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Abstract
An approximate solution of the one-dimensional relativistic Klein-Gordon equation was obtained under the interaction of an
improved expression for Wei potential energy function. The solution of the non-relativistic Schrödinger equation was obtained
from the solution of the relativistic Klein-Gordon equation by certain mappings. We have calculated Fisher information for
position space and momentum space via the computation of expectation values. The effects of some parameters of the Wei
potential energy function on the Fisher information were fully examined graphically. We have also examined the effects of the
quantum number n and the angular momentum quantum number ℓ on the expectation values and Fisher information respectively
for some selectedmolecules. Our results revealed that the variation of most of the parameters of theWei potential energy function
against the Fisher information does not obey the Heisenberg uncertainty relation for Fisher information while that of the quantum
number and angular momentum quantum number on Fisher information obeyed the relation.
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Introduction

In order to find the properties of some quantum mechanical
systems in the non-relativistic sector, one needs to solve the
Schrödinger wave equation which in the time evolution de-
scribes either the time-dependent or time-independent solu-
tions. Most studies carried out by uncountable number of au-
thors focused on the solution of time-independent counterpart
of the Schrödinger equation for various physical potentials of
interest. Some of the potentials reported unfortunately have
centrifugal term which demands the use of an approximation
scheme to conveniently deal with the centrifugal term. Such
potentials include the Yukawa potential, Coulomb potential,
Hellmann potential and Frost-Musulin potential. The choice
of the proper approximation scheme to the centrifugal term is
always a constraint to the authors. However, in the atomic
domain, some of these potentials cannot be used to study/

describe diatomic molecules. Thus, there is a little diversion
of interest towards the empirical potential energy function for
diatomic molecules [1–15]. This is because the potential func-
tion provides the most compact way to summarize our under-
standing of a molecule. Recently, Jia et al. [16] modified some
already existing molecular potential energy functions, which
are now referred to as the improved expressions for those
potentials [9]. The improved expression for the molecular po-
tential energy function for the description of diatomic mole-
cules current motivates the authors for this study. Some of
these potentials have been reported either in the relativistic
or non-relativistic regime. Such reports can be found in the
work of Zang et al. [17], Yahya [18], Onate and Onyeaju [19],
Jia et al. [20], Adepoju and Eweh [21], Idiodi and Onate [22]
and so on. However, the improved expression for Wei poten-
tial energy function has not been fully reported. This potential
which is formed from the original Wei potential physically
looks simple but is very complicated during calculations.
This could probably be the reason why there is lack of report
on the potential. The improved expression for the Wei poten-
tial energy function is of the form [16]

UW rð Þ ¼ De 1−
exre−hexre

exr−hexre

� �2

; hj j < 1; ð1Þ
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where De is the dissociation energy, re is the bond length, x is
the screening parameter and h is a constant parameter of the
potential. In the present study, we want to examine the rela-
tivistic Klein-Gordon equation and non-relativistic
Schrödinger equation with the improved expression for Wei
potential energy function using the methodology of supersym-
metric approach. We also intend to calculate the position and
momentum expectations as well as Fisher information for the
improved expression for the Wei potential energy function.
The relativistic Klein-Gordon equation provides us with a
relativistic background to study spin-zero particles.

Klein-Gordon equation and the Wei potential
function

For a quantum system with a rest mass M, the Klein-Gordon
equation with a relativistic energy E, scalar potential S(r) and
vector potential V(r) takes the form

−ℏ2c2∇2− Mc2 þ S rð Þ� �2 þ E−V rð Þð Þ2
h i

R rð Þ ¼ 0: ð2Þ

In Eq. (2) above, ∇2 is a Laplacian operator, ℏ is the re-
duced Planck constant and c is the speed of light. The Klein-
Gordon equation given in Eq. (2) corresponds to the
Schrödinger equation for potential 2V(r) in the non-
relativistic limit. According to Alhaidari et al. [23], the
Klein-Gordon equation whose non-relativistic limit corre-
sponds to a potential V(r) is given by [23, 24]

d2

dr2
þ M þ S rð Þ

2

� �2

− En;ℓ−
V rð Þ
2

� �2

−
ℓ ℓþ 1ð Þ

r2

" #
R rð Þ

¼ 0: ð3Þ

In Eq. (3) above, we have taken c = ℏ = 1 and introduced

the term ℓ ℓþ1ð Þ
r2 which allows the approximate solutions for

one-dimensional system with ℓ as the angular momentum
quantum number. The centrifugal term can be approximated
using the formula

