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Abstract
Acinetobacter baumannii, an opportunistic bacterium of the multidrug-resistant (MDR) ESKAPE family of pathogens, is
responsible for 2–10% infections associated with all gram-negative bacteria. The hospital-acquired nosocomial infections caused
by A.baumannii include deadly diseases like ventilator-associated pneumonia, bacteremia, septicemia and urinary tract infections
(UTI). Over the last 3 years, it has evolved into multiple strains demonstrating high antibiotic resistance against a wide array of
antibiotics. Hence, it becomes imperative to identify novel drug-like molecules to treat such infections effectively. UDP-N-
acetylmuramoyl-L-alanine-D-glutamate ligase (MurD) is an essential enzyme of the Mur family which is responsible for peptido-
glycan biosynthesis, making it a unique and ideal drug target. Initially, a homologymodelling approach was employed to predict the
three-dimensional model of MurD from A. baumannii using MurD from Escherichia coli (PDB ID: 4UAG) as a suitable structural
template. Subsequently, an optimised model of MurD was subjected to virtual high-throughput screening (vHTS) against a ZINC
library of ~ 642,759 commercially available molecules to identify promising lead compounds demonstrating high binding affinities
towards it. From the screening process, four promising molecules were identified based on the estimated binding affinities (ΔG),
estimated inhibition constants (Ki), catalytic residue interactions and drug-like properties, which were then subjected to molecular
dynamics (MD) simulation studies to reflect the physiological state of protein molecules in vivo equivalently. The binding free
energies of the selected MurD-ligand complexes were also calculated using MM/PBSA (molecular mechanics with Poisson-
Boltzmann and surface area solvation) approach. Finally, the global dynamics along with binding free energy analysis suggested
that ZINC19221101 (ΔG = − 62.6 ± 5.6 kcal/mol) and ZINC12454357 (ΔG = − 46.1 ± 2.6 kcal/mol) could act as most promising
candidates for inhibiting the function of MurD ligase and aid in drug discovery and development against A.baumannii.
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Abbreviations
MD Molecular dynamics simulations
MDRAB Multidrug-resistant Acinetobacter baumannii
SBDD Structure-based drug design
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Introduction

Acinetobacter baumannii is an aerobic, non-motile, pleomor-
phic gram-negative bacterium. It is an opportunistic pathogen
in humans, chiefly infecting people with weakened immune
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systems [1]. It is responsible for numerous hospital-acquired
nosocomial infections, including ventilator-associated pneu-
monia (VAP) [2], urinary tract infection (UTI) [3], meningitis
[4] and septicemia [5].Moreover, A. baumannii is also a mem-
ber of the ESKAPE family of pathogens which consists of
Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, A. baumannii, Pseudomonas aeruginosa and
Enterobacter species. The members of the ESKAPE family
of pathogens are characterised by their increased resistance to
some of the frequently used antibiotics, including penicillin,
vancomycin and carbapenems [6]. Since the past 3 years,
A. baumannii strains have developed resistance against a wide
variety of antibiotics, including penicillin, cephalosporin and
last expedient antibiotics such as carbapenems and poly-
myxins; these strains are generally referred to as multidrug
[7] resistant A. baumanni (MDRAB) [8]. The World Health
Organization (WHO) has classified A. baumannii as a priority
I (critical) pathogen because it shows resistance against sev-
eral classes of antibiotics [9]. According to a previous study,
A. baumannii is responsible for 2 to 10% of all infections
caused by gram-negative bacteria acquired in the USA and
Europe. Unfortunately, multiple reports are confirming an in-
crease in infections and mortality rates [10] connected with
multidrug resistance A. baumannii (MDRAB) throughout the
world [11]. Hence, it is an absolute necessity to identify prom-
ising drug-like molecules which can effectively treat the seri-
ous infections caused by A. baumannii.

Of the various metabolic pathways observed in MDRAB,
the enzymes involved in peptidoglycan biosynthesis are an
ideal and potential drug targets because of their relative dis-
similarity [12] to any metabolic pathway taking place in
Homo sapiens [13]. The cell wall is essential for the mainte-
nance of overall shape and firmness of bacterial cells.
Additionally, it also protects the cells from mechanical stress
or bursting because of an imbalance in the osmotic pressure.
The cell wall is made up of polymers of peptidoglycan (mu-
rein), which in turn are composed of sugars and amino acids
[14] that form a mesh-like sheet over the cell membrane of
most prokaryotes [15]. The enzymes involved in murein bio-
synthesis are indispensable for cell division amongst most
bacterial species. There are eight members in the Mur family
of enzymes, and they play pivotal role in the peptidoglycan
biosynthetic pathway [16]. The UDP-N-acetylmuramoyl-L-
alanine-D-glutamate ligase (MurD) belongs to the family of
ADP forming ligases. A total of four ADP-forming ligases,
namely MurC, MurD, MurE and MurF are required in the
cytoplasm for peptidoglycan biosynthesis; they activate the
congregation of peptide moiety by succeeding incorporations
of L-alanine, D-glutamate, a diamino acid (lysine or
diaminopimelate) and D-alanyl-D-alanine to UDP-N-
acetylmuramic acid (UDP-MurNAc) [17, 18]. The principal
function of MurD is to catalyse the addition of D-glutamate to
its substrate UDP-N-acetylmuramoyl-L-alanine (UMA)

yielding UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
(UMAG) according to the following reaction [19]:

