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Abstract
Phosphoinositide 3-kinases (PI3Ks) are crucial for cell proliferation, metabolism, motility, and cancer progression. Since the
selective PI3Kδ inhibitor, idelalisib, was firstly approved by the FDA in 2014, large numbers of selective PI3Kδ inhibitors have
been reported, but the detailed mechanisms of selective inhibition to PI3Kδ for idelalisib or its derivatives have not been well
addressed. In this study, 3D-QSAR with COMFA, molecular docking, and molecular dynamic (MD) simulations was used to
explore the binding modes between PI3Kδ and idelalisib derivatives. Firstly, a reliable COMFAmodel (q2 = 0.59, ONC = 8, r2 =
0.966) was built and the contour maps showed that the electrostatic field had more significant contribution to the bioactivities of
inhibitors. Secondly, two molecular docking methods including rigid receptor docking (RRD) and induced fit docking (IFD)
were employed to predict the docking poses of all the studied inhibitors and revealed the selective binding mechanisms. And
then, the results of the MD simulation and the binding free energy decomposition verified that the binding of PI3Kδ/inhibitors
was mainly contributed from hydrogen bonding and hydrophobic interactions and some key residues for selective binding were
highlighted. Finally, based on the models developed, 14 novel inhibitors were optimized and some showed satisfactory predicted
bioactivity. Taken together, the results provided by this study may facilitate the rational design of novel and selective PI3Kδ
inhibitors.
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Introduction

Since the 1980s, PI3Ks (phosphoinositide 3-kinases) have
been regarded as important drug targets in the cancer research
field, and they regulate various biological processes, such as

cell growth, metabolism, survival, and motility, and play im-
portant roles in the progression of cancer [1–7]. According to
the specific structure and lipid substrate specificity, PI3Ks can
be divided into three classes (classes I, II, and III), and class I
PI3Ks, the most extensively investigated class, can be further
divided into class IA (PI3Kα, PI3Kβ, and PI3Kδ) and class
IB (PI3Kγ) enzymes. The class IA PI3Ks is mostly activated
by RTKs (receptor tyrosine kinases), while the class IB is
mainly activated by GPCRs (G protein-coupled receptors)
[8]. The activated class I PI3Ks can phosphorylate the 3′OH
position of PIP2 to PIP3, which would transmit intracellular
signal to downstream signaling proteins with the PH
(pleckstrin homology) domain, like AKT and PDK1. PI3Kα
and PI3Kβ are widely expressed in tissues, while PI3Kδ and
PI3Kγ are mainly expressed in leukocytes and thymus [9, 10].

Accumulated molecular researches have revealed that the
PI3K signaling pathway is involved in various cancers, such
as breast, colorectal, and lung cancer, and endometrium and
hematological malignancies [11–13], suggesting that PI3Ks
are ideal targets for anti-cancer drug discovery. Up to now, a
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large number of PI3K inhibitors have been developed, and
some of these have been pushed into clinical trials.
Moreover, isoform-selective inhibitors show lower toxicity
and higher therapeutic efficacy than pan-inhibitors [13–15].
Idelalisib (CAL-101), the first listed selective PI3Kδ inhibitor,
was approved by the FDA in 2014 for the treatment of chronic
lymphocytic leukemia and small lymphocytic lymphoma,
which greatly promotes the exploitation of selective PI3Kδ
inhibitors [16]. Recently, another selective PI3K inhibitor,
duvelisib (IPI-145, δ/γ inhibitor), was approved by the FDA
for the treatment of hematological malignancies [17, 18].
Nowadays, many PI3Kδ inhibitors have been reported and
some of them have been entered into clinical trials, but the
detailed mechanisms of selective inhibition to PI3Kδ for these
inhibitors have not been well elucidated.

Computer-aided drug design (CADD) methods, including
quantitative structure-activity relationship (QSAR) analysis,
molecular docking, molecular dynamics (MD) simulations,
and free energy calculations, have been widely used to design
or discover novel small molecule inhibitors [14, 19–34].
Therefore, in this study, 3D-QSAR, molecular docking, and
MD simulations were used to reveal the mechanisms of PI3Kδ
binding selectivity through exploring the relationship between
PI3Kδ and a series of potent PI3Kδ inhibitors which are trans-
formed from the marketed drug idelalisib. Our findings may
assist in designing or discovering more novel selective PI3Kδ
inhibitors.

