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Abstract
The fractional derivative concept to treat non-isothermal solid state thermal decomposition was employed in this work.
Simulated data were compared with the exact solutions for the method validation. Calculated fractional kinetics data for
four heating rates were initially considered and the Kissinger-Akahira-Sunose (KAS) method demonstrate that, although
the activation energy is not retrieved, it can be useful to determine a single or multistep process. Experimental thermal
decomposition data of lumefantrine heated at 5, 10 ,15, and 20 oC min−1 were fitted for a single-step process. The kinetic
parameters were retrieved for integer and fractional kinetics, considering some ideal and general models. Application of
the KAS method to these data demonstrated an activation energy dependent on the conversion rate, indicating a multistep
process. Five data subintervals were fitted separately using the general model with variable derivative order. It was found
a process that occours with integer order derivative until α = 0.3 and fractional order for α > 0.3 with combination of
simultaneous reactions, since the parameters do not correspond to any ideal model. The determined activation energies
showed the same increasing behavior observed in the KAS approach. The results for multistep process presented an error
102 times smaller if compared with the best result, considering a single-step process. Therefore, the fractional kinetic model
presents a powerful extension to the usual thermal data analysis.

Keywords Fractional derivative · Thermal decomposition · Fractional kinetics

Introduction

Since the beginning of twentieth century, it is reported in
the literature studies on thermal decomposition of solids [1–
6]. Methods to acquire kinetic model parameters, such as
activation energy and frequency factor, can be found in the
literature. For example, those proposed by Kissinger [7],
Flynn and Wall [8], Ozawa [9] and a more accurate method

This paper belongs to Topical Collection XX - Brazilian
Symposium of Theoretical Chemistry (SBQT2019).

� F. S. Carvalho
felipe.s.carvalho qui@hotmail.com

J. P. Braga
jpbraga@ufmg.br

1 Departamento de Quı́mica - ICEx, Universidade Federal de
Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
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known as the Kissinger-Akahira-Sunose (KAS) [10]. Also,
thermal analysis data can be treated by means of the model
fitting or the isoconversional methods [11]. Artificial neural
network has also been applied to understand kinetic process
[12, 13]. An optimization method, in which it is not required
the numerical solution of differential or integral equations,
has been recently proposed in the literature [14]. However,
these methods are based on the assumption of an integer
order derivative model.

The first mention to the fractional calculus was made
in a letter from l’Hôpital to Leibniz in 1695. After this,
several definitions were proposed and a theoretical and
historical review can be found in [15–17]. One important
application on a kinetic process is the use of fractional
derivative to model anomalous luminescence decay, which
results in a single solution both to exponential and non-
exponential behavior [18]. From these results, one can
suppose other kinetic models also described by a fractional
order derivative.

Knowledge of the thermal behavior of drugs is critical
in the pre-formulation stage as some unit operations
require or generate heat [19]. In this context, good
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manufacturing practices of drug product include the
development of stability studies to ensure the quality
of the final product and to promote public health [20].
Therefore, the pharmaceutical industry continually searches
for analytical techniques and data processing protocols
that help in understanding the stability of pharmaceutical
systems. Therefore, thermoanalytical techniques are very
useful to drug product developments and the fractional
derivative methodology can add important information to
understand this process.

In this work, it will be given the mathematical
background necessary to perform the fractional derivative
analysis along with two examples to validate the fractional
differential equation solution method. Since the KAS
method is derived starting from the assumption of an
integer order derivative kinetic model, this method will
not work properly for fractional kinetic data. However,
it is not possible to determine if the process follows an
integer or fractional kinetics from experimental data and
one may be lead to apply this method as a first analysis.
The non-isothermal decomposition data of lumefantrine,
first drug elected for treatment of uncomplicated and
severe Plasmodium falciparum malaria [21], will be treated
by the model fitting method, considering a single-step
process. The KAS analysis will be carried out using
simulated fractional kinetic data. This method also will be
applied to experimental data to infer about the number of
steps necessary to define the whole process. Hereafter, a
multistep fitting procedure, considering the general kinetic
equation proposed by Cai and Liu [22] with fractional order
derivative, will be carried out.

