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Abstract
The Molecular Electron Density Theory (MEDT) was used for the study of the mechanism and the selectivity of the [3+2]
cycloaddition reaction between quinazoline-3-oxide and methyl 3-methoxyacrylate, using the B3LYP/6-31G(d,p) DFT method.
In gas phase, this [3+2] cycloaddition reaction is characterized by a completely ortho regioselectivity and a moderate exo
stereoselectivity. Dichloroethane solvent did not modify the selectivities obtained in gas phase but increase the activation
energies and decrease the exothermic character. Analysis of thermodynamic characters indicates that by the inclusion of the
experimental conditions, the reaction becomes endergonic and thereby under thermodynamic control favouring the formation of
the most stable product as observed experimentally, explaining the exo stereoselectivity. The analysis of the global electron
density transfer (GEDT) at the transition states and bond order (BO) show that this reaction takes place via a very slightly
synchronous and non-polar one-step mechanism. Conceptual DFT reactivity indices analysis accounts for the electrophilic
character of the reagents, explaining the high obtained free activation energies, while local Parr functions analysis allows us to
explain the ortho regioselectivity observed experimentally. ELF topological analysis of the most favoured reactive pathways
indicates that mechanism of this 32CA reaction is one stage, one step, synchronous and non-concerted. The stability of the
favourable cycloadduct is attributed to the presence of different non-conventional hydrogen bonds interactions as indicated by
NCI and QTAIM analyses.
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Introduction

Quinazolines are very important structures, which were found
in a tremendous biological active molecules displaying a vast
spectrum of pharmacological properties [1–5]. Likewise,
isoxazolidines are also a very important heterocyclic mole-
cules having a large broad potential biological and medicinal
activities [6, 7].

The link of two biological active compounds is an impor-
tant modern strategic synthetic technique, which is used for
enhancing the primary pharmacological properties. Thereby,
the link between quinazoline and isoxazolidine scaffolds pro-
duce a new type of polyheterocycle, the isoxazolo[2,3-
c]quinazolines (Scheme 1), largely used in the pharmaceutical
industry because of its pharmacological properties [8, 9].

Today, synthesis of complex molecules with efficient
disastereo and enantioselective manner using simple sub-
strates imposes a huge challenge in contemporary organic
chemistry at industrial and academic level. To achieve
those structures, [3+2] cycloaddition (32CA) reactions
have been used, which are considered as a key synthetic
method for the preparation of five heterocyles from sim-
ple reagents and through simple processes [10]. In this
context, 32CA reaction of quinazoline-3-oxide with eth-
enes i s a s imp le me thod fo r the syn thes i s o f
polyheterocyclic compounds having both quinazoline
and isoxazolidines rings (Scheme 2).
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Recently, Yin and co-workers studied experimentally the
32CA of quinazoline-3-oxide (nitrone 1) with methyl 3-
methoxyacrylate (acrylate) 2 (Scheme 3). The authors have
found that isoxazolo[2,3-c]quinazolines were obtained in
good yield with total regio- and stereoselectivities[11].

In recent years, the most important challenge of both ex-
perimental and theoretical chemists is predicting the reactivity
and selectivity of molecules before and during the reaction. In
order to understand, interpret and predict the mechanistic be-
haviours of organic reactions, many theoretical models have
been proposed, such as Houk’s FMO model based on the
interaction between frontier molecular orbitals [12] and the
recent Domingo’s theory, the Molecular Electron Density
Theory (MEDT) [13], which is based on the change of elec-
tron density during the reaction.

The main objective of our research axis is to predict the
molecular mechanism and understanding the origin of the se-
lectivity of the cycloaddition reactions for the synthesis of
active complex biological compounds [14–19]. Herein, we
focused on a MEDT study of the 32CA reactions, with the
aim of comprehending the factors controlling the regio- and
stereoselectivities of the 32CA reaction performed by Yin’s
group [11].