Materials and methods

3D-QSAR with COMFA

In this work, the 3D-QSAR model with COMFAwas built
by Sybyl-X 2.0. All the 41 quinazolinone derivatives as the
studied PI3Kδ inhibitors were collected from the literature
reported by Leena Patel [35] and the 2D structures with
their affinities of PI3Kδ are shown in Table S1. The bio-
activity defined as pIC50 (-logIC50) was used as the depen-
dent variable in the QSAR study. The 3D structures of all
the inhibitors were sketched in Maestro and then mini-
mized with the Powell method under the Tripos force field
with the Gasteiger-Huckel charge. The 41 inhibitors were
spilt into a training set with 31 compounds for creating the
QSAR model and a test set with 10 compounds for
assessing the quality of the model based on the structural
feature and the distribution of biological data through the
Generate Training and Test Data module of Discovery
Studio 3.5 (DS3.5). All the inhibitors were aligned onto
the common substructure (Fig. 1a) through the Align
Database module and the crystal structure of Cpd24 was
selected as the template, and the molecular alignments are
shown in Fig. S1. During the calculation of the parameters

of COMFA, steric and electrostatic potentials of a com-
pound were evaluated beyond every 2 Å lattice point with
Tripos standard force field and other parameters were set
default. After adding the parameters of COMFA, a leave-
one-out cross-validation was firstly used to determine the
optimal number of components (ONC) in the Partial Least
Squares Analysis module. The last step was to perform a
no-validation analysis with ONC to generate the COMFA
model.

Molecular docking

Two different molecular docking methods including rigid
receptor docking (RRD) and induced fit docking (IFD)
were employed to predict the binding mode between
PI3Kδ and the inhibitors. Crystal structure of PI3Kδ/
Cpd24 (PDB ID: 5I6U) was used as initial receptor for
subsequent molecular docking analysis. The Protein
Preparation Wizard module in Maestro was employed to
prepare the complex to assign bond orders, add hydrogen
atoms, assign protonated states, delete unwanted chains
and waters, assign partial charges, and lastly, minimize
with the OPLS-2005 force field. All 41 inhibitors were
prepared with the LigPrep module with the OPLS-2005
force field. During the period of preparation, each mole-
cule would generate right protonated states at target PH
from 5.0 to 9.0, stereochemistry, tautomers, and low-
energy ring conformations to output the most stable con-
formation. After that, a bounding box with the size of
10 Å × 10 Å × 10 Å, which was defined in the studied re-
ceptor and centered on the co-crystal ligand to confine the
ligands to the enclosing active site, was built through the
Receptor Grid Generation Panel of Maestro. Firstly, the
RRD was carried on with Glide and the parameters were
default except for writing out at most 10 poses for each
ligand, where the atoms of ligands were applied to the
scaling factor of 0.8 for van der Waals radii with partial
atomic charges less than or equal to 0.25 to soften the
potential for non-polar parts of the ligands. After finishing
the docking calculations by using XP (extra precision)
scoring modes, the best docked structure of each ligand
was selected for analysis. Secondly, in order to consider
the flexibility of both ligand and receptor, IFD in
Schrödinger was employed, which allowed the receptor
to flexibly move the backbone or side chain to transform
its binding site in order that it more closely combined to the
shape of the ligand [36]. During the process of IFD, each
ligand was firstly docked into the rigid receptor using a
softened potential by the Glide model with the default of
holding a maximum 20 poses per ligand. Then each
receptor-ligand complex was sampled with the freedom
of receptor degrees and minimized under the OPLS-2005
force field. Now the structure of the receptor in each pose
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was induced fit to the structure and conformation of the
ligand, and the residues within 5 Å of each docked pose
of the best receptor-ligand complex identified by the pre-
dicted binding affinities were refined. Finally, each
receptor-ligand complex was redocked within a specified
energy of the lowest-energy structure (default 30 kcal/mol)
where the ligand was strictly docked into the induced fit
structure of the receptor. The XP scoring mode was used
for all docking calculations.

Molecular dynamics (MD) simulation

The crystal structures PI3Kδ/Cpd24 complex (PDB ID: 5I6U)
and PI3Kδ/Cpd3 complex with the worst experimental activ-
ity generated by the IFDmodule were used as initial structures
for the next MD simulations. On the other hand, as the tem-
plate structure for optimization of these studied inhibitors,
idelalisib, the first listed PI3Kδ inhibitor, was also taken into
account and the PI3Kδ/idelalisib crystal structure (PDB ID:
4XE0) was retrieved from the Protein Data Bank [37]. All
three complexes for the MD simulation were carried out by
using the SANDER program in AMBER14 [38]. The
AMBER ff03 force field [39] and general AMBER force field
[40] were applied for protein and ligands, respectively. The

semi-empirical AM1 method in Gaussian09 [41] was used to
optimize each ligand. After that, the restrained electrostatic
potential (RESP) fitting technique was employed to fit the
electrostatic potential of the atomic partial charges at HF/6-
31G* level [42]. Each complex was neutralized with sodium
ions and solvated in an extended 10 Å of rectangular box
suffused with the TIP3P water molecules. The PME (particle
mesh Ewald) scheme [43] was applied to handle the long-
range electrostatics, with a cutoff of 10 Å for the van der
Waals interactions. All bonds referring to hydrogen atoms
were restricted by the SHAKE algorithm [44], with the time
step set to 2.0 fs.