Fractional calculus background

To present the kinetic analysis from a fractional calculus
viewpoint, it is necessary to give some definitions and
results for fractional integral and its derivatives. The n-order
Riemann-Liouville integral, J n, can be used to calculate a
multiple integral of order n ∈ N

∗ [15]

J nf (t) =
∫ t

0

∫ x1

0
. . .

∫ xn

0
f (xn+1) dxn+1dxn . . . dx1 = 1

�(n)

∫ t

0

f (x)

(t − x)1−n
dx (1)

in which �(n) is the Gamma function. For the application
given in this work, all definitions are left-sided on the half-
axis R

+. The integer order Riemann-Liouville integral can
be extended for non-integer indexes [23], γ , and one is left
with

J γ f (t) = 1

�(γ )

∫ t

0

f (x)

(t − x)1−γ
dx (2)

Equation 2 is called Riemann-Liouville fractional integral
and the associated fractional derivative is given by

Dγ f (t) = dn

dtn

(
J n−γ f (t)

)
(3)

Since the fractional derivative of a constant, L, is a
function dependent on t , then (Dγ L) (t) �= 0. Therefore, the
Riemann-Liouville fractional derivative is not appropriate
to describe a dynamical process. An alternative definition is
called Caputo fractional derivative and it is given by [15, 16]

D
γ∗ f (t) = J n−γ dnf

dtn
(4)

In this definition, if the function f (t) is constant, then
D

γ∗ f (t) = 0. From this point of view, the Caputo derivative
is more appropriate to describe kinetic processes and it will
be considered in this work.

The Caputo representation has properties under the
Laplace transform which allows, in some cases, the
acquisition of analytical solution for simple differential
equations [15, 18]. However, in several applications,
this analytical solution is not possible. Therefore, it is
convenient to introduce the Grünwald-Letnikov fractional
derivative, given by [15]

D
γ

GLf (t) = lim
h→0

t−t0
h∑

i=0

(−1)i

hγ

(
γ

i

)
[f (t − ih)] (5)

in which the maximum integer lower than t−t0
h

has to be
considered as the upper limit. This representation for fractional
derivative can be related to both, Riemann-Liouville or Caputo
representations, depending on how it is defined. If the
function f (t) obeys certain conditions of continuity and
integrability, the Grünwald-Letnikov derivative coincides
with Riemann-Liouville definition. [15]

The relation between Caputo and Grünwald-Letnikov
fractional derivatives is obtained by considering that, for
n = 1, Riemann-Liouville and Caputo derivatives are
related as [24]

D
γ∗ f (t) = Dγ [f (t) − f (0)] (6)

Therefore, the Caputo fractional derivative representa-
tion, with 0 < γ < 1, as a Grünwald-Letnikov series is
given by

D
γ∗ f (t) = lim

h→0

t−t0
h∑

i=0

(−1)i

hγ

(
γ

i

)
[f (t − ih) − f (0)] (7)

Expliciting the first term,

D
γ∗ f (t) = lim

h→0

1

hγ
[f (t) − f (0)] +

t−t0
h∑

i=1

(−1)i

hγ

(
γ

i

)
[f (t − ih) − f (0)] (8)

Equation 8 will play an important role in the solution
of differential equations of fractional order. For numerical
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implementation, it is convenient to approximate D
γ∗ f (t) ≈

1
hγ [f (t) − f (0)] + ∑ t−t0

h

i=1
(−1)i

hγ

(
γ
i

)
[f (t − ih) − f (0)] for

low values of h.

Kinetic models as ordinary differential
equations

To study the kinetics of solid thermal reactions, such as
decomposition or polymorphic conversion, kinetic models
are employed to fit experimental data of thermogravimetry
(TG) or differential scanning calorimetry (DSC) curves
[25]. A differential equation with adjustable parameters
which can represent ideal and also non-ideal kinetic models
was proposed by Cai and Liu [22]:

dα(t)

dt
= k(T )α(t)m (1 − qα(t))n (9)

Equation 9 will be used in this work for non-isothermal
analysis. Usually the left hand side of this equation
is rewritten as dα

dT
dT
dt

, but since the Caputo fractional
derivative has no simple form for composite functions as in
usual calculus [15], this step will not be considered in this
work.