1

r2
≈

ρ0 þ ρ1 þ ρ2ð Þ
r2e

; ð4Þ

where ρ0, ρ1 and ρ2 are parameters of the approximation
scheme whose values will be defined later. Substituting Eqs.
(1) and (4) into Eq. (3), we have

d2Rn;ℓ rð Þ
dr2

¼ VN þ VTe−xr

1−hexree−xr
þ VRe−2xr

1−hexree−xrð Þ2
" #

Rn;ℓ rð Þ;

ð5Þ
where we have used the following for mathematical simplicity

VN ¼ M þ En;ℓ
� �

M−En;ℓ þ De
� �þ ℓ ℓþ 1ð Þρ0

r2e
; ð6Þ

VT ¼ ℓ ℓþ 1ð Þρ1
r2e

−2 M þ En;ℓ
� �

bDe; ð7Þ

VR ¼ ℓ ℓþ 1ð Þρ2
r2e

þ M þ En;ℓ
� �

b2De; ð8Þ

ρ0 ¼ 1þ 3 1−xreð Þ þ 2h 3−xreð Þe−xre þ h2 3hþ xreð Þe−2xre
x2r2e

; ð9Þ

ρ1 ¼
6h xre−3ð Þ−18h2e−xre þ 2 2xre−3ð Þexre−2h2 3þ hxreð Þe−2xre

x2r2e
; ð10Þ

ρ2 ¼
18h2 þ 2h3 6þ xreð Þe−xre þ 2h 6−xreð Þexre þ h4 3þ xreð Þe−2xre þ 3−xreð Þe2xre

x2r2e
:

ð11Þ
b ¼ exre 1−hð Þ: ð12Þ

To adopt the use of the supersymmetric approach and for-
malism to solve Eq. (5), first we write the ground state wave
function as

R0;ℓ rð Þ ¼ exp −∫W rð Þdr� �
; ð13Þ

where W(r) is a supersymmetric superpotential function,
which is a solution to Eq. (5). Taking Eq. (5) as a Riccati
differential equation, we propose a superpotential function of
the form

W rð Þ ¼ VC þ VLe−xr

1−hexree−xr
; ð14Þ

where, VC and VL are superpotential constants whose values
can be determined by simple manipulation of Eqs. (14) and
(15). Relating the superpotential function to the Riccati equa-
tion, we have

W2 rð Þ− dW rð Þ
dr

¼ VN þ VTe−xr

1−hexree−xr
þ VRe−2xr

1−hexree−xrð Þ2 : ð15Þ

In the present study, we only consider the bound state so-
lutions for the wave function which satisfy the boundary con-

ditions Rn;ℓ rð Þ
r ¼ 0; r→∞f ∞; r→0. These regularity condi-

tions make us have a restriction condition that VC > VL.
Substituting Eq. (14) into Eq. (15) and with some reasonable
mathematical manipulations, we can now deduce the two
superpotential constants in Eq. (14) as follows:

V2
C ¼ VN ; ð16Þ

VL ¼ b
2

−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þρ2

x2r2e
þ 4 M þ En;ℓ
� �

Der2e
x2

s0
@

1
A; ð17Þ

VC ¼
M þ En;ℓ
� �

Deb 2þ bð Þ þ ℓ ℓþ 1ð Þ ρ2−ρ1ð Þ
r2e

2VL
−
VL

2
: ð18Þ
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Using Eq. (14), we can easily construct a pair of supersym-
metric partner potentials as

Vþ rð Þ ¼ W2 rð Þ− dW rð Þ
dr

¼ V2
C þ 2VCVLe−xr

1−hexree−xr

þ VL VL−xð Þe−2xr
1−hexree−xrð Þ2 ; ð19Þ

V− rð Þ ¼ W2 rð Þ− dW rð Þ
dr

¼ V2
C þ 2VCVLe−xr

1−hexree−xr

þ VL VL þ xð Þe−2xr
1−hexree−xrð Þ2 : ð20Þ

The partner potentials in Eq. (19) and Eq. (20) satisfied the
following relationship

Vþ r; a0ð Þ ¼ V− r; a1ð Þ þ R a1ð Þ; ð21Þ
where a0 = VL, is an old set of parameters and a1 which is a
function of a0, is a new set of parameters which fully indicates

that a1 = f(a0) + x, and R(a1) called the residual or remainder
term. The remainder term is independent of the variable r.
Thus, VL→ VL + x. This mapping and Eq. (21) lead to the
establishment of the following relationship:

R a1ð Þ ¼ a0 2VL þ a0ð Þ−a1 2VL þ a1ð Þ; ð22Þ
R a2ð Þ ¼ a1 2VL þ a1ð Þ−a2 2VL þ a2ð Þ; ð23Þ
R a3ð Þ ¼ a2 2VL þ a2ð Þ−a3 2VL þ a3ð Þ; ð24Þ
R anð Þ ¼ an−1 2VL þ an−1ð Þ−an 2VL þ anð Þ: ð25Þ

Therefore, the energy eigenvalues can be determined by
using the shape invariance approach [20, 25] via

E −ð Þ
0 ¼ 0; ð26Þ

E −ð Þ
n ¼ ∑

n

κ¼1
R aκð Þ ¼ R a1ð Þ þ R a2ð Þ þ R a3ð Þ þ −−−

þ R anð Þ; ð27Þ

E ¼ E −ð Þ
0 þ E −ð Þ

n

¼
M þ En;ℓ
� �

Deb 2þ bð Þ þ ℓ ℓ þ 1ð Þ ρ2−ρ1ð Þ
r2e

2a0
−
a0
2
; ð28Þ

This gives full energy eigenvalue equation as

M þ En;ℓ
� �

M−En;ℓ−De
� �

−
ℓ ℓ þ 1ð Þρ0

r2e
¼

bDe MþEn;ℓð Þ bþ2ð Þ
x2 þ

ℓ ℓþ1ð Þ ρ2−ρ1ð Þ− 1þ2nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ℓ ℓþ1ð Þρ2

x2r2e
þ4 MþEn;ℓð ÞDer2e

x2

r� �2

r2e

1þ 2nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ1ð Þρ2

x2r2e
þ 4 MþEn;ℓð ÞDer2e

x2

r
2
6666664

3
7777775

2

:

ð29Þ

ψn yð Þ ¼ Nnyϒ T 1−yð Þ0:5 1þϒ Rð ÞP 2ϒ T ;ϒ Rð Þ
n 1−2yð Þ; ð30Þ

ϒP ¼ 2 M þ En;ℓ
� �

bDe

x2
−
ρ1ℓ ℓþ 1ð Þ

x2r2e
; ð31Þ

Table 1 Spectroscopic parameters of the molecules studied in this work
[28]

Molecule De(eV) re Ȧ
� �

μ =m(a. m.
u)

CuLi 1.74 2.310 6.259494

ScN 4.56 1.768 10.682771

NiC 2.76 1.621 9.974265

CrH 2.13 1.694 0.988976

TiH 2.05 1.781 0.987371

ScH 2.25 1.776 0.986040

LiH 2.5152672118 1.5956 0.8801221

HCl 4.619030905 1.2746 0.9801045

TiC 2.66 1.790 9.606079

ScF 5.85 1.794 13.358942

Table 2 Momentum expectation value 〈p2〉 for CuLi, ScN, NiC, TiC and ScF molecules with x = 1.05 and h = 0.9

n ℓ CuLi ScN NiC TiC ScF

0 0 − 23,852.26472 − 145,485.7231 − 38,189.94113 − 46,482.85557 − 373,472.2371
1 0 − 42,643.85423 − 263,935.0685 − 91,641.21111 − 96,145.35235 − 604,181.0134

1 − 67,128.13874 − 503,180.0626 − 348,696.1641 − 244,672.8886 − 924,118.9816
2 0 − 69,267.08396 − 413,720.4745 − 167,379.2627 − 165,121.5364 − 879,707.5049

1 − 103,331.1345 − 722,289.8427 − 526,407.6306 − 369,996.3902 − 1,271,710.857
2 − 185,451.8651 − 1,505,142.828 − 1,629,813.450 − 939,056.1072 − 2,191,146.409

3 0 − 106,176.8816 − 604,937.9378 − 274,973.5159 − 260,643.1966 − 1,212,403.371
1 − 152,275.1721 − 998,037.7650 − 763,131.6392 − 536,396.8541 − 1,690,133.816
2 − 259,906.8941 − 1,966,634.974 − 2,163,425.463 − 1,263,342.538 − 2,794,659.931
3 − 458,412.4234 − 3,860,668.839 − 5,242,966.795 − 2,766,055.920 − 4,821,310.259
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ϒR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ρ2ℓ ℓþ 1ð Þ

x2r2e
þ 4 M þ En;ℓ
� �

Deb2

x2

s
; ð32Þ

ϒT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ En;ℓ
� �

M−En;ℓ−De
� �
x2

−
ℓ ℓþ 1ð Þρ0

x2r2e

s
; ð33Þ

Non-relativistic limit

The solution of the Schrödinger equation can be obtained
directly from the solution of relativistic Klein-Gordon equa-
tion by making some certain transformations. Thus, when we

make the following transformation:M þ En;ℓ→
2mEn;ℓ

ℏ2
; andM

− En, ℓ→ − En, ℓ, where m is equivalent to the reduced mass.
Equation (29) becomes a solution of Schrödinger equation
with energy equation as