There were three-step minimizations applied for relaxing
each system before the MD simulations. Firstly, the backbone
carbons of protein were restrained (50 kcal/mol/Å2) during
500 cycles of steepest descent and 500 cycles of conjugate
gradient. Secondly, 1000 cycles of minimizations with a
weaker harmonic potential (10 kcal/mol/Å2) were performed.
Finally, 5000 cycles of minimizations (1000 cycles of steepest
descent and 4000 cycles of conjugate gradient) were used for
relaxing the whole system without any restrain. In the process
of the MD simulation, the temperature of each system was
successively up from 0 to 300 K over 50 ps. After a 50-ps
simulation with the NPT ensemble (300 K, 1 atm) performed

Fig. 1 a The alignment of the common template structure which is based
on Cpd24. b Plot of the experimental versus predicted pIC50 of training
sets and test sets. c Electrostatic and d steric contour maps for the
COMFA model of Cpd3. More positive charges near the blue regions

increase activity; more negative charges near the red regions increase
activity. Bulk groups near the green regions increase activity; bulk
groups near the yellow regions decrease activity
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in each system, 30-ns NPT simulations were finally
performed.

MM/GBSA free energy calculations
and decomposition

The snapshots of each system extracted from the last 10-ns
stable MD trajectory were applied for calculating the binding
free energy (ΔGbind) using the MM/GBSA method according
to Eq. 1 [37, 45–55]:

ΔGbind ¼ Gcomplex– Gprotein þ Gligand

� �

¼ ΔGMM þΔGsol–TΔS
¼ ΔGMM þΔGGB þΔGSA–TΔS

ð1Þ

For each complex, the protein-ligand interaction spectrum
on a per-residue basis was calculated by the MM/GBSA free
energy decomposition analysis using the MM-PBSA program
of AMBER 14, which was computed based on Eq. 2:

ΔGinhibitor−residue ¼ ΔGvdw þΔGele þΔGGB þΔGSA ð2Þ

where the molecular mechanics energy (ΔGMM) is the gas-
phase interaction energy between ligand and protein, calculat-
ing by the electrostatic (ΔGele) and the van der Waals interac-
tion (ΔGvdw). The solvation free energy (ΔGsol) is composed
of the polar (ΔGGB) and the non-polar (ΔGSA) contributions.
ΔGGB is calculated by the generalized Born (GB) model de-
veloped by Onufriev et al. [56]. ΔGSA is computed on the
basis of SASA (solvent-accessible surface area) by using a
fast LCPO (linear combination of the pairwise overlap) algo-
rithm with a probe radius of 1.4 Å [57]. – TΔS is the change in
the conformational entropy upon ligand binding [10].

Results and discussion

COMFA model analysis

As we know, reasonable alignment of samples and bioactive
conformation selection are two vital factors for obtaining ro-
bust and meaningful 3D-QSAR models. So Cpd24 retrieved
from the crystal structure (ID: 5I6U) was chosen as the tem-
plate, and the common substructure for alignment was showed
in Fig. 1a. Partial least squares (PLS) regression analysis was
used to correlate COMFA fields with the activity value of
inhibitors and the reliability of this model is validated by using
several especially statistical parameters including q2 (cross-
validation coefficient), r2 (non-cross validation coefficient),
SEE (standard estimate difference), and F values. When
q2 > 0.5, r2 > 0.9, and r2pred > 0.5, the QSAR model has an
effective statistical criterion. In this study, all predicted and
experimental pIC50 values were listed in the Table S1. The