Computational methods

The structures of stationary points were optimized using the
hybrid functional B3LYP and the 6-31G (d,p) basis set
[20–23] within the program Gaussian 09 [24]. The nature of
all stationary points has been confirmed by frequency calcu-
lations, in which reagents and products do not present any
imaginary frequency, while transition states (TSs) must have
one and only one imaginary frequency. The electronic struc-
ture of the transition states were analysed using NBO method
[25]. The effect of the solvation of dichloroethane (DCE) was
performed using the polarisable continuummodel (PCM) [26]
through the self-consistent reaction field (SCRF) [27–29]

within single point calculations of the optimized gas phase
structures. Values of thermodynamic properties, namely,
Gibbs free energies, enthalpies and entropies, were calculated
at 333 K and 1 atm through the optimized gas phase structures
[30]. The electrophilic indexω [31] is given by the equation,
ω = (μ2/2η). The electronic chemical potential μ and the hard-
ness η were calculated according to the following formulas:
μ = (εHOMO + εLUMO)/2 and η= εLUMO – εHOMO, in which
εHOMO and εLUMO are the energies of the frontier molecular
orbitals, respectively [32, 33]. The Pþ

K electrophilic and P−
K

nucleophilic Parr functions [34] which are used for obtaining
the electrophilic and nucleophilic centres of the separated re-
agents were calculated using the Mulliken atomic spin density
(ASD) of the radical anion and the radical cation of the elec-
trophile and the nucleophile, respectively.

Non-covalent interaction (NCI) analysis was performed
within the reduced density gradient and low-gradient
isosurfaces [35, 36], using NCI plot [37]. Quantum theory of
atoms in molecule (QTAIM) [38] was performed using the
Multiwfn [39] program, through the corresponding B3LYP/
6-31G(d,p) mono-determinantal wave function.

The global electron density transfer (GEDT) [40] was cal-
culated of the sum of the natural atomic charges obtained by a
natural population analysis (NPA) of the atoms constructing
the reagents [41]. Electron localization function (ELF) [42]
topological analysis was realized using the Multiwfn [39] pro-
gram through the corresponding B3LYP/6-31G(d) mono-
determinantal wave function.

Results and discussion

In this part, firstly, we analyse the energy profiles of all pos-
sible reactive pathways corresponding to this 32CA reaction.
We also analyse the geometries of the transition states and
GEDT which occurred at the transition states. Secondly, we
study the reactivity and the regioselectivity of this 32CA re-
action using conceptual DFT (CDFT) reactivity indices [43,
44] and local Parr functions indices [34], respectively. In the
third part of this study, we study the electronic structure of the
different molecular systems at the most favourable profile in
terms of ELF analyses in order to predict the molecular mech-
anism nature of the studied 32CA reaction. Finally, the ortho-
exo selectivity of the present 32CA reaction is analysed in
terms of NCI and QTAIM analyses techniques.

Energy and geometry analysis

Because the reagents nitrone 1 and acrylate 2 have an asym-
metric structure, the 32CA reaction between them can follow
four possible reactive pathways, namely, the ortho and meta
regioisomeric channels, and in each regioisomeric channel,
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the regents may approach one to the other through two possi-
ble stereoisomeric pathways, that are the endo and exo ap-
proaches. So, in addition to the separated reagents nitrone 1
and acrylate 2, in the studied 32CA reaction, four possible
transition states, TSon, TSox, TSmn and TSmx, and four
possible cycloadducts Pon, Pox, Pmn and Pmx, may be
formed which have been located and characterized

(Scheme 4). The calculated total energies in gas phase and
in dichloroethane (DCE) solvent of the stationery points are
given in Table S1 in the Supporting Information, while the
corresponding relative ones are given in Scheme 4. The
Cartesian coordinates of the stationary points and the imagi-
nary frequencies of the transition states are included in the
Supporting Information.
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From the values of activation energies in the gas phase, the
noticeable remark is that a small activation energy difference
between that of the ortho pathways (0.72 kcal mol−1), thereby,
this 32CA reaction can lead kinetically to the formation of a
mixture of both Pmn and Pmx, in which this last is slightly
kinetically favoured. In addition, we notice that the meta
cycloadducts are less stable, indicating that these pathways
are unfavourable both kinetically and thermodynamically.
Therefore, this 32CA reaction is completely ortho regioselec-
tive, as observed experimentally.