En;ℓ ¼ ϒ Q−
x2ℏ2

2m

ϒ 1
2mbDe bþ 2ð Þ

x2ℏ2
þ ℓ ℓ þ 1ð Þ ρ2−ρ1ð Þ

r2e
− 1þ 2nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ℓ ℓ þ 1ð Þρ2

x2r2e
þ 8mDeb2

x2ℏ2

s !2

2 1þ 2nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ℓ ℓ þ 1ð Þρ2

x2r2e
þ 8mDeb2

x2ℏ2

s !

2
6666664

3
7777775
: ð34Þ

ϒQ ¼ De þ ℓ ℓþ 1ð Þρ0ℏ2
2mr2e

: ð35Þ

Table 3 Position expectation value 〈r2〉 for CuLi, ScN, NiC, TiC and ScF molecules with x = 1.05 and h = 0.9

n ℓ CuLi ScN NiC TiC ScF

0 0 507.1527428 3276.808566 1578.462481 1379.367544 5276.688800

1 0 519.3542100 3279.196355 1580.280978 1388.465888 5270.925631

1 566.4176231 3593.097768 1999.210083 1630.237930 5551.014095

2 0 535.5716866 3315.349723 1611.755680 1417.634082 5302.825094

1 586.5310635 3663.031760 2070.135880 1682.706895 5614.075970

2 674.1967993 4269.374387 2728.018942 2097.068278 6198.571848

3 0 553.1016240 3371.230462 1656.004751 1455.985133 5359.739849

1 607.4716820 3745.773069 2146.615947 1740.084468 5695.992760

2 698.8264775 4376.601372 2819.914181 2167.250603 6309.559238

3 811.5090679 5154.053617 3560.106138 2657.723152 7119.462248

Table 4 Fisher information for position for CrH, TiH, ScH, LiH and HCl molecules with x = 1.05 and h = 0.9

n ℓ CrH TiH ScH LiH HCl

0 0 − 3184.299535 − 3174.910673 − 3568.996162 − 3233.685465 − 6428.319575

1 0 − 15,910.51257 − 14,910.35557 − 16,276.91363 − 17,304.50607 − 36,981.98441

1 − 399,497.1340 − 282,255.8325 − 292,098.4626 − 609,645.1462 − 3,272,510.437

2 0 − 48,663.97710 − 44,292.69428 − 47,450.60665 − 54,605.31854 − 114,295.6524

1 − 684,586.0871 − 494,091.2044 − 509,568.4564 − 1,016,964.139 − 4,886,788.319

2 − 3,123,316.740 − 2,152,356.025 − 2,210,004.624 − 4,881,860.944 − 27,175,795.96

3 0 − 117,281.8705 − 104,837.7809 − 110,956.9614 − 134,127.8827 − 276,132.6828

1 − 1,104,085.562 − 810,204.2109 − 833,364.8791 − 1,605,727.546 − 7,051,916.945

2 − 4,352,280.250 − 3,047,050.572 − 3,124,131.833 − 6,674,446.238 − 34,593,529.98

3 − 12,034,672.01 − 8,235,554.850 − 8,437,125.297 − 18,935,433.31 − 106,445,225.4
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Fisher information and expectation value

The Fisher information entropy measures the narrowness and
the oscillation nature of the probability distribution [26]. The
Fisher information has been used as a measure of uncertainty
in various fields of science. In this work, we are going to
calculate Fisher information using the radial expectation
values of an improved expression for Wei molecular potential
energy function. The Fisher information for position space
and momentum space respectively are given by

I ρð Þ ¼ ∫
∇ρ rð Þ½ �2
ρ rð Þ dr; ð36Þ

I γð Þ ¼ ∫
∇γ rð Þ½ �2
γ rð Þ dr; ð37Þ

where γ(r) and ρ(r) respectively denote the position and mo-
mentum densities. Thus, the Fisher information with any