UMAþ D−Gluþ ATP ¼ UMAGþ ADPþ Pi

Moreover, the function of MurD is conserved across
eubacteria, particularly E. coli. The three-dimensional struc-
ture of MurD ligase from A. baumannii is not yet available in
Research Collaboratory Structural Bioinformatics - Protein
Data Bank (RCSB – PDB) [20], but the crystal structure of
MurD ligase from Escherichia coli has already been resolved
at a high resolution of 1.66 Å (PDB ID - 4UAG) [21]. The
MurD ligase from E. coli is expressed as a monomer of 437
amino acid residues and has a molecular weight of 47 kDa,
which consists of three distinct globular domains formed from
adjacent sections of the polypeptide chain. Domain 1 is re-
sponsible for the fixation of UDP moiety of UMA. The do-
main 2 (GTPase domain) is responsible for the attachment of
ATP as well as the muramic acid and L-alanine moieties of
UMA. The substrate (UMA) binds at the cleft present between
domain 1 and the GTPase domain. The residues responsible
for the attachment of UMA to the drug target protein include
the following amino acid residues, namely Leu15, Thr16,
Thr36, Arg37, Gly73, Asn138 and His183 [19]. In several
studies, the Mur family of proteins, including MurD, have
been suggested as a potential drug target against
A. baumannii [22–26]. In the present study, we have investi-
gated the sequential and structural properties of MurD ligase
from A. baumannii and subsequently executed virtual high-
throughput screening (vHTS) to identify novel drug-like mol-
ecules against it. We have employed various in silico tech-
niques, including protein sequence analysis, homology
modelling, virtual high-throughput screening (vHTS) and mo-
lecular dynamics (MD) simulations to achieve the results.
Together with the results gathered from all these studies, we
screened some promising drug-like candidates which could
assist in the discovery and development of novel drug-like
molecules for the successful treatment of hospital-acquired
or nosocomial infections caused by A. baumannii.

Material and methods

Protein sequence analysis

The UniProt [27] database was used to retrieve the protein
sequence of MurD from A. baumannii with the accession
number: B0VDD5. ExPASy’s (Expert Protein Analysis
System) - ProtParam tool [28] was utilised to compute the
various physicochemical properties of protein such as molec-
ular weight, isoelectric point, amino acid composition, extinc-
tion coefficient, instability index and aliphatic index. Also,
PSORTb [29] server was employed to predict the subcellular
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localisation of MurD. Subsequently, the putative post-
translational modifications or PTM sites (acetylation, glyco-
sylation and phosphorylation) of MurD were predicted with
the help of GPS-PAIL 2.0 [30], GLYCOPP v 1.0 [31] and
MPSite [32] respectively. Also, the Conserved Secondary
Structure Prediction (CSSP) web server was employed to pre-
dict the secondary structural composition (Helix, Sheet and
Coil) of MurD ligase using the consensus approach [33].
The various methods which are employed by CSSP for sec-
ondary structure prediction include Discrimination of protein
Secondary structure Class (DSC) [34], GOR IV [35],
PSIPRED [36] and PHDsec [37]. The results obtained from
CSSP are based on consensus prediction from the methods
mentioned above, and hence they are reliable. Finally, the
amino acid sequence of the MurD ligase was subjected to
European Molecular Biology Open Software Suite
(EMBOSS)-Antigenic program [38] to predict the possible
antigenic sites.

Homology modelling and energy minimisation

The three-dimensional model of MurD ligase was generated
by ModWeb server [39] using the crystal structure of MurD
(PDB ID: 4UAG) from E. coli as the suitable structural tem-
plate [21]. On default settings, it calculates a large number of
models for each input sequence, if a template is available, and
the model with the highest ModPipe quality score (MPQS)
[39] and sequence identity per region is selected. Besides,
we used ModWeb’s slow [39] fold assignment method for
the model creation. The modelled structure was analysed
and superimposed with the template structure (PDB ID:
4UAG) using PyMOL [40] and Biovia Discovery Studio
Visualizer [41]. Finally, the YASARA web server was
employed to obtain the geometrically optimised and energy
minimised model of MurD which was further used for virtual
high-throughput screening (vHTS) and molecular dynamics
(MD) simulation studies [42].

Model evaluation and binding site analysis

PROCHECK [43], ERRAT [44] and Verify 3D [45] programs
were used to evaluate, compare the initial and optimised mod-
el of MurD ligase. These programs are available in a single
web-based platform named as Structure Analysis and
Verification Server (SAVES) (https://servicesn.mbi.ucla.edu/
SAVES/). PROCHECK analyses the complete structural
stereochemistry based on parameters like main chain ionic
forces, types of internal angles and distances of interatomic
interaction in virtue of Ramachandran plot [43]. ERRAT
identifies and analyses valid and invalid segments of the
modelled structure on behalf of their atomic interactions
using statistical approaches [44]. The Verify-3D program es-
timates the relationship between the 3D and 1D amino acid

sequences [45]. The selection of the binding site residues was
based on the substrate-binding pocket of the template structure
(PDB ID: 4UAG) [21]. The template structure was aligned to
the predicted model to identify the conserved and variable or
non-conserved residues involved in the binding of UMA to
MurD. The pairwise sequence alignment, followed by a struc-
tural superimposition, was performed using the “align” com-
mand present in PyMOL [40]. Additionally, we also used
FATCAT [46] to perform the pairwise structural alignment.
The root mean square deviation (RMSD) of the modelled
MurDwith reference to the template was also calculated using
the align function in PyMOL [40].

Virtual high-throughput screening and molecular
docking

Virtual high-throughput screening of a subset of Zinc database
[47] against predictedMurD structure was completed on Drug
Discovery@TACC web portal (https://drugdiscovery.tacc.
utexas.edu/) [48] using AutoDock Vina [49] to identify the
putative inhibitors against MurD ligase from A. baumannii.
Non-site specific docking (blind or in-direct docking) was
performed to identify all the possible binding sites with the
size and coordinates of the grid box as follows: center_x = 36.
25, center_y = − 12.63, center_z = 22.70, size_x = 88.62, size_
y = 73.48, size_z = 76.74 (see supplementary data). Blind
docking is one of the excellent ways to identify all promising
binding sites of a protein molecule [50–52]. The exhaustive-
ness for molecular docking calculations was set to 10. The
web portal returned a list of the best 1000 ligand molecules
ranked on the basis of their estimated binding affinities to-
wards MurD.

Pharmacokinetics and drug-likeness

The best thousand ligand molecules showing maximum bind-
ing affinity towards MurD ligase were obtained using vHTS.
Employing DataWarrior tool [53], the thousand ligands were
filtered on the basis of Lipinski’s rule of five [54] and different
toxicological properties (carcinogenicity, mutagenicity, repro-
ductive effects and irritating effects) [53]. Only 326 ligands
passed these filters. Furthermore, the selected 326 ligands
were screened on account of ADME (Absorption,
Distribution, Metabolism and Excretion) properties using
SwissADME [55]. SwissADMEwas employed to predict var-
ious parameters, including blood-brain barrier penetration
(BBB), human intestinal absorption (HIA), aqueous solubility
(AS), topological polar surface area (TPSA) and CYP2D6
inhibition. Out of 326, only 76 ligands passed the ADME
filters. Finally, the four best ligands were selected based on
the orientation of ligands in the binding site, key interacting
residues and the number of intermolecular hydrogen bonds
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(H-bonds) they were making with the active site residues of
MurD ligase.

