð13Þ

Using Eq. (15), we obtain

τ sð Þ ¼ c1 þ 2c4− c2−2c5ð Þs−2 ffiffiffiffiffi
c9

p þ c3
ffiffiffiffiffi
c8

pð Þs− ffiffiffiffiffi
c8

p½ � ð14Þ

The physical condition for the bound state solution is τ′ < 0
and thus

τ
0
sð Þ ¼ −2c3−2

ffiffiffiffiffi
c9

p þ c3
ffiffiffiffiffi
c8

pð Þ < 0 ð15Þ
with the aid of Eq. (9), we obtain the energy equation as

c2−c3ð Þnþ c3n2− 2nþ 1ð Þc5 þ 2nþ 1ð Þ ffiffiffiffiffi
c9

p þ c3
ffiffiffiffiffi
c8

pð Þ
þc7 þ 2c3c8 þ 2

ffiffiffiffiffiffiffiffiffi
c8c9

p ¼ 0

ð16Þ

ψ sð Þ ¼ Nnsc12 1−c3sð Þ−c12−
c13
c3 Pn

c10−1;
c11
c3
−c10−1

� �
1−2c3sð Þ ð17Þ

Solutions of Eckart plus inversely quadratic
Yukawa potential

Solutions to the radial part of the Schrodinger
equation (SE) with Eckart plus inversely quadratic
Yukawa potential

To obtain the bound state solutions of Eq. (3), we consider Eq.
(17) and obtain

ð18aÞ

Where λ = l(l + 1) and V(r) is the potential energy function.
Eq. (18) can also be expressed as

ð18bÞ

where

Veff rð Þ ¼ V rð Þ þ l l þ 1ð Þћ2
2μr2

¼ −η
e−∝r

1−e−∝rð Þ þ ζ
e−∝r

1−e−∝rð Þ2 −
V0e−∝r

r2
þ l l þ 1ð Þћ2

2μr2

ð19aÞ

However, since the SE with the Eckart plus inversely qua-
dratic Yukawa potential has no exact solution, we then use the
Greene and Aldrich approximation [3] for the centrifugal term
as Hamzavi et al. [16].

Fig. 3 Effective potential and its approximation for Eckart potentials plus
inversely quadratic Yukawa potentials with η = 0.01 MeV and ζ =
0.5 MeV, V0 = 1.0 MeV for parameter α = 0.01 at l = 5

Fig. 1 Eckart potentials versus r with η = 0.01 MeV and ζ = 0.5 MeV for
parameter α = 0.01, 0.05, 0.5

Fig. 2 Inversely quadratic Yukawa potentials versus rwith V0 = 1.0MeV
for parameter α = 0.01, 0.05, 0.5
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1

r2
≈

∝2

1−e−∝rð Þ2 ð19bÞ

which is valid for αr ≪ 1 . Therefore the EIQYP becomes

Veff rð Þ ¼ V rð Þ þ l l þ 1ð Þћ2
2μr2

¼ −η
e−∝r

1−e−∝rð Þ þ ζ
e−∝r

1−e−∝rð Þ2 −
V0e−∝r∝2

1−e−∝rð Þ2

þ l l þ 1ð Þћ2∝2
2μ 1−e−∝rð Þ2 : ð19cÞ

To test the accuracy of our approximation, we plotted the
Eckart plus inversely quadratic Yukawa potential (3) and its
approximation (19a) with parameters η = 0.01 MeV, ζ =
0.5 MeV, and V0 = 1.0 MeV at different screening parameters

α = 0.01, 0.05, and 0.5 in Fig. 3. In Fig. 1 and Fig. 2, a plot of
the Eckart potential and inversely Yukawa potential against
internuclear distance ‘r’ at different screening parameters was
reported. Additionally, in Fig. 3, Fig. 4, and Fig. 5, the effec-
tive potential and its approximation (19c) for angular momen-
tum numbers l = 5, at different screening parameters is
demonstrated.

Making the transformation s = e−αreq. (19) becomes

V sð Þ ¼ −η
s

1−sð Þ þ ζ
s

1−sð Þ2 −
V0∝2s
1−sð Þ2 : ð20Þ

Again, applying the same transformation to get the form
that NU method is applicable, Eq. (21) gives a generalized
hypergeometric-type equation as
d2R sð Þ
ds2

þ 1−sð Þ
1−sð Þs

dR sð Þ
ds

þ 1

1−sð Þ2s2

− β2 þ A
� �

s2 þ 2β2 þ Aþ B−C
� �

s− β2 þ λ
� �� �

R sð Þ ¼ 0;

ð21Þ

Fig. 4 Effective potential and its approximation for Eckart potentials plus
inversely quadratic Yukawa potentials with η = 0.01 MeV and ζ =
0.5 MeV, V0 = 1.0 MeV for parameter α = 0.5 at l = 5

Fig. 5 Plot of energy eigenvalues against principal quantum number ‘n’
for 1 ≤ l ≤ 5 at C = − 0.05 MeV, D = − 0.1875 MeV, a = 2 MeV, b = − 1
MeV, and α = 0.01

Fig. 6 Plot of energy eigenvalues against principal quantum number ‘n’
for 1 ≤ l ≤ 5 atC = 0MeV,D = − 3.1875MeV, a = 2MeV, b = − 4MeV,
and α = 0.01

Fig. 7 Plot of energy eigenvalues against principal quantum number ‘n’
for 1 ≤ l ≤ 5 at C = − 0.05 MeV, D = 0 MeV, a = − 3 MeV, b = 1 MeV,
and α = 0.01
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Where