Because the gas phase does not reproduce all experimental
outcomes, in particular, total stereoselectivity, further calcula-
tions taking into account experimental conditions such as sol-
vent nature are necessary. From the values of relative energies
of TSs and CAs in the solution phase, we notice that there is an
increase of activation energies by about 3 kcal mol−1 and a
decrease of the exothermic character of these pathways in
comparison to the gas phase values. This fact may be due to
the better solvation of the reagents than the TSs and CAs [45],
because the reagents are more polarized than TSs and/or
cycloadducts, which favour the formation of a strong electro-
static interactions with solvent molecules.

Since this 32CA between nitrone 1 and acrylate 2 is under
thermodynamic control, and the non-covalent interactions at
the most stable cycloadduct (Pox) are governed by the selec-
tivity (see “Origin of the stability of Pox” section), further
calculations including diffuse functions may be more suitable
and reliable for the study of these molecular systems. Thereby,
we have performed single point calculations at B3LYP/6-31+
g(d,p)//B3LYP/6-31G(d) level of theory. The energy results
are given in Table 1.

From Table 1, the difference in relative energy between
that of the most stable cycloadduct (Pox) and the second one
(Pon) is 3.37 kcal mol−1. This value is almost the same ob-
tained using the standard 6-31G(d) basis set (3.53). Therefore,

the inclusion of diffuse functions in calculations does not
make any remarkable change in the select ivi ty .
Consequently, the B3LYP/6-31G(d) level is appropriate for
the study of this systems despite the existence of non-covalent
interactions.

The solution activation energies difference (ΔΔE =
0.41 kcal mol−1) is small and thereby does not reproduce the
stereoselectivity observed experimentally; therefore, we are
obliged to include in calculations other experimental condi-
tions such as temperature, which was 60 °C and pressure
(1 atm) and solvent nature (DCE). From the obtained results,
we can extract the thermodynamic properties, namely, enthal-
py, entropy and free energy. The values of the relative ther-
modynamic parameters are collected in Table 2, while the
total ones are moved to Table S2 in the Supporting
Information. The free energy profiles for the four completive
pathways are depicted in Fig. 1.

By taking into account the thermal parameters in calcula-
tion, the previous obtained ortho regioselectivity obtained ex-
perimentally and in the previous calculations does not change,
in which the activation enthalpy difference between the ortho
paths is ΔΔH = 0.40 kcal mol−1. Furthermore, the positive
sign of relative enthalpies of the meta cycloadducts indicates
that the corresponding pathways become having an endother-
mic character, stressing in addition its unfavourable forma-
tion. On the other hand, the values of activation free energies
increase by about 15 kcal mol−1 in compared to the obtained
activation enthalpies. This increase may be explained by the
negative values of the corresponding entropy which is conse-
quence of the bimolecular character of this 32CA reaction.
Besides, the positive values of relative free energies account
that all competitive pathways become having an endergonic
character. Thereby, the studied 32CA reaction is under ther-
modynamic character, in which the more stable cycloadduct is
thermodynamica l ly the more favoured product .
Consequently, the Pmx (8.19 kcal mol−1) is the favoured ther-
modynamic product since it is 2.18 kcal mol−1 more stable

Table 1 B3LYP/6-31+g(d,p)//B3LYP /6-31G(d,p) total and relative
energies, in gas phase of the stationery points involved in the 32 CA
reaction of nitrone 1with acrylate 2

System E (a.u) ΔE (kcal mol−1)

Nitrone 1 − 763.551782
Acrylate 2 − 421.024744
TSox − 1184.55438 13.90

TSon − 1184.55437 13.90

TSmx − 1184.53653 25.10

TSmn − 1184.53878 23.69

Pox − 1184.59224 − 9.86
Pon − 1184.58687 − 6.49
Pmx − 1184.57395 1.62

Pmn − 1184.57666 − 0.08

Table 2 Relative enthalpies, entropies and Gibbs free energies for the
TSs and the cycloadducts involved in the 32CA between nitrone 1 and
acrylate 2

System ΔH (kcal mol−1) ΔS (cal mol−1 K−1) ΔG (kcal mol−1)