Molecular dynamics simulation

MD simulation overcomes the main limitation of the molecu-
lar docking studies, i.e. it considers both protein and ligands as
completely flexible entities. It also mimics the physiological
conditions much more effectively than molecular docking cal-
culation [56]. The aqueous environment inside the cells, elec-
troneutrality and physical parameters like temperature, pres-
sure and volume are taken into account while performing MD
simulations. These considerations make MD simulations
much more statistically significant than molecular docking
calculations. All of the selected MurD-ligand complexes and
free MurD were subjected to MD simulations in an explicit
solvent model. The simulations were performed using
GROMACS 2019 [57] with GROMOS96 43A1 force field
parameters [58]. An external program, PRODRG [59] was
used to create the topologies (details of charge group, bond
length, bond angle, proper and improper torsion angle, etc.)
for the selected ligands. MD simulations of 100 ns were con-
ducted for all of the MurD-ligand complexes and unbound
MurD [60]. Counter-ions (positive or negative ions) were
added to achieve electroneutrality of the systems. All of the
structures were solvated within a 10 Å SPC/E (Extended
Simple Point Charge model) water cube [61]. In the next step,
the free protein and the protein-ligand complexes were ener-
getically minimised in multiple steps utilising a steepest de-
scent minimisation algorithm, where minimisation of the
whole system, solvent molecules and the non-heavy atoms
of the protein and protein-ligand complexes was eventually
achieved. The energy minimisation was executed until the
maximum force fell under 10 kJ/mol/nm. During the equili-
bration steps, the velocity rescaling (v-rescale) thermostat was
used to maintain the temperature at 300 K. The equilibration
was achieved in two phases, in the first phase, the number of
particles, volume and temperature were kept constant (NVT),
whereas in the second step, the number of particles, pressure
and temperature were kept constant (NPT). All bonds were
constrained using the LINCS (LINear Constraint Solver) al-
gorithm [62] to allow a 2-fs time step. The systems were
equilibrated for 50,000 steps at 300 K using isothermal-
isochoric (NVT) ensemble and then for additional 50,000
steps at 300 K using isothermal-isobaric (NPT) ensemble to
maintain the pressure at 1 bar. The Parrinello-Rahman barostat
[63] was used to maintain the pressure at 1 bar. Cut-offs of
1 nmwere used for the neighbour list, electrostatic interactions
and van derWaals interactions. The Verlet cut-off schemewas
applied for neighbour searching. The Particle-Mesh Ewald
(PME) method [64] was employed for the estimation of
long-range electrostatic interactions with an interpolation or-
der of 4 and a grid spacing of 0.16 nm. Finally, production

MD runs of 100 ns (time step = 2 fs) were executed for MurD
and the selected MurD-ligand complexes. The analysis of
simulation trajectories was performed using GROMACS
[57] and PyMOL [40]. Utilising the output trajectories of these
MD simulations, various structural parameters like root mean
square deviation (RMSD), root mean square fluctuations
(RMSF), radius of gyration (Rg), solvent-accessible surface
area (SASA) and intermolecular hydrogen bonds (H-bonds)
were calculated.

Binding free energy calculations

In addition to global dynamic analysis, we calculated the bind-
ing free energies of the selected protein-ligand complexes
employing MM/PBSA (molecular mechanics with Poisson-
Boltzmann and surface area solvation) [65] method. It is one
of the most reliable end-point methods to calculate the binding
free energies for protein-ligand interactions. In this approach,
the calculation of binding free energy relies on the following
mathematical equation:

ΔGbinding ¼ ΔEmmþΔGpolþΔGnp−TΔS ð1Þ

In this equation,ΔGbinding is the binding free energy of the
protein-ligand complex, whereas, ΔEmm depicts the gas-
phase molecular mechanics energy, including bonded (bond,
angle, dihedral and improper interactions) as well as non-
bonded interactions {van der Waals (ΔEvdw) and electrostatic
contributions (ΔEele)}. The ΔGpol term describes the polar
solvation free energy, and the ΔGnp showcases the non-
polar solvation energy. Also, the TΔS term represents the
contribution of conformational entropy in a vacuum at tem-
perature T. Since the MurD-ligand systems were nearly iden-
tical and they might have experienced identical entropy
changes, the term TΔS was ignored to reduce the computa-
tional expense [66]. Equation 1 can be rewritten as:

ΔGbinding ¼ ΔEbondedþΔEnon−bondedþΔGpol

þΔGnp−TΔS ð2Þ

It should be noted that in the single trajectory approach, the
conformation of the free protein and the ligand-bound com-
plexes are considered to be same. Thus, the term ΔEbonded is
always taken as zero [67]. Equation 2 can be rewritten as:

ΔGbinding ¼ ΔEvdwþΔEeleþΔGpol

þΔGnp−TΔS ð3Þ

The components described in Eq. 3 (except the TΔS part)
were utilised to calculate the binding free energy values
employing g_mmpbsa tool [68]. For the binding free energy
calculations, 1000 snapshots (1 structure was captured every
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20 ps) were captured from the final 20 ns of the stable trajec-
tories of MurD-ligand complexes.