λ ¼ l l þ 1ð Þ;−β2 ¼ 2μE

α2ћ2
;A ¼ 2μη

α2ћ2
;B ¼ 2μV0

ћ2
;C ¼ 2μζ

α2ћ2
: ð22Þ

Hence, comparing Eq. (21) with Eq. (5) yields the follow-
ing parameters below:

c1 ¼ c2 ¼ c3 ¼ 1; c4 ¼ 0; c5 ¼ −
1

2
; c6 ¼ 1

4
þ β2 þ A;

c7 ¼ −2β2−A−Bþ C; c8 ¼ β2 þ λ; c9 ¼ 1

4
þ C−Bþ λ;

c10 ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ λ

q
; c11 ¼ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ C−Bþ λ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ λ

q !
;

c12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ λ

q
; c13 ¼ −

1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ C−Bþ λ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ λ

q !
;

ϵ1 ¼ β2 þ A
� �

; ϵ2 ¼ 2β2 þ A−B−C; ϵ3 ¼ β2 þ λ:

ð23Þ

Now using Eqs. (5), (22), and (23), we obtain the energy
eigen spectrum of the EIQYP as

β2 ¼
Aþ B−C−2λ− n2 þ nþ 1

2

� �
− 2nþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ C−Bþ λ

q
2nþ 1ð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ C−Bþ λ

q
2
64

3
75
2

−λ ð24Þ

Equation (24) can be solved explicitly and the energy eigen
spectrum of EIQYP becomes, for l ≠ 0

E ¼ α2ћ2

2μ

2μη
α2ћ2

þ 2μV0

ћ2
− 2μζ

α2ћ2
−2l l þ 1ð Þ− n2 þ nþ 1

2

� �
− 2nþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ l l þ 1ð Þ þ 2μζ

α2ћ2
− 2μV0

ћ2

q
2nþ 1ð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ l l þ 1ð Þ þ 2μζ

α2ћ2
− 2μV0

ћ2

q
2
64

3
75
2

−l l þ 1ð Þ

8><
>:

9>=
>; ð25aÞ

also for s-wave state where l = 0

E ¼ α2ћ2

2μ

2μη
α2ћ2

þ 2μV0

ћ2
− 2μζ

α2ћ2
− n2 þ nþ 1

2

� �
− 2nþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ 2μζ

α2ћ2
− 2μV0

ћ2

q
2nþ 1ð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ 2μζ

α2ћ2
− 2μV0

ћ2

q
2
64

3
75
2

ð25bÞ

We now calculate the radial wave function of the EIQYP as
follows.

The weight function ρ(s) is given as

ρ sð Þ ¼ sc10−1 1−c3sð Þ
c11
c3
−c10−1: ð26Þ

Using Eq. (23), we get the weight function as

ρ sð Þ ¼ sU 1−sð ÞV ; ð27Þ

Where U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
β2−λ

p
and V ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ C−Bþ λ:

q
Also we obtain the wave function χ(s) as

χ sð Þ ¼ P
c10−1;

c11
c3
−c10−1

n 1−2c3sð Þ: ð28Þ

Using Eq. (23), we get the function χ(s) as

χ sð Þ ¼ P U ;Vð Þ
n 1−2sð Þ; ð29Þ

Where P U ;Vð Þ
n are Jacobi polynomials.

Lastly,

φ sð Þ ¼ sc12 1−c3sð Þ−c12−
c13
c3 ; ð30Þ

and using Eq. (23), we get

φ sð Þ ¼ s
U=2 1−sð Þ

V−1=

2
: ð31Þ

We then obtain the radial wave function from the equation

Rn sð Þ ¼ Nnφ sð Þχn sð Þ; ð32Þ
Rn sð Þ ¼ Nns

U=2 1−sð Þ V−1ð Þ=2P U ;Vð Þ
n 1−2sð Þ; ð33Þ

Where n is a positive integer and Nn is the normalization
constant.

Results and discussion

Figures 6 and 7 show graphically the energy against principal
quantum number ‘n’ for different choices of parameters C, D,
a, and b at α = 0.01 for 1 ≤ l ≤ 5. As the principal quantum
number increases, the energy at various l-states decreases.
The explicit bound state energy expression obtained in this
work (Eq. (25)) was used to calculate the numerical bound
state energies of some selected diatomic molecules (H2, CO,
ScH, N2, NO, and CH) using python programming language
(version 3.7.7) in an Anaconda navigator environment. The
spectroscopic parameters (mainly the dissociation energies
and the molecular reduced mass) for the diatomic molecules
selected for this work were obtained from previously reported
works [17–20]. In comparison, our numerical results for some
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of the selected diatomic molecules CO, N2, NO, and CH are in
good agreement with the results reported by Ramazan, Sever.,
and co [19]. The numerical computed bound state energies for
the selected diatomic molecules at different n and l are shown
in Table 1. From the calculated results, it can be observed that
the bound state energies of the diatomic molecules increase as
the values of n and l increase. The numerical values of the
explicit bound state energies of some of these diatomic mole-
cules for various values of n and l are obtained and compared
with the Poisson summation approach [17] and the exact
method [18] for H2, CO, ScH, and NO.

Conclusions

In this study, we investigate the solutions of the Schrodinger
equation for the mixed proposed potential consisting of the
Eckart and Inversely Quadratic Yukawa Potential (EIQYP) by
using the Greene and Aldrich type approximation for the cen-
trifugal term. We obtained the energy eigenvalues and the cor-
responding wave function for several values of the screening
parameter for an arbitrary state. To show the accuracy of the
approximation used in this study, we plotted graphs of the po-
tentials and its approximation with the PYTHON 3.6 program.
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