TSox 13.83 − 48.267 29.91

TSon 14.23 − 46.663 29.78

TSmn 24.63 − 49.327 41.06

TSmx 23.64 − 49.699 40.19

Pox − 8.49 − 50.071 8.19

Pon − 5.59 − 47.921 10.37

Pmn 2.28 − 48.92 18.57

Pmx 1.15 − 49.231 17.55
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than the second more stable one Pmn cycloadduct
(10.37 kcal mol−1). Resulting from that, this 32CA reaction
leads to the formation of only a single regio- and steroisomer
as the kinetic and thermodynamic cycloadduct which is Pmx,
in great accordance with experimental data [11].

On the other hand, the used experimental thermal condition
of this 32CA reaction (60 °C) is explained by these relatively
high values of free energies.

The optimized structures of the transition states of the
32CA reaction between nitrone 1 and acrylate 2 as well as
the lengths of the new forming bonds, the corresponding bond
order, the values and direction of GEDT are given in Fig. 2.

The analysis of the synchronicity of mechanism was per-
formed on the basis ofWiberg bond indices [46]. The bond order
(BO) values at the TS indicates that the formation progress of
new forming bonds C–C and O–C is 37% and 0.41% at TSox,
37% and 41% at TSon, 50% and 36% at TSmx and 50% and
41% at TSmn. These values indicate that the mechanism is
almost asynchronous in all paths, in which, in the ortho path-
ways, the formation of the C–O new bond is slightly advanced
than that of the C–C one and vice versa in the meta ones.

We have obtained a negative sign of GEDT, which was
calculated from the nitrone 2 system at transition states; there-
fore, the flux of the electron density unfolds from acrylate 2 to
nitrone 1. The obtained very low values accounting for a non-
polar character for these 32CA reactions and explaining the
obtained high activation Gibbs free energies.

Analysis of the conceptual DFT indices at the ground
state of the reagents

Table 3 contains the energies of frontier molecular orbitals
(FMO) and values of global CDFT reactivity indices of
nitrone 1 and acrylate 2.

For the electronic chemical potential values and by a com-
parison between that of both reagents, acrylate 2 (− 3.59 eV)
and nitrone 1, (− 3.88 eV), the flux of electronic density
named as GEDT which occur at the transition states will take
place from acrylate 2 system to the nitrone 1 one. For the
electrophilic indices values, nitrone 1 has 2.01 eV and acrylate
2 possesses 1.12 eV, accounting that nitrone 1 is a strong
electrophile, while acrylate 2 in the borderline between strong
and moderate electrophile based on the electrophilic scale
proposed by Domingo et al. [47]. Therefore, this 32CA reac-
tion occurred between two reagents with almost the same
electronic behaviours, which explain the high free activation
energy and the low values of GEDT.

Figure 3 presents a three-dimensional illustration of the
atomic spin densities (ASD) of the radical cation nitrone 1-,
and the radical anion acrylate 2+, as well as the nucleophilic
Parr functions local indices of acrylate 2 and the electrophilic
Parr functions local indices of nitrone 1. From Fig. 3, the
higher electrophilic Pþ

K Parr function local index is concen-
trated at the carbon atom C3 as can be seen at the reactive
region of the nitrone 1 (for atom numbering, see Scheme 4),
with a value ofPþ

K = 0.26. In contrast, for the nucleophilicP−
K

Parr function local indices of acrylate 2, we can clearly see at
the C4=C5 reactive region that C4 has the higher value of
local indices (P−

K = 0.54), which reveals that it is the most
nucleophilic centre in this nucleophilic reagent. Based on the
fact that in polar mechanisms, the favourable interaction be-
tween reactive centres will be of the most electrophilic centre
of the electrophile with the most nucleophilic centre of the
nucleophile [47], the present 32CA reaction will form only
the ortho regioisomers. This finding is in agreement with the
analysis of energy profiles and explains well the experimental
data [11].