COMFA model provides q2 of 0.59, ONC of 8, r2 of 0.966,
SEE of 0.204, and F values of 91.292. As shown in Fig. 1b,
the linear correlation r2pred between the experimental and the
predicted pIC50 values of the test set is 0.719, indicating that
this model is good enough to predict the bioactivities of inhib-
itors. The contributions of the electrostatic and steric fields are
65.4% and 34.6% respectively (Fig. 1c, d), which suggest that
the electrostatic field contributes most to the bioactivity of
inhibitors. In the COMFA model, the StDev*Coeff contour
map is built to help visualize why some inhibitors have high
experimental activities. The Cpd3, with the worst experimen-
tal activity, was chosen to illustrate all contour maps of the
COMFA models. In Fig. 1c, the blue regions, namely electro-
static contour representing 80% level contributions, mean that
importing positive groups near this position favored the activ-
ity of inhibitor, while that is unfavorable when negative
groups are imported near the red regions representing 20%
level contributions. According to Fig. 1c, we can visually
see that there is a large blue contour encompassing the N3
position, C4 position, and C2 position of the pyrimidine ring,
which could explain why Cpd14 (pIC50 = 10.00) with the pos-
itive amino in the C2 position shows higher activity than
Cpd15 (pIC50 = 8.37) with the negative chlorine atom, and
why Cpd2 (pIC50 = 7.00) with the positive amino in the C4
position shows higher activity than Cpd3 (pIC50 = 5.70) with-
out any positive group. Besides, the blue regions located upon
the C2′ position, C3′ position, and C5′ position of the phenyl
ring suggest that the positive groups would also enhance the
bioactivity. Due to the introduction of the negative fluorine
atom into the C3′ position of the phenyl ring, Cpd25
(pIC50 = 8.70) shows lower activity than Cpd14. The red re-
gions map under the C5 position of the pyrimidine ring
(showed in Fig. 1c), which could illustrate the higher activity
of Cpd5 (pIC50 = 9.40) with negative cyano in comparison
with Cpd10 (pIC50 = 7.85) with methyl. On the other hand,
the steric contour of the COMFA model is showed in Fig. 1d,
where the green (namely positive bulk groups) and yellow
(namely negative bulk groups) contours respectively represent
80% and 20% level contributions. A large green region is
located under the area between the extension of the C5 posi-
tion and C4 position of the pyrimidine ring (showed in Fig.
1d), which advises that bulk groups could increase the activity.
For example, Cpd4 and Cpd2 both have a cyano or amino
substituent at these two locations, respectively, which observ-
ably increases the activity (pIC50 = 8.10 and pIC50 = 7.00) in
comparison with Cpd3 (pIC50 = 5.77). And Cpd5 shows
higher activity (pIC50 = 9.40) than Cpd4 or Cpd2, owing to
the replacement of the hydrogen atom on the C4 position and
C5 position with two bulk groups. Compared with the activity
of Cpd15, we find Cpd14 with the C2 position amino
(pIC50 = 10) shows better activity than Cpd15 with the C2
position chlorine atom (pIC50 = 8.37). This is in good agree-
ment with the yellow region mapped near the C2 position
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(showed in Fig. 1d), which suggests that the introduction of
bulk groups may decrease the activity.

From the above analysis of the COMFA model, some key
clues about the structure activity relationship of these PI3Kδ
inhibitors could be found: positive and small substituents rath-
er than negative and large groups should be introduced into
the C2′ position and C3′ position of the phenyl ring; the C2
position and N3 position of the pyrimidine ring are favored
with small and positive groups; the C4 position and C5 posi-
tion of the pyrimidine ring are in favor of large substituents,
and it will be better when the negative bulks are introduced
into the C5 position.

Molecular docking analysis

Herein, in order to generate the appropriate binding orien-
tations and conformations of the active molecules, molec-
ular docking protocol was employed to predict the docking
poses of the studied inhibitors. Rigid receptor docking
(RRD) with Glide was firstly employed. To validate
whether the performance of the Glide was accurate for
studying the interaction between inhibitors and PI3Kδ,
Cpd24 was extracted from the crystal structure of PI3Kδ
(ID: 5I6U) and then redocked into the binding site of
PI3Kδ. As shown in Fig. S2a, the redocked complex was
followed aligned with its initial crystal structure, and the
RMSD (root mean square deviation) values between the
redocked complex and the initial crystal structure are only
0.17 Å for all atoms of PI3Kδ, which means that the Glide
program is capable of identifying the active site of the
initial receptor and predicting the correct conformations
of the inhibitors docked into the PI3Kδ. As a potent
PI3Kδ-selective inhibitor, Cpd24 shows stronger interac-
tion with PI3Kδ. As shown in Fig. 2a, in the adenine pock-
et, known as the hinge pocket, residues 825–827 form the
hinge between the C-lobe and the N-lobe of the catalytic
domain [58]. The aminopyrimidine Cpd24 can form two
hydrogen bonds with the hinge residues Glu826 and
Val828, and form an arene-hydrogen bond with another
hinge residue Ile825 which is also called as the
“Gatekeeper” residue [59]. And the pyrazole ring of
Cpd24 forms two hydrogen bonds with Lys779 and
Asp787 in the affinity pocket of PI3Kδ. These hydrogen
bonds both assist Cpd24 in wrapping into the active pocket
of PI3Kδ, all above of which show the importance of hy-
drophobic interactions for binding and that could explain
why Cpd24 owns high experimental inhibition to PI3Kδ.
The worst binding modes of bio-effective inhibitor Cpd3
and the highest bio-effective inhibitor Cpd14 are showed
in Fig. S3. Around the 2,4-aminopyrimidine ring of Cpd14
(showed in Fig. S3b), the C2-amino and N3 position nitro-
gen all combine the residue Val828 with a hydrogen bond.
Besides, the C4-amino substitution of Cpd14 also forms a