ℓ−state for the physical state of the system is defined by the
expectation value of the squared of logarithmic gradient of
associated density ρEn;ℓ

r!� �
and γEn;ℓ

r!� �
; given by Dehesa

et al. [27] and Romera et al. [26] as

I ρð Þ ¼ 4 p2
	 


n;ℓ−2 2ℓþ 1ð Þ m0j j r−2	 

n;ℓ; ð38Þ

I γð Þ ¼ 4 r2
	 


n;ℓ−2 2ℓþ 1ð Þ m0j j p−2	 

n;ℓ: ð39Þ

For a given quantum number n and angular momentum
quantum number ℓ, I(ρ) and I(γ) provide maximum and min-
imum values when m0 = 0, therefore, Eqs. (38) and (39) re-
spectively become

I ρð Þ ¼ 4 p2
	 


n;ℓ; ð40Þ
I γð Þ ¼ 4 r2

	 

n;ℓ: ð41Þ

The expectation values 〈r2〉n, ℓ and 〈p
2〉n, ℓwill be calculated

using the Hellmann-Feynman theorem. According to the the-
orem,

Table 5 Fisher information for momentum for CrH, TiH, ScH, LiH and HCl molecules with x = 1.05 and h = 0.9

n ℓ CrH TiH ScH LiH HCl

0 0 1328.919338 1219.443793 1395.635935 1654.983713 4654.928758

1 0 1498.747137 1369.696262 1560.297986 1879.320373 5192.835038

1 3777.059118 3171.348794 3525.534509 5226.617760 17,374.96882

2 0 1630.358633 1489.883277 1697.032454 2044.669199 5636.800475

1 4085.250732 3436.142790 3817.330501 5644.381494 18,574.42746

2 6217.990312 5189.781128 5752.290615 8627.508749 28,250.94484

3 0 1674.981967 1538.091762 1759.430534 2087.936868 5817.499453

1 4378.911662 3686.879177 4093.955819 6043.618126 19,725.20060

2 6546.031836 5471.169007 6063.002021 9076.679412 29,620.44092

3 8612.051406 7188.345359 7960.282101 11,910.07087 38,057.70061

Fig. 1 Variation of energy En, ℓ against the potential parameter hwith x =
1.05, m = ℏ = n = ℓ = 1, re = 0.1 and De = 5

Fig. 2 Fisher information for position space I(ρ) at the ground state
against the screening parameter x with m =De = 1, h = 0.9, re = 0.1 and
ℓ = 0
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∂Ev vð Þ
∂v

¼ ψv vð Þ ∂H vð Þ
∂v

����
����ψv vð Þ

� 

; ð42Þ

provided that the associated normalized eigenfunction ψv(v) is
continuous with respect to the parameter ν. The effective
Hamiltonian of the improved expression for Wei potential
energy function radial wave function is given as

H ¼ −
ℏ2

2m
d2

dr2
þ ℏ2

2m
ℓ ℓ þ 1ð Þ

r2
þ De−

2Deb 1−hð Þe−xr
1−hexree−xr

þ Deb2 1−hð Þ2e−2xr
1−hexree−xrð Þ2 : ð43Þ

To obtain the expectation value for 〈r2〉, we set q = m to
have

r2
	 


n;ℓ ¼ De−
x2ℏ2De

2mb2

2mb bþ 2ð Þ
x2ℏ2 ϒ 0−1−2nð Þ ϒ

4
0 þ ϒ 2

1−
2mb bþ 2ð Þ

x2ℏ2
ϒ 2

0 þ ϒ 1

� �
ϒ 0

ϒ 2
0

2
664

3
775:

ð44Þ

To obtain the expectation value for 〈p2〉, we set q=De to have

p2
	 


n;ℓ ¼ ϒ 2
2−

x2ℏ2

b2
ϒ 2

0 þ ϒ 1

� �½ ϒ 2
0 þ ϒ 1

� �
−
2mDeb bþ 2ð Þ

x2ℏ2ϒ 0

1þ ϒ 0 1−ϒ 0ð Þ þ ϒ 1½ �
ϒ 0

� �
�;