ELF analysis (nature of molecular mechanism)

We have planned to investigate the electronic nature of the
molecular mechanism for the most favoured reactive path as-
sociated to the 32CA reaction between nitrone 1 and acrylate 2
in order to get more detailed characterization of the changes in
the electronic density during the studied 32CA reaction. For
achieving this goal, we have performed an electron
localisation function (ELF) topological analysis of pertinent
selected points on the IRC curve associated with the formation
of Pox. The IRC profile of the ortho-exo path together with the
selected pertinent points, from MC to Pox associated to this
pathway, are displayed in Fig 4. The electronic populations of
the most important ELF valence basins of the selected struc-
tures are collected in Table 4. The ELF attractor positions of
the selected structures on the IRC curve of the ortho-exo re-
active pathway associated with the 32CA reaction of nitrone 1
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Fig. 1 Relative Gibbs free energy profile of the pathways associated with
the 32CA reaction of nitrone 1 with acrylate 2
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with acrylate 2 together with the population of some relevant
basins are depicted in Fig 5.

The most important basins are concentrated at the reactive
region, the (C3−N2 and N2−O1) bonds of nitrone 1 and C4
−C5 bond of acrylate 2.

First, the reaction began by a rapprochement of reagents
forming a molecular complex (MC), which stabilizes by elec-
trostatic interactions. Thereby, theMC ELF topological struc-
ture shows the presence of a V(C4,C5) and V'(C4,C5)
disynaptic basins which are characterized by a population of
3.52e for each one, accounting for a high electron density of
this reactive region, in great agreement with the global

reactivity indices, which is classified as a nucleophile species.
This is due to the electron-donating group (methoxy) that is
conjugated with the C=C double bond of the acrylate. On the
other hand, the N2−O1 bond shows the presence of V(N2,O1)
disynaptic basin with a population of 1.28e. In addition, we
notice that the presence of V(C3,N2) disynaptic basin inte-
grating 3.28e.

The second selected point is P1, just before the transition
state. The remarkable change at this point is the apparition of
two new monosynaptic V(N2) and V(C4) basins with a pop-
ulation of 0.94 and 0.42e, respectively. The monosynaptic
V(N2) accounts for the beginning of the formation of N non-
bonding electron pair which is formed from the decrease of
the electron density of the V(C3,N2) disynaptic basin which
becomes integrating 2.41e. The monosynaptic V(C4) ac-
counts also for the beginning of the formation of
pseudoradical centre at C4 atom from the decrease of electron
density of the C4−C5 reactive region, which may be noticed
by the disappearance of a V'(C4,C5) disynaptic basin and
decreases of electron density of V(C4,C5) disynaptic basin
by 0.60e.

Fig. 2 Optimized geometries of the transition states involved in the 32CA reaction of nitrone 1 with acrylate 2, together with lengths of new forming
bonds (black), Wiberg indices (blue) and GEDT values (red)

Table 3 FMO energies and global CDFT indices, in eV, of nitrone 1
and acrylate 2

HOMO LU MO μ η ω

Nitrone 1 − 5.76 − 2.01 − 3.88 3.75 2.01

Acrylate 2 − 6.48 − 0.71 − 3.59 5.77 1.12
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At the transition state TSox, where, d(C3−C4) = 2.20 Å
and d(O1−C5) = 1.93 Å, the noticeable change is the appari-
tion of new V(C3) monosynaptic basin with a population of
0.34e, accounting for the formation of a pseudoradical C3
centre. In addition, the V(N2−C3), V(C4,C5) and V(N2-O1)
disynaptic basins continue to be depopulated and the electron-
ic population of V(C4) and V(N2) slightly increases.

At the first point afterTSox, which is P2, where the lengths
of the new forming bonds, C3−C4 and O1−C5 are 2.06 Å and
1.79 Å, respectively. At this point, in addition to the depopu-
lation of the disynaptic basins of the reactive regions and the
population of the new monosynaptic basins, the main topo-
logical change is the apparition of new monosynaptic V(C5)
basin with a population of 0.26e.

The most important point is P3, because here, we can no-
tice the vanishment of the V(C3), V(C4) and V(C5) monosyn-
aptic basins and a formation of new V(C3,C4) and V(O1,C5)
disynaptic basins characterized by 1.66 and 0.92e of electron-
ic population, respectively, accounting for the simultaneously
formation of the new single C3−C4 and O1−C5 bonds.