Numerical solution for fractional derivativemodels

If the integer order derivative is replaced by the fractional
derivative, only a few values of m, n, and q enables
analytical solutions. However, using (8) in (9) and, in
analogy with the Euler method, choosing α(t) = αr on the
left hand side and α(t) = αr−1 in the right hand side of
Eq. 9, one obtains

1

hγ
[αr − α0] +

t−t0
h∑

i=1

(−1)i

hγ

(
γ

i

) [
αr−i − α0

] = k(T )αm
r−1 (1 − qαr−1)

n

(10)

after a rearrangement:

αr = α0 −
t−t0

h∑
i=1

(−1)i
(

γ

i

) [
αr−i − α0

] + hγ k(T )αm
r−1 (1 − qαr−1)

n (11)

The geometrical interpretation of fractional derivative
is not common; however, this analogy is justified by the
obtained results for some known solutions of differential
equations, as discussed in the next section.

Numerical method validation

To validate the numerical method presented in this work,
two examples with known analytical solution will be
considered: (a) an equation for fractional decay and (b) the
Avrami-Erofeev equation. The first case can be represented
by the equation

D
1
2∗ α(t) = −α(t) (12)

which has an analytical solution given by α(t) =
α(0)

[
et − eterf

(√
t
)]

, with erf(x) being the error function.
The recursive formula for Eq. 12, as obtained in the previous
section, is given by

αn = α0 −
n∑

i=1

c
1
2
i

[
αn−i − α0

] − αn−1h
1
2 (13)

with c
γ

i = (−1)i
(
γ
i

)
. The numerical solution for h = 0.001

is given in Fig. 1 along with the analytical solution .
To complete the validation, it is considered an integer

order derivative case for Avrami-Erofeev model

dα(t)

dt
= 2 (1 − α(t)) (− ln(1 − α(t)))

1
2 (14)

in which it was used the same procedure adopted for the
fractional order differential equation setting γ = 1. Eq. 14
has analytical solution given by α(t) = 1 − e−t2

and can be
rewritten as the recursive formula,

αn = α0−
n∑

i=1

c1
i

[
αn−i − α0

]+2 (1 − αn−1) (− ln(1 − αn−1))
1
2 (15)

The solution for h = 0.001 is given in Fig. 2.
The accuracy of the numerical solution will depend on

the values of h and therefore a convergence analysis is
required for each problem to be solved.
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Fig. 1 Exact (dashed) and numerical (dotted) solutions for the half
order decay of Eq. 12
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Fig. 2 Exact (dashed) and numerical (dotted) solutions for γ = 1

Experimental procedure

The thermal behavior of lumefantrine was evaluated by
DSC and TG/differential thermal analysis (DTA). DSC
curves were obtained for lumefantrine in the DSC60
Shimadzu, calibrated with indium (melting Tonset = 156.63
oC, �Hf us = 28.45 J g−1) under a dynamic nitrogen
atmosphere at 50 mL min−1. The sample was heated
from room temperature up to 400 ◦C with heating rate
set as 10 ◦C min−1 in a closed aluminum crucible.
The lumefantrine sample was about 1.5 mg, accurately
weighted.

TG simultaneous DTA curves were obtained using a
Shimadzu DTG60, with heating rate set as 10 ◦C min−1

starting from room temperature up to 600 ◦C under a
dynamic nitrogen atmosphere at 50 mL min−1 in an alumina
crucible with sample mass about 2.5 mg. For the kinetic
studies, the TG data were obtained at the heating rates of 5,
10, 15, and 20 ◦C min−1, also from room temperature up to
600 ◦C, in the same experimental conditions.