Results and discussion

Protein sequence analysis

The protein sequence of MurD from A. baumannii was re-
trieved from the UniProt database [27] with the accession num-
ber of B0VDD5. According to ExPASy’s [28] ProtParam web
server, the predicted amino acid length, molecular weight and
theoretical isoelectric point were 455, 48.65 kDa and 6.14, re-
spectively. Also, it had an instability index of 35.90, which
categorised it as a stable protein. This result indicated that
MurD ligase is thermodynamically stable. Additionally, the
PSORTb [29] web server predicted MurD as a cytoplasmic
protein. Besides, European Molecular Biology Open Software
Suite (EMBOSS) antigenic web server [38] estimated twenty-
one antigenic sites in MurD ligase (see supplementary data).
Moreover, a recent study reported that the post-translational
modifications (PTM) in ESKAPE pathogens are one of the
promising routes for pathogenicity and virulence properties
[69]. Therefore, in this study, we also employed several in silico
tools to predict the PTM sites of MurD ligase. MPSite [32],
GLYCOPP [31] and GPS-PAIL [30] were used to predict po-
tential sites for phosphorylation, glycosylation and acetylation,
respectively. MPSite [32] estimated a possible phosphorylation
site at Ser453 residue. The GLYCOPP web server [30] indicat-
ed eleven N-linked glycosylation and none O-linked glycosyl-
ation (see supplementary data). Also, GPS-PAIL [30] sug-
gested three acetylation sites in MurD ligase (see supplementa-
ry data). In addition to this, the Conserved Secondary Structure
Prediction (CSSP) web server [33] revealed the percentage of
alpha helices and beta sheets found to be 40.65% and 13.18%,

respectively. A total of 16 helices and 12 beta-sheets were com-
puted by this web server.

Homology modelling and energy minimisation

The 3D model of MurD ligase from A. baumannii has not yet
been reported. Predicting the 3D structure of a protein mole-
cule is crucial to explore its function [70], and it also enables
us to identify potential lead or drug-like candidates against it
utilising the structure-based drug design (SBDD) or drug
repurposing approaches [71]. In this case, ModWeb [39] used
the experimentally determined crystal structure of MurD li-
gase from E. coli (PDB ID: 4UAG) [21] to create the homol-
ogy model of MurD from A. baumannii. The template was
resolved at a resolution of 1.66 Å. The structural template had
the query coverage and percentage of sequence identity of
94% and 44.68%, respectively. In the template structure
(PDB ID: 4UAG), there are three globular domains, and the
substrate-binding site (UMA binding site) is present between
domain 1 and domain 2. Domain 1 includes residues 1–93,
domain 2 (GTPase domain) includes residues 94–298 and the
domain 3 comprises residues 299–437. The residues involved
in the fixation of UMA to MurD include Leu15, Thr16,
Thr36, Arg37, Gly73, Asn138 and His183 residues [19]. As
the template, the model (Fig. 1) obtained from ModWeb’s
server [39] had three distinct globular domains. A pairwise
structural alignment between the predicted MurD ligase and
the structural template revealed the MurD model sharing sev-
eral conserved amino acid residues with the template struc-
ture. The FATCAT web server (http://fatcat.godziklab.org/
fatcat/fatcat_pair.html) computed that the two structures
were significantly similar with P value of 0.00e+00. The
models had 425 equivalent positions with an RMSD of 0.
58 Å without twists. The conserved amino acid residues
included the residues present at the UMA binding site

N-Terminal 
Domain

C-Terminal 
Domain

Central 
Domain

Ser24

Ile23

Ser44

Arg45

Asn146

His191

Gly81

Fig. 1 The 3D model of MurD
with illustration of domain I (1–
101) (red), domain II (102–309)
(purple) and domain III (310–
454) (cyan) and the zoomed view
is showing the residues at the
UMA binding site
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present between domains 1 and 2. The UMA binding site of
the predicted MurD model includes Ile23, Ser24, Ser44,
Arg45, Gly81, Asn146 and His191 amino acid residues.

Out of these seven residues, the last four residues (Arg45,
Gly81, Asn146 and His191) are conserved in both the struc-
tures. In the modelled structure, domain 1 consists of residues
1–101, domain 2 consists of residues 102–309 and domain 3
consists of residues 310–454. According to PDBsum [72] web
server, the MurD ligase has a βαβ architecture, and the

secondary structure of the protein is comprised of 18.7% of
strands, 28.4% of alpha-helices, 4.7% of 310 helices and
48.2% of other secondary structure elements (see supplemen-
tary data). Energy minimisation of the modelled structure was
performed using YASARA web server [42]. More important-
ly, 91.4% of the residues of modelled structure were observed
in the most favoured region of the Ramachandran plot. The
modelled structure had an ERRAT quality factor of 95.632
and Verify 3D score of 97.52%. The RMSD value of the

Table 1 Estimated binding affinities and estimated inhibition constants of the selected ligands along with their chemical schemes

S/No Accession No. Estimated  
Binding Affinity

(kcal/mol)

Estimated 
Inhibition 

constant (nM)

Molecular
formula

2D Structure

1 ZINC12055135 -10.1 0.39 C25H25N3O2

2 ZINC12097291 -10.6 0.16 C26H21N3O3F2

3 ZINC12454357 -10.2 0.33 C25H23N4O2F

4 ZINC19221101 -10.3 0.28 C21H20N5F3

Table 2 Lipinski’s rule of five
and drug-likeness properties of
the selected four ligands

S/
No..

Ligands ID MW
(≤ 500)

cLogP
(≤ 5)

rBonds
(≤ 10)

HBA
(≤ 10)

HBD
(≤ 5)

DL

1. ZINC12055135 419.651 2.278 6 5 4 − 0.47607
2. ZINC12097291 485.657 1.2087 5 6 4 − 3.1954
3. ZINC12454357 452.656 2.4732 7 6 4 − 0.3595
4 ZINC19221101 417.562 2.6481 5 5 4 − 6.7865

MW molecular weight, cLogP lipophilicity, rBonds rotatable bond is a measure of molecular flexibility of a
compound, HBD hydrogen bond donor, HBA, hydrogen bond acceptor, DL drug-likeness
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structure superimposition of modelled MurD with the tem-
plate structure was 0.503 Å, which indicated the reliability
of the predicted model based on the satisfaction of spatial
restraints [39]. The optimisedMurDmodel was deposited into
ProteinModel Data Base (http://srv00.recas.ba.infn.it/PMDB/
user/search.php) with the accession number of PM0083163.

vHTS

In rational drug design, structure-based virtual screening
(SBVS) is a principal tool to elucidate protein-ligand interac-
tions [73] followed by identification of potential and promising
drug-like candidates. Molecular docking aims to predict the
best binding orientation of ligands into the catalytic pocket of
a protein molecule with a known three-dimensional structure
[74]. Comprehending the binding and interactions of small
molecules with a protein or other macromolecule is of great
significance in the field of drug designing and discovery pro-
cess [75]. Moreover, molecular docking algorithms can execute
quantitative prediction of estimated binding affinities (ΔG),
estimated inhibition constants (Ki) and rank the docked ligands
based on their binding affinity towards the protein molecule.
The potential binding pocket residues of MurD include Ile23,
Ser24, Ser44, Arg45, Gly81, Asn146 and His191 amino acid
residues. To inhibit the target protein (MurD), the molecules
obtained from vHTS should be oriented in the aforementioned
binding pocket. The SBVS of MurD ligase was performed
using DrugDiscovery@TACC web portal [48] which employs
AutoDock Vina for its docking calculations [49]. The docking
procedure was applied to the entire protein without imposing
the binding site restrictions (blind docking or non-site-specific
docking). A ZINC library of ~ 642,759 commercially available

molecules was screened against MurD, and the best 1000 li-
gands showing maximum binding affinity towards drug target
protein were subjected to further analyses.