Finally, we noticed at cycloadduct Pox, where d(C3–C4) =
1.58 Å and d(O1–C5) = 1.45 Å, an increases of the population

of the new V(O1,C5) and V(C3,C4) disynaptic basins which
become 1.81 and 1.65e, respectively. In contrast, the electron-
ic population of V(N2) monosynaptic basin achieve 2.08e
indicates that the full formation of N atom nonbonding elec-
tron pair.

We extract from all of the above analyses that this 32CA
reaction occurs via a one-stage one-step synchronous mecha-
nism. Additionally, in the first place, this 32CA reaction began
by the formation of non-stable pseudo-diradical centres then
followed by their coupling leading to the formation of the new
single bonds, and thereby, the molecular mechanism is non-
concerted.

Origin of the stability of Pox

Since this 32CA reaction is under thermodynamic control, the
most stable cycloadduct Pox may have some non-covalent
interactions more than other cycloadducts that stabilized it.
Thereby, we have performed a NCI as well as QTAIM anal-
yses in order to confirm the presence and to determine the
nature of these interactions at Pox structure and the compari-
son with that of the second most stable cycloadduct Pon.

Fig. 3 Illustration of ASD
associated with the radical cation
1-, and the radical anion 2+,
together with the nucleophilic
Parr functions local indices of
acrylate 2 and the electrophilic
Parr functions local indices of
nitrone 1

Table 4 Electronic populations of valence basin taken from ELF
calculations of the selected systems corresponding to the ortho-exo
pathway of the 32CA reaction of nitrone 1 with acrylate 2

MC P1 TSox P2 P3 Pox

d(C3−C4) 3.16 2.35 2.20 2.06 1.74 1.58

d(O1−C5) 3.84 2.09 1.93 1.79 1.53 1.45

V(N2−C3) 3.28 2.41 2.20 2.05 1.80 1.76

V(O1−N2) 1.28 1.17 1.09 1.27 1.12 0.99

V(C4−C5) 3.52, 3.52 2.92 2.74 2.33 2.12 2.00

V(C3−C4) – – – – 1.66 1.81

V(O1−C5) – – – – 0.92 1.65

V(C3) – – 0.34 0.50 – –

V(N2) – 0.94 1.22 1.49 1.88 2.08

V(C4) – 0.42 0.59 0.74 – –

V(C5) – – – 0.26 – –
Fig. 4 The IRC profile of the favourable ortho-exo approach together
with the positions of the selected points of the 32CA reaction between
nitrone 1 and acrylate 2
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NCI analysis

Non-covalent interactions (NCI) may play an important role
for the determination of the stereoselectivity of many reac-
tions, namely, the 32CA reactions as confirmed by previous
studies [48–51]. For confirming the presence of this kind
of interactions, we have performed a NCI analysis of the

structure of the favourable cycloadduct: Pox and the sec-
ond one Pon. A preliminary analysis of the structures of
both cycloadducts reveals that there are some non-covalent
interactions such as C…H, N…H and O…H interactions.
Therefore, these non-conventional hydrogen bonds (HB)
may be enhancing the stability of these structures. For
obtaining more detail about those interactions, we have

Fig. 5 Positions of ELF attractors of the selected structures on the IRC curve corresponding to the ortho-exo reactive pathway of the 32CA reaction of
nitrone 1 with acrylate 2 together with the population of the most relevant basins
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performed an NCI analysis of both structure of Pox and
Pon. The reduced density gradient for Pox and Pon are
depicted in Fig. 6.

Figure 6 shows the presence of several surfaces with tur-
quoise and green colours is both Pox and Pon structures,
which indicates for the presence of several weak non-
covalent interactions in Pox and Pon systems.

For the sake to confirm the presence of these non-covalent
interactions, a supplementary deep analysis such as QTAIM
to distinguish between these them is necessary.