Results and discussion

The necessary steps used in the present work has
considered three heating rates to solve (11), together with a
multiobjective error function defined as

EN =
3∑

i=1

||αcalc,βi
− αexp,βi

||2 (16)

with αcalc,βi
and αexp representing, respectively, the

calculated and experimental conversion rates at each heating
rate, βi . The fourth data was used to validate the results
using the root-mean-squared-deviation (rmsd)

rmsd =
√

||αcalc − αexp||2
N

(17)

in which N is the number of data points. The program
was implemented on MATLAB® environment using the
function fminsearchbnd [26] that uses the simplex method
of Lagarias et. al. [27] with the possibility to impose
boundaries in the parameters to be fitted.

Experimental data

DSC curve for lumefantrine (Fig. 3, black) indicates
an endothermic event, not followed by a mass loss in
the TG curve (Fig. 3, red) and confirmed by DTA
curve (Fig. 3, blue). This behavior indicates a physical
phenomenon related to the melting (Tonset = 128.1 ◦C,
Hf us = 77.39 J g−1) as expected [28]. After melting, the
degradation process started at about 250 ◦C, confirmed
by the two steps of mass loss in the TG curve, 69%
(corresponding to the loss of the OH, 3 Chlorine atoms,
located at the side chain and part of the cyclic carbon chain)
and 19% (another part of the cyclic carbon chain) of weight
loss, as described by Freitas-Marques et al. [25].

The non-isothermal TG curves of lumefantrine, obtained
at the heating rates of 5, 10 , 15, and 20 ◦C min−1 were
used to determine the conversion rate, α, as a function
of the temperature. Figure 4 presents these experimental
data to be treated in this work for integer and fractional
derivative kinetic models. The data presented only one
single event during the whole process, which can be verified
by the one step of the decomposition curves. As expected,
it is observed a curve displacement as the heating rate is
increased [29].

Model-fittingmethod

The model-fitting method was applied to experimental
results. The data for β = 5, 10, 20 ◦C min−1 were used in
the adjustment, while the data for β = 15 ◦C min−1 was
used to validate the parameters found. The values of m, q,

Fig. 3 Thermal behaviour of lumefantrine. DSC (left axis, black), TG
(right axis, red) and DTA (right axis, blue) curves
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Fig. 4 Experimental data for β = 5 (dashed), β = 10 (dotted), β = 15
(dashed and dotted) and β = 20 (full line) oC min−1

and n relative to ideal models were obtained in reference
[22]. The results are presented in Table 1.

The ideal models considered were R2 and R3, which
stands for phase boundary controlled reactions, A1.5 and
A2, describing nucleation and growth reactions, F1 for
first-order reaction and F2 for second-order reaction.

Except for F2 model, in which integer order kinetics was
retrieved in the most general case, in all adjustments, it was
found the fractional kinetics as the best model to describe
the one-step reaction, particularly for A1.5, A2, and F1
models. The results for adjustment considering the general
model is presented in Table 2.

In this case, the parameters m, q, and γ are more
appropriated to describe the A2 fractional model, given
by m = 0.511148, n = 0.793815, q = 1.003138, and
γ = 0.60844. Therefore, one may infer that for a single-step
process, there is a larger contribution from A2 fractional
model to the simultaneous reactions. The results for ideal
models are presented in Fig. 5 and for general model in
Fig. 6.

Application of the KASmethod in simulated
fractional kinetic data

Another kinetic analysis can be performed by the model
free methods. [30] However, these methods are all based on
the assumption of an integer order derivative kinetic model.
In this section, a single-step process with fractional order
derivative will be simulated in four different heating rates
and the KAS method will be applied to these data. This
model-free method is derived starting from the equation [7,
10]

dα(T )

dT
= Ae− Ea

RT f (α(T )) (18)

with α-dependent term on the right hand side of Eq. 9
expressed as f (α). By separating the variables

dα

f (α)
= Ae− Ea

RT dT (19)

and integrating this equation, one obtains

ln

(
β

T 2

)
= ln

(
AR

EaG(α)

)
− Ea

RT
(20)

in which G(α) = ∫ α

0
dα

f (α)
. Therefore, the method consists

in plot ln
(

β

T 2

)
versus 1

T
for different values of α.