ð45Þ

where

ϒ 0 ¼ 1þ 2nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓ þ 1ð Þρ2

x2r2e
þ 8mDeb2

x2ℏ2

s
; ð46Þ

ϒ1 ¼ 2mbDe bþ 2ð Þ
x2ℏ2

þ ℓ ℓþ 1ð Þ ρ2−ρ1ð Þ
r2e

; ð47Þ

ϒ2
2 ¼

ℓ ℓþ 1ð Þℏ2 ρ0 þ 2ρ2−2ρ1ð Þ
2r2e

: ð48Þ

Results and discussion

In Table 1, we presented the spectroscopic parameters for the
selected diatomic molecules used in this study. In Table 2 and
Table 3, respectively, we presented the numerical values for
momentum expectation value and position expectation value.
It is observed from Table 2 that the momentum expectation
value decreases as both the quantum number n and angular
momentum quantum number ℓ increase respectively and col-
lectively for all the selected molecules. The revised is ob-
served in the position space as shown in Table 3. In Table 4
and Table 5, respectively, we numerically presented Fisher
information for position space and momentum space for the
same set of molecules. In the position space, Fisher informa-
tion decreases as the quantum number n and angular momen-
tum quantum number ℓ increase respectively and collectively.
This trend is found to be opposite in Table 5 where Fisher
information for momentum space is observed for different

Fig. 4 Fisher information for position space I(ρ) at the ground state
against the screening parameter x with m = 1, x = 1.05, h = 0.1, re = 0.1
and ℓ = 0

Fig. 3 Fisher information for momentum space I(γ) at the ground state
against the screening parameter x with m =De = 1, h = 0.9, re = 0.1 and
ℓ = 0

Fig. 5 Fisher information for position space I(γ) at the ground state
against the screening parameter x with m = 1, x = 1.05, h = 0.9 re = 0.1
and ℓ = 0
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values of the quantum number and angular momentum quan-
tum number. The selected diatomic molecules are due to the
purpose they served in some areas such as chemical synthesis,
electronic transport properties in the areas of chemical phys-
ics, nature of bonding and stability of temperature.

The variation of energy eigenvalue against the potential
parameter h is shown in Fig. 1. The energy of the system
increases monotonically as the potential parameter goes up
from 0. It is observed that the energy of the system can never
be zero even at the zero value of the potential parameter h. In
Fig. 2 and Fig. 3, we examined the variation of Fisher infor-
mation against the screening parameter x. In both cases, as the
screening parameter increases steadily, the Fisher information
decreases. It is noted that an increase in the screening param-
eter results in an increase in Fisher information for both posi-
tion space and momentum space. Figures 2 and 3 revealed that
the variation of the Fisher information with the screening pa-
rameter does not satisfy the Heisenberg uncertainty relation.
In Fig. 4 and Fig. 5, we plotted Fisher information for position
space and for momentum space respectively with the

dissociation energy. We noticed that as the dissociation ener-
gy increases steadily, the Fisher information for both the po-
sition space and momentum space respectively decreases.
Thus, the dissociation energy and the screening parameter
for the Wei potential have the same effect on the Fisher infor-
mation. In both cases, a squeezing effect is highly observed. In
Fig. 6 and Fig. 7, we examined the behaviour of Fisher infor-
mation for position space and for momentum space respec-
tively against the potential parameter h. In the position space,
Fisher information increases as the potential parameter in-
creases while in the momentum space, Fisher information de-
creases monotonically as the potential parameter increases
steadily. Thus, for the position space, there is an increase in
the uncertainty of the system which brings about a decrease in
the accuracy for predicting the localization of a particle, while
in the momentum space, the uncertainty decreases and thus
results in a high degree of accuracy for predicting the locali-
zation of a particle. The Heisenberg uncertainty relation for
Fisher information is satisfied in Fig. 6 and Fig. 7. It is inter-
esting to note that this potential function, though similar to
other potential functions, exhibits some different features.
The variation of the Fisher information with each of the po-
tential parameters showed a squeezing effect.

Conclusions

We studied the approximate analytical solutions of the
Schrödinger equation for an improved expression for Wei
potential energy function with a suitable approximation
scheme to the centrifugal term using the methodology of su-
persymmetric approach. The explicit bound state energy equa-
tion for this potential in the relativistic and non-relativistic
equations was obtained. Furthermore, we applied the
Hellmann-Feynman theorem on the solution of the non-
relativistic equation and obtained the formula for the expecta-
tion values of 〈r2〉 and 〈p2〉. The solutions obtained have been
used to calculate the Fisher information for position space and
momentum space. Numerically, the expectation values and
Fisher information for some selected molecules were studied.
We noted that the variation of some parameters of the Wei
potential energy function has the same trend for Fisher infor-
mation for both position space and momentum space, respec-
tively, which do not obey the Heisenberg uncertainty relation
for Fisher information.
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