Physicochemical properties and ADMET analysis

After obta ining the bes t 1000 l igands from the
DrugDiscovery@TACC web portal [48], they were further
subjected to DataWarrior tool [53] for the evaluation of phys-
icochemical properties such as Lipinski’s rule of five, drug-
likeness and toxicity (carcinogenicity, mutagenicity, repro-
ductive effects and irritating effects).

The permitted values for drug-likeness, rotatable bonds and
toxicity were ≤ 5, ≤ 10 and none, respectively. Out of the 1000
ligands, only 326 passed these physicochemical parameters
and were further subjected to SwissADME [55] for ADME
(Absorption, Distribution, Metabolism and Excretion) analy-
sis. Pharmacokinetics refers to the study of the interactions of
a drug molecule inside a living body. It defines the onset of
action, residence time and intensity of a drug in vivo. The
pharmacokinetics of the drug-like molecules can be under-
stood through absorption, distribution, metabolism, excretion
and toxicity parameters. We employed SwissADME [55] to
compute the ADME parameters, including blood-brain barrier
penetra t ion (BBB), human intes t inal absorpt ion
(HIA), Octanol-water partition coefficient (cLogP), aqueous
solubility (AS), topological polar surface area (TPSA) and
Cytochrome P450 2D6 (CYP2D6) inhibition. The ligands
which were HIA+, BBB+, soluble in the aqueous medium,
having TPSA smaller than 100 nm2 and non-inhibitor of
CYP2D6 were selected for further screening.

Table 3 List of the selected four
ligands with their toxicity
parameters

S/
No.

Zinc code Carcinogenic Mutagenic Reproducibility Irritant

1 ZINC12055135 Non-carcinogens None None None

2 ZINC12097291 Non-carcinogens None None None

3 ZINC12454357 Non-carcinogens None None None

4 ZINC19221101 Non-carcinogens None None None

Table 4 ADME profiles of the
selected four ligands S/

No.
Zinc code HIA BBB Consensus Log

P
TPSA Aqueous

solubility
(AS)

CYP450 2D6

inhibitor

1. ZINC12055135 HIA+ BBB+ 3.27 65.55 Soluble Non-inhibitor

2 ZINC12097291 HIA+ BBB+ 3.06 76.99 Soluble Non-inhibitor

3 ZINC12454357 HIA+ BBB+ 3.23 68.79 Soluble Non-inhibitor

4 ZINC19221101 HIA+ BBB+ 3.29 51.36 Soluble Non-inhibitor

HIA human intestinal absorption, BBB blood-brain barrier, Consensus Log P Octanol-water partition coefficient,
TPSA total polar surface area, CYP2D6 cytochrome P4502D6
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Out of 326 ligands, only 76 passed these ADME filters.
Since non-site specific or blind docking was performed, li-
gands were also binding to sites other than the substrate-
binding pocket. Only those ligands were selected, which were
present within the substrate-binding pocket and additionally,
the orientation and interaction of the ligands inside the cata-
lytic pocket were also analysed. In the end, four ligands
(ZINC12055135, ZINC12097291, ZINC12454357 and
ZINC19221101) having the most appropriate binding site ori-
entation and the maximum number of intermolecular hydro-
gen bonds (H-bonds) with the binding site residues were se-
lected and subjected to MD simulations. The estimated bind-
ing affinities (ΔG) for ZINC19221101, ZINC12055135,
ZINC12097291 and ZINC12454357 were − 10.3 kcal/mol,
− 10.1 kcal/mol, − 10.6 kcal/mol and − 10.2 kcal/mol, respec-
tively (Table 1). The drug-likeness properties, toxicity param-
eters and ADME profiles of the top MurD-ligand complexes
are summarised in Tables 2, 3 and 4, respectively. The inter-
action details of the selected MurD-ligand complexes are
summarised in Table 5.

Interaction studies of MurD-ligand complexes

The estimated binding affinity (ΔG) of ZINC19221101 for
MurD was − 10.3 kcal/mol, and the estimated inhibition con-
stant (Ki) was 0.28 nM. The ligand was interacting with the
protein molecule through hydrogen bonding, pi interactions
and van der Waals interactions (Fig. 2 and Table 5). The
ligand was observed interacting with Ala122, Lys123,
Ser124 and Asn146 residues (catalytically conserved residue
in both template and target structures) via hydrogen bonding
interactions. It was also found interacting with Lys123,
Glu165, Lys330, Phe434 and Tyr440 amino acid residues
utilising pi interactions. Also, ZINC19221101 was recorded
interacting with Asn121, Phe169, His191 (catalytically con-
served residue), Arg313, Thr332 and Lys364 amino acid res-
idues via van der Waals interactions. The 2D and 3D MurD-
ligand interaction diagrams were made using BIOVIA
Discovery Studio [41] and PyMOL [40] programs,
respectively.