Equations 9 and 11 were used to simulate the conversion
rate data for β = 5, 10, 15, and 20 ◦C min−1 with
parameters set as γ = 0.7, A = 3.74 × 1010 s−1, Ea =
110.72 kJ mol−1, m = 0.337951, n = 0.856039, and
q = 1.002758, which is the fractional Avrami-Erofeev A1.5
model. The curves are presented in Fig. 7.

Considering these data and applying the KAS method,
the results are obtained and presented in Table 3.

It is possible to see an approximate constant values for
the activation energy for a single-step reaction, but with a
large error considering the value of Ea = 110.72 kJ mol−1

used in the simulation. Therefore, if the process occours

Table 1 Model-fitting results

Model Results for integer derivative Results for fractional derivative

A/ s−1 Ea / kJ mol−1 rmsd A/ s−1 Ea / kJ mol−1 γ rmsd

R2 3.1423(5) 94.156 0.0025 5.994(5) 90.162 0.73819 0.0018

R3 7.7585(5) 98.200 0.0019 1.9668(6) 96.894 0.78686 0.0014

A1.5 70696 83.275 0.0027 2.7193(5) 82.363 0.71444 3.5258(−4)

A2 19339 75.218 0.0059 35202 68.391 0.60844 1.5581(−4)

F1 5.8861(6) 107.34 0.0010 1.793(7) 109.58 0.88492 9.6056(−4)

F2 6.744(10) 150.61 0.0014 6.744(10) 150.61 1 0.0014
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Table 2 General fitting result
A/ min−1 Ea / kJ mol−1 m q n γ rmsd

1.0383(5) 74.924 0.50171 0.99754 0.97182 0.66952 1.1975(−4)

Fig. 5 Experimental data (full
line) and results for a R2, b R3,
c A1.5, d A2, e F1, and f F2
ideal models with integer (dots)
and fractional (dashed) order
derivative
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Fig. 6 Experimental data (full line) and result for general model with
fractional order derivative (dashed)
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Fig. 7 Simulated data for fractional kinetics and β = 5, 10, 15, 20 oC
min−1
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Table 3 Activation energy according to conversion degree, α, by the
KAS method

α Ea /kJ mol−1 R2

0.1 155.79 0.999997

0.2 156.90 0.999968

0.3 156.42 0.999985

0.4 157.01 0.999995

0.5 156.54 0.999996

0.6 156.75 0.999997

0.7 156.52 0.999987

0.8 157.23 0.999977

0.9 156.79 0.999996

obeying a fractional kinetics, using this model-free method
to determine the activation energy may lead to wrong
results, although, since the activation energy remains
approximately constant, it is possible to infer if the process
is multistep or not.

KASmethod applied to lumefantrine data

As observed from simulated data, the KAS method may give
wrong results for activation energy if the kinetics follows a
fractional order derivative. However, it still can give insights
if the reaction is multistep or not. Thus, the TG experimental
data of lumefantrine at 5, 10, 15, and 20 ◦C min−1 were
used and Fig. 8 presents the KAS linear correlation.

In Table 4, the results for the activation energy according
to the conversion rate, α. The increasing value for activation
energy with α indicates a multistep process. Therefore,
these data will be divided in five subintervals and the
adjustment will be performed again considering the general
kinetic equation.

-16

-15.5

-15

-14.5

-14

-13.5

1.4

ln
 (

/T
2 )

10-3

1/T (K-1)

1.6
1.8 10.80.60.40.20

Fig. 8 KAS plot for different values of α

Table 4 Activation energy according to conversion degree, α, by the
KAS method

α Ea /kJ mol−1

0.1 103.45

0.2 107.44

0.3 110.49

0.4 112.98

0.5 114.96

0.6 116.61

0.7 117.89

0.8 120.96

0.9 131.77

0.95 146.09

General multistepmethod

The general equation (9) with variable derivative order
will be used to perform the multistep analysis. Since
experimental data shows amplified noises for α < 0.025
when β=5 ◦C min−1 and oscillations for α > 0.95, it was
considered results in the range 0.025 < α < 0.95 for all
heating rates (Table 5).