QTAIM analysis

Quantum theory of atom inmolecule (QTAIM) analysis of the
electron density in molecular system leads to different critical
points (cps), in which, the (3,-1) bcp is the most important.
The existence of (3,-1) bcp is associated by the presence of a
stabilization interaction, namely, the hydrogen bond (HB) [52,
53]. The HB interactions may be classified into three types,
[52], the strong HBs are characterized by a Laplacian, ∇2ρbcp
< 0 and a total electron energy density, Hbcp < 0. A medium
strength HBs are characterized by a, ∇2ρbcp < 0 and Hbcp > 0,
while a weak strength HBs are defined by, ∇2ρbcp > 0 and
Hbcp > 0.

As the studied 32CA reaction between nitrone 1 and acry-
late 2 is under thermodynamic control, the QTAIM topologi-
cal analysis [38] is performed at Pox and Pon. Thus, the
QTAIM characterizing parameters of the (3,-1) critical points
of Pox and Pon are collected in Table 5. The representation of
the QTAIM molecular graphs of both cycloadducts is illus-
trated in Fig. 7.

From Fig. 7, we notice that Pox presents three types
of stabilized non-covalent interaction which are one C…
H and two O…H types. On the other hand, Pon

p r e s e n t s o n l y o n e O…H t y p e i n t e r a c t i o n .
Consequently, the presence of stabilized non-covalent
interactions in Pox higher than that in Pon explains that
Pox is more stable than Pon.

From Table 4, we can notice that all bcps are characterized
by a positive sign of Laplacian ∇2ρbcp > 0 and Hbcp > 0 of (3,-
1) bcp indicate that all these interactions are weak stabilized
non-conventional HBs of type C −H and O −H.

In addition, an analysis of the Laplacian of the four bcps
indicates that the non-conventional H…O HB number 2 in
Pox and number 4 in Pon are the strong non-covalent inter-
actions which have the small Hbcp in comparison with the
other bcps, but that of Pox is slightly more stronger.

On the other hand, the presence of two supplementary non-
conventional stabilized HB, C…H and O…H, which are char-
acterized by Laplacian∇2ρbcp > 0 and Hbcp > 0 inPox enhance
its stability in comparison to Pon cycloadduct. Consequently,
in addition to the relatively strong O…H HB in Pox, the
presence of other two non-conventional weak interactions par-
ticipate in its stabilization and thereby enhance the its
favouring as a thermodynamic product of the 32CA reaction
between nitrone 1and acrylate 2.

Fig. 6 NCI gradient isosurfaces
of Pox and Pon

Table 5 QTAIM parameters (in a.u) of the (3,-1) bond critical points
presented in Pox and Pon

Cycloadduct BCP Type ρcbcp ∇2ρbcp Hbcp

1 C…H 0.74 0.139 0.747

Pox 2 O…
H

0.13 0.545 0.203

3 O…
H

0.48 0.187 0.987

Pon 4 O…
H

0.13 0.556 0.223
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Conclusions

The MEDT was used in this computational work for
performing a deep study on the mechanism and selectivity
of the 32CA reaction of quinazoline-3-oxide (nitrone 1) with
methyl 3-methoxyacrylate (acrylate) 2 within the B3LYP/6-
31G(d) DFT method. The main conclusions of this work are
as follows:

a Energy profile analysis in gas phase as well as in DCE
solvent indicates that this 32CA reaction between nitrone
1 and acrylate 2 is under kinetic control which is complete-
ly ortho regioselective and moderately exo stereoselective, in
which DCE solvent increases the activation energies and de-
creases the exothermic character because it stabilizes the re-
actants than transition states and cycloadducts.

b The IRC, bond order and GEDT analyses show that this
32CA reaction proceeds through a non-polar synchronous
one step molecular mechanism.

c Inclusion of experimental conditions in calculations indi-
cates that the studied 32CA reaction is under thermodynamic
control favouring completely the formation of the ortho-exo
cycloadduct, in greet accordance with experimental finding.

d CDFT global reactivity indices analysis indicates that both
reagents have a similitude electronic behaviour explaining
well the obtained high activation energy, while the exper-
imentally ortho regioselectivity is interpreted in terms of
local Parr reactivity indices.

e The stability of Pox is related presence of three non-
conventional hydrogen bonds which confirmed by NCI
and QTAIM analyses.
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