The estimatedΔG for MurD-ZINC12055135 complex was
observed to be − 10.1 kcal/mol, and the estimated Ki was
0.39 nM. This ligand was also found interacting with Ile23,
Ser24, Lys123, Asn146 and Tyr440 residues via hydrogen
bonding interactions (Fig. 3 and Table 5). Out of these residues,
Ile23, Ser24 and Asn146 are catalytically conserved residues.
Besides, the ligand also interacted with Ile23 (catalytically con-
served residue), Pro80, Phe169, His191 (catalytically con-
served residue), Lys330 and Tyr440 via pi interactions.
Finally, the ligand was observed to be interacting with Gly22,
Gly25, Arg45 (catalytically conserved residue), Ser79, Gly81
(catalytically conserved residue), Ser124, Ser167, Asp190,
Thr332 and Asn333 using van der Waals interactions.Ta
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The estimated ΔG of ZINC12097291 for MurD was
computed to be − 10.6 kcal/mol, and the estimated Ki
was 0.16 nM. The ligand was found interacting with
Lys123, Ser124, Asn146 (catalytically conserved residue)
and Tyr440 via hydrogen bonding interactions (Fig. 4 and
Table 5). Also, the ligand utilised pi interactions to interact
with Glu165, Phe169, His191 (catalytically conserved res-
idue), Lys330 and Tyr440. Furthermore, ZINC12097291
was found interacting with Pro80, Gly81 (catalytically

conserved residue), Ser120, Asn121, Ala122, Leu147,
Gly148, Ser167, Phe434, Ser439 and Asn441 via van der
Waals interactions.

The estimated ΔG of MurD-ZINC12454357 was com-
puted to be − 10.2 kcal/mol, and the estimated Ki was
0.33 nM. The ligand was found interacting with Lys123,
Asn146 (catalytically conserved residue), Lys364 and
Tyr440 via hydrogen bonding interactions (Fig. 5 and
Table 5). Also, it was observed interacting with Glu165,

Ser24

Ile23

Asn146

Lys123

Tyr440

ZINC12055135

ZINC12055135

(a) (b)

(c)

Fig. 3 (a) Interaction of ZINC12055135 (green colour) with MurD
(domain I—red, domain II—purple, domain III—cyan). (b) 3D represen-
tation of MurD active site residues interacting with ZINC12055135
(green colour). (c) 2D representation of MurD active site residues

interacting with ZINC12055135 (green colour) via van der Waals inter-
actions (slightly green colour), hydrogen bonds (dark green colour) and pi
interactions (light pink colour)

Asn146
Ala122

Lys123

Ser124

ZINC19221101

ZINC19221101

(a) (b)

(c)

Fig. 2 (a) Interaction of ZINC19221101 (sand colour) with MurD
(domain I—red, domain II—purple, domain III—cyan). (b) 3D represen-
tation ofMurD active site residues interacting with ZINC19221101 (sand
colour). (c) 2D representation of MurD active site residues interacting

with ZINC19221101 (sand colour) via van der Waals interactions (slight-
ly green colour), hydrogen bonds (dark green colour) and pi interactions
(light pink colour)
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Phe169, His191 (catalytically conserved residue) and
Lys330 using pi interactions. Finally, ZINC12454357
was also found interacting with Pro80, Gly81 (catalytically
conserved residue), Ser120, Asn121, Ala122, Leu147,

Gly148, Ser167, Phe434, Ser439 and Asn441 residues
via van der Waals interactions.

As evident from MurD-ligand binding analysis, all four
ligands were actively interacting with the catalytic site

Lys123

Ser124
Asn146

Tyr440

ZINC12097291

(a) (b)

(c)

ZINC12097291

Fig. 4 (a) Interaction of ZINC12097291 (yellow colour) with MurD
(domain I—red, domain II—purple, domain III—cyan). (b) 3D represen-
tation of MurD active site residues interacting with ZINC12097291 (yel-
low colour). (c) 2D representation ofMurD active site residues interacting

with ZINC12097291 (yellow colour) via van der Waals interactions
(slightly green colour), hydrogen bonds (dark green colour) and pi inter-
actions (light pink colour)

Lys123

Asn146

Lys364

Tyr440

ZINC12454357

ZINC12454357

(a) (b)

(c)

Fig. 5 (a) Interaction of ZINC12454357 (orange colour) with MurD
(domain I—red, domain II—purple, domain III—cyan). (b) 3D represen-
tation of MurD active site residues interacting with ZINC12454357 (or-
ange colour). (c) 2D representation of MurD active site residues

interacting with ZINC12454357 (orange colour) via van der Waals inter-
actions (slightly green colour), hydrogen bonds (dark green colour) and pi
interactions (light pink colour)
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residues withΔG < − 10.1 kcal/mol andKi < 0.4 nM. Also, all
four ligandmolecules were highly hydrophobic because of the
aromatic rings, and all four of them participated in at least one
hydrogen bond with the conserved UMA binding site resi-
dues. ZINC12055135 was H-bonded to three UMA binding
site residues, including Ile23, Ser24 and Asn146 residues. The
other three ligands were involved in H-bonding with only one
conserved UMA binding site residue (Asn146), but they did
participate in other kinds of intermolecular interactions (pi
interactions and van der Waals interactions) with the con-
served residues. Besides, these interactions indicated that the
selected ZINC ligands had substantial binding affinities to-
wards MurD ligase. Generally, a higher number of hydrogen
bonds, pi interactions and van der Waals interactions depict a
strong binding between the protein and ligand molecules, and
it is also crucial in selecting promising candidates for drug
discovery and development process. Moreover, multiple in
silico studies have classified the Mur family of enzymes as
potential drug targets against A. baumannii [22]. Structure-
based virtual screening approach was employed to identify
potential lead molecules against multidrug-resistant
A. baumannii, which provided vital insights towards under-
standing the various structural aspects like predominant bind-
ing orientation, key intermolecular interactions, key
interacting residues, the estimated binding affinities and esti-
mated inhibition constants [23, 24, 26, 76]. Furthermore, the
electrostatic surface potential analysis revealed that the pH of
the substrate-binding cleft of the predicted MurD model was
highly basic. Also, all four ligands appeared to be optimally
oriented and entirely blocking the substrate-binding cleft of
MurD ligase (Fig. 6).

Molecular dynamics simulations

Molecular dynamics (MD) simulations are performed to study
the atomic transitions of entire macromolecules on a given
time scale. It can also be utilised to evaluate the strength,
stability, interaction pattern and properties of protein-ligand
interactions. Furthermore, MD simulations can also be used to
elucidate dynamic conformational changes a macromolecule
experience in hydrophilic cellular environments. Various
structural parameters, including RMSD, RMSF, Rg, SASA
and intermolecular H-bonds, were calculated. To assess the
conformational stability, compactness, folding characteristics
and intermolecular interactions of protein-ligand complexes,
MD simulations of 100 ns were performed for both free and
ligand-bound MurD forms.