It is observed an increasing of the activation energy in
each subinterval considered, as indicated by KAS method.
Since the fractional derivative order is between 0.9 and
1, the similar results for activation energy obtained in the
adjustment and retrieved by KAS method is expected. It is
interesting to point out that results in intervals [0.7, 0.85]
and [0.85, 0.95] are below the results presented in Table 4
for α = 0.8 and α = 0.9, respectively, which coincides
with the superestimated activation energy predicted by KAS
method when applied to fractional kinetic data, as discussed
in Section 2.

This result indicates a integer order kinetics in the
beginning of the process and a fractional kinetics process for
α > 0.3. Besides, since the parameters do not correspond
to any ideal model, it suggests a complex process in which
more than one reaction occurs simultaneously, according to
Cai and Liu work [22]. The results are presented in Fig. 9

Conclusions

It was given the necessary mathematical background
of fractional calculus to the development of this work.
The method to solve fractional differential equations was
validated by considering two different examples, one with
integer and the other with fractional derivative orders, which
has analytical solutions, demonstrating the accuracy of the
numerical method.
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Table 5 Adjustment of 5 subintervals with fractional derivative considering the general model

Subinterval Results

A/ s−1 Ea / kJ mol−1 m q n γ rmsd

0.025 < α < 0.1 8.956(5) 98.258 0.11158 1.0008 0.6688 1 1.3018(−6)

0.1 < α < 0.3 3.2195(7) 112.10 0.32407 0.92834 1.7204 1 3.8458(−6)

0.3 < α < 0.7 1.3867(8) 114.93 0.87715 0.99149 1.9265 0.96449 2.8287(−6)

0.7 < α < 0.85 2.7262(8) 116.51 0.97545 1.0014 2.2402 0.94295 7.9762(−6)

0.85 < α < 0.95 9.1699(8) 128.51 0.96592 1.0006 1.7813 0.92461 2.9743(−6)

Although the KAS method starts from the assumption
of an integer order kinetic model, it was possible to
observe that , despite the error in determining the activation
energy for simulated fractional kinetic data, it still gives
insights if the process is multistep or not. Four heating
rates experimental data for lumefantrine were used to test
the fractional kinetic model. The first assumption was
considering the process as a single step and it was applied
the model-fitting method considering some ideal models.
For this case, a better performance for fractional model, with
A1.5, A2, and F1 fractional models presenting smaller rmsd,
was observed.

The KAS method was applied to lumefantrine experi-
mental data and results obtained through a multistep process
were observed. To perform the new adjustment, it was con-
sidered the general model proposed by Cai and Liu [22]
with variable derivative order to fit five data subintervals. It
was observed that the process initiates as an integer order
kinetics until α = 0.3 and then follows a fractional kinetic
model. The activation energy for each subinterval has an
increasing behavior, as observed in KAS results, and for
fractional steps, smaller activation energies were observed
than predicted by the KAS method, which is consistent with
the preliminar analysis done in this work. Also, the rmsd
obtained in this method was 100 times smaller than the

550 580 610 640 670
T /K

0.025

0.175

0.325

0.475

0.625

0.775

0.925

(T
)

Fig. 9 Experimental data (full line) and results obtained by the general
multistep with variable derivative order (dashed)

single-step analysis. Therefore, these results indicate that
the process is multistep with simultaneous reactions, since
the parameters do not correspond to any ideal model, and
with variable derivative order during the advance of the
reaction.

From Eqs. 4 and 11, one can see that the fractional
derivative and the solution of a fractional differential
equation at time t1 depends on all values for t < t1
and in this sense, the fractional derivative has a kind of
“memory.” From this point of view, the fractional kinetic
model can be understood as a process in which all previous
reaction coordinates have influence on the current reaction
coordinate. Therefore, the fractional kinetic model presents
a useful generalization in thermal analysis both in the
adjustment numerical process, since it increases the degrees
of freedom, and in the physical interpretation of the reaction.
Further works are necessary to provide more insights and
new methodologies to treat experimental data.
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no Brasil. In: Fontes CJF, Santelli ACFS, Silva CJM, Tauil PL,
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