Root mean square deviation

RMSD is an essential tool to estimate the conformational sta-
bility of protein and protein-ligand complexes as a function of
time. The free MurD stabilised at 10 ns and maintained it until
35 ns, after which the RMSD started to spike, and it reached
its peak value at around 40 ns (Fig. 7a). The free protein
started to stabilise again at around 40 ns, and this time, it
was maintained it until the end of the simulation period with
a few minor variations. In contrast, theMurD-ZINC19221101
complex stabilised at around 10 ns, and it maintained its struc-
tural stability until the end of the MD simulation period. The
MurD-ZINC12454357 complex also gained its stability
around 10 ns and preserved it until the end of the 100-ns
MD simulation. The MurD-ZINC12097291 complex also

(a) (c)

(b) (d)

MurD

Fig. 6 The electrostatic surface potential map of (a) ZINC19221101 (sand colour), (b) ZINC12055135 (green colour), (c) ZINC12097291 (yellow
colour) and (d) ZINC12454357 (orange colour) bound to MurD. The zoomed view is representing the active site cleft
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gained its stability around 10 ns and preserved it until
the end of the simulation period except for the minor
variations at 50 and 80 ns. Finally, the MurD-
ZINC12055135 complex achieved its stability at around
20 ns and maintained it until 80 ns. After 80 ns, the
deviations started to spike and achieved the maximum
value at around 90 ns and then it started to drop. The
MurD-ZINC19221101 and MurD-ZINC12454357 com-
plexes were closest to the free MurD structure and were
the most stable ones out of the all four protein-ligand
complexes. The average RMSD values for free MurD,
MurD-ZINC19221101, MurD-ZINC12055135, MurD-

ZINC12097291 and MurD-ZINC12454357 were
0.3178 nm, 0.4243 nm, 0.5447 nm, 0.4731 nm and
0.4377 nm, respectively.

Root mean square fluctuation

RMSF is the measure of average fluctuations a protein
molecule experiences under physiological conditions. It is
also used to understand the flexibility and rigidity of pro-
tein and protein-ligand complexes. It is measured for the
C-alpha atom of each amino acid residue representing a
protein molecule. In the case of MurD, the maximum

(b)(a)

(c) (d)

(e)

Fig. 7 Analysis of molecular dynamics simulation results of free MurD
(black), MurD-ZINC19221101 complex (red), MurD-ZINC12055135
complex (green), MurD-ZINC12097291 complex (blue) and MurD-
ZINC12454357 complex (yellow). (a) Root Mean Square Deviation

(RMSD). (b) Root Mean Square lFuctuation (RMSF). (c) Radius of gy-
ration (Rg). (d) Solvent-Accessible Surface Area (SASA). (e)
Intermolecular H-bonds
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fluctuations were observed in the loop dominant regions
(mostly in the second GTPase domain) (Fig. 7b). The flex-
ibility of the loop regions allows the ligands to enter the
protein molecule and bind at the substrate-binding site.
Also, all ligands except ZINC12454357 appeared to be
maximising the fluctuations of MurD. The MurD-
ZINC12055135 complex was showing the maximum var-
iations with respect to the free MurD structure, whereas the
MurD-ZINC12454357 complex had the least fluctuations
compared with the free protein. The average RMSF values
for the free MurD, MurD-ZINC19221101, MurD-
ZINC12055135, MurD-ZINC12097291 and MurD-
ZINC12454357 complexes were 0.1694 nm, 0.1877 nm,
0.2052 nm, 0.1840 nm and 0.1667 nm, respectively.

Radius of gyration

The radius of gyration (Rg) is an important structural parameter
to elucidate the equilibrium conformation, compactness and

folding characteristics of protein and protein-ligand complexes.
Rg indicates whether the binding of a ligand molecule stabilises
the protein structure or not. The Rg of MurD-ZINC12454357
and MurD-ZINC19221101 complexes were almost the same,
indicating that both of these ligands preserved MurD’s confor-
mation equally well (Fig. 7c). Besides, the Rg data showed that
all four MurD-ligand complexes were structurally more compact
with improved folding behaviour than the free MurD structure,
and the graph for all of the MurD-ligand complexes was very
stable with minimum variations. The average Rg for the free
MurD, MurD-ZINC19221101, MurD-ZINC12055135, MurD-
ZINC12097291 and MurD-ZINC12454357 complexes were
2.355 nm, 2.246 nm, 2.274 nm, 2.278 nm and 2.249 nm,
respectively.

Solvent-accessible surface area and intermolecular H-bonds

SASA is employed to describe a change in the solvent behav-
iour of a protein molecule resulting from the conformational

RMSD: 2.438 Å
MurD MurD-ZINC19221101

RMSD: 2.558 Å
MurD-ZINC12055135

RMSD: 3.959 Å

MurD-ZINC12097291
RMSD: 3.738 Å

MurD-ZINC12454357
RMSD: 3.256 Å

Initial Model

Simulated Model

Fig. 8 Structural superimposition of the initial (purple colour) and MD simulated (orange colour) MurD and its ligand-bound complexes

Table 6 Contribution of
individual energy components
involved in complex formation
between MurD and the top lead
molecules

S.
No.

System van der
Waals
energy
(kcal/mol)

Electrostatic
energy
(kcal/mol)

Polar
solvation
energy
(kcal/mol)

SASA
energy
(kcal/mol)

Binding free
energy
(kcal/mol)

1. MurD-ZINC19221101 − 54.5 ± 2.8 − 51.4 ± 5.1 47.6 ± 7.3 − 4.4 ± 0.1 − 62.6 ± 5.6

2. MurD-ZINC12055135 − 40.8 ± 5.4 − 0.8 ± 1.5 18.2 ± 7.2 − 3.8 ± 0.5 − 27.2 ± 3.6

3. MurD-ZINC12097291 − 67.9 ± 2.9 − 7.0 ± 1.2 39.9 ± 3.6 − 5.2 ± 0.2 − 40.2 ± 4.2

4. MurD-ZINC12454357 − 55.0 ± 2.3 − 1.5 ± 0.9 15.0 ± 2.2 − 4.6 ± 0.2 − 46.1 ± 2.6
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changes it may experience upon binding to a ligand. In the case
of MurD, all four protein-ligand complexes were capable of
decreasing the SASA in comparison with the free protein (Fig.
7d). The SASA of all four MurD-ligand complexes stabilised
at around 20 ns and preserved it until the end of the MD
simulation cycle. The average SASA values for the free
MurD, MurD-ZINC19221101, MurD-ZINC12055135,
MurD-ZINC12097291 and MurD-ZINC12454357 complexes
were 204.703 nm2, 181.239 nm2, 180.856 nm2, 183.623 nm2

and 181.115 nm2, respectively. In comparison with freeMurD,
the average SASA values of all of the ligand-bound forms
decreased slightly, which indicated that these ligand molecules
induced conformational changes in the protein structure.

The number of H-bonds a ligand molecule forms with the
protein molecule is a vital parameter during MD simulations.
A higher number of H-bonds generally refer to a substantial
binding affinity of a ligand towards the protein molecule. Out
of all four MurD-ligand complexes, the maximum instances
of H-bonds were observed in the case of MurD-
ZINC12097291 complex, whereas the minimum instances
were observed in the case of MurD-ZINC12055135 complex
(Fig. 7e). Also, MurD-ZINC12097291 complex was found to
be interacting with the maximum number of H-bonds (four H-
bonds), whereas the MurD-ZINC12055135 complex was
interacting with the least number of H-bonds (one H-bond).

Comparative structural analysis of modelled and simulated
MurD structures

The structures of modelledMurD and simulatedMurD having
the lowest potential energies were analysed using the align
structural superimposition function available in PyMol
(Fig. 8) [40]. The minimum potential energies of MurD,
MurD-ZINC19221101, MurD-ZINC12055135, MurD-

ZINC12097291 and MurD-ZINC12454357 were found to
b e − 1 , 2 2 5 , 6 8 8 . 1 2 5 k J /mo l ( a t 6 0 . 8 9 n s ) , −
1,192,148.375 kJ/mol (at 10.78 ns), − 1,193,003.000 kJ/mol
(at 0 ns), − 1,192,378.500 kJ/mol (at 19.38 ns) and −
1,193,252.625 kJ/mol (at 60.79 ns), respectively. The
RMSD of the MurD-ligand complexes were observed to be
higher than that of the free protein (2.438 Å), but none of the
ligands deviated MurD’s confirmation too significantly.
Moreover, the structural superimposition analysis also
depicted that the ligands were appropriately oriented in the
catalytic site of MurD during the MD simulations. The struc-
tural superimposition of MurD-ZINC19221101, MurD-
ZINC12055135, MurD-ZINC12097291 and MurD-
ZINC12454357 revealed RMSDs of 2.558 Å, 3.959 Å,
3.738 Å and 3.256 Å, respectively.

After analysing the MD simulation data, it can be confident-
ly said that ZINC19221101 and ZINC12454357 consistently
performed better than ZINC12055135 and ZINC12097291 and
are probably the better candidates for inhibiting the action of
MurD ligase. These two ligands performed better than the other
two in almost all aspects (RMSD, Rg and SASA) of MD sim-
ulation except the intermolecular H-bonds in which
ZINC12097291 was better than all other ligands.

Binding free energy analysis

Binding free energy analysis aimed to calculate the energies
that were associated with the binding of ZINC ligands to
MurD during the MD simulations. A precise estimation of
binding free energies of the protein-ligand complexes is
amongst the most critical aspects of understanding protein-
ligand interactions. The binding free energies were estimated
for all four selected MurD-ligand complexes (MurD-
ZINC19221101 , MurD-ZINC12055135 , MurD-

Fig. 9 Binding free energy
analysis results of MurD-
ZINC19221101 complex (red),
MurD-ZINC12055135 complex
(green), MurD-ZINC12097291
complex (blue) and MurD-
ZINC12454357 complex
(yellow) (energy values expressed
in kJ/mol)
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ZINC12097291 and MurD-ZINC12454357) utilising the
MM/PBSA approach. A total of 1000 snapshots or conforma-
tions were captured from the final 20-ns stableMD trajectories
with an interval of 20 ps for each system. The binding free
energies for MurD-ZINC19221101, MurD-ZINC12055135,
MurD-ZINC12097291 and MurD-ZINC12454357 were esti-
mated to be − 62.6 ± 5.6 kcal/mol, − 27.2 ± 3.6 kcal/mol, −
40.2 ± 4.2 kcal/mol and − 46.1 ± 2.6 kcal/mol, respectively
(Fig. 9 and Table 6).

These results revealed strong interactions between MurD-
ligand complexes, especially between MurD-ZINC19221101
and MurD-ZINC12454357. In all of the cases, the van der
Waals energies were prime contributors to the binding free
energies. The electrostatic and SASA energies were also
found to be sufficiently dominant. Conversely, polar solvation
energies unfavourably contributed to the binding free energies
in all MurD-ligand complexes. Furthermore, the results ob-
tained from binding free energy analysis corroborated with
the results obtained from global dynamic analysis. Together
with the results obtained from all these analyses, we propose
that ZINC19221101 and ZINC12454357 molecules are worth
further investigations.

Conclusions

The sporadic outbreak of healthcare-associated infections
(ventilator-associated pneumonia, urinary tract infection,
etc.) associated with A. baumannii has made it compulsory
to identify new therapeutic options against it [77–80] . In a
few cases, the mortality rate can even surge as high as 35%
[65]. The present study was aimed at predicting novel
drug-like or lead-like compounds acting against an essen-
tial cell wall biosynthesis enzyme. In the current study,
MurD ligase was homology modelled and subjected to
vHTS against a library of 0.6 million commercially avail-
able molecules from the ZINC database. The best thou-
sand ligands obtained from vHTS were screened against
various parameters, and subsequently, the best four ZINC
ligands were chosen for further validations employing MD
simulations and binding free energy calculations. Finally,
the results of MD simulations and binding free energy
analysis depicted that two (ZINC19221101 and
ZINC12454357) of the best four ligands could be consid-
ered as lead molecules for drug discovery against
A. baumannii. However, computational studies are limited
in a way that they cannot fully mimic the physiological
conditions [81, 82]; therefore, further experimental inves-
tigations are required to confirm the activity of these li-
gands against A. baumannii. Although additional valida-
tions are required, the results of this study are encouraging
and may expedite the efforts to develop effective antibi-
otics against A. baumannii.
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