hydrogen bond with the residue Glu826. The N3 position
nitrogen on the pyrimidine ring of Cpd3 (showed in Fig.
S3a) interacts with the residue Val828 with a hydrogen
bond. We could find the backbone of hinge residue
Val828 establishes hydrogen bonds to all three inhibitors
which means the hinge residue Val828 is a foundational
residue for binding between PI3Kδ and inhibitors [58,
59]. However, the Glide docking scores correlated with
the experimental activities do not show good linear rele-
vancy (r2 = 0.27, showed in Fig. 2b). These could be that
most of the inhibitors binding with the rigid receptor are
not precisely predicted by the Glide docking, which sug-
gests considering the flexibility of protein into docking
analysis.

So IFD was chosen to calculate the binding modes of all
inhibitors, which expressed an inspiring result showed in
Fig. 2d. The predicted scores obtained by IFD show great
linear correlation with the experimental activities (r2 =
0.62) and are obviously greater than RRD (r2 = 0.27),
which means the flexibility of protein is crucial for binding
between PI3Kδ and inhibitors. Similarly, the RMSD values
between the IFD complex of Cpd24 and the initial crystal
structure are 0.18 Å for all atoms of PI3Kδ (Fig. S2b),
which still exhibits good alignment in active site with the
initial crystal structure. Following the movement of PI3Kδ,
there are more residues around Cpd24 in active pocket
(showed in Fig. 2c), especially residues Met752 and
Trp760 in the “specificity” pocket where there is a hydro-
phobic region sandwiching the inhibitor between Met752
and Trp760, which could improve the binding affinity and
selectivity of Cpd24 [10, 37, 60], while the Cpd14 obtains
a better IFD score of − 13.639 than − 13.079 of Cpd24,
showing a stronger binding mode with the PI3Kδ
(showed in Fig. 2e). In the “specificity” pocket, residue
Met752 against the chlorine-quinazolinone ring of
Cpd14, the side chain residue Trp760 forms arene-
hyd rogen bonds wi th the pa r a l l e l ed ch lo r i ne -
quinazol inone ring of Cpd14, and the chlor ine-
quinazolinone ring contacts with the residue Thr750 with
a hydrogen bond. These three residues induce Cpd14 more
sandwiched into the “specificity” pocket, which notably
improves the affinitive between Cpd14 and PI3Kδ compar-
ing Cpd24. For Cpd3 with the worst IFD score of − 2.976,
there is only one residue Trp760 located upon the chlorine-
quinazolinone ring in the “specificity” pocket (showed in
Fig. 2f), which could not form normal sandwich between
PI3Kδ and the inhibitor. So the “specificity” pocket may be
key for binding affinities of PI3Kδ/inhibitor. Besides, as
shown in Fig. 2e, the hinge residue Val828 combines with
the C2 position amino Cpd14 forming a hydrogen bond,
and the C4 position amine forms a sturdy hydrogen bond
with the hinge residue Glu826, which is similar with
Cpd24 except the “Gatekeeper” residue Ile825 located
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more closer beside other two hinge residues Glu826 and
Val828 at the adenine pocket in contacting with Cpd14
than Cpd24. This difference of the “Gatekeeper” residue
Ile825 may be another reason for Cpd14 owning stronger
binding affinity with the PI3Kδ. As shown in Fig. 2e, there
is a hydrophobic pocket (also known as hydrophobic re-
gion II) formed by Met900 and Ile910 binding with Cpd14
[37], which is the same for Cpd3 binding PI3Kδ using

hydrogen bonding with the residues Ile910 and Met900
(showed in Fig. 2f). And from Fig. 2e, we could find that
there is an acidic amino acid Asp832 near the C2′ position
and C3′ position of the phenyl ring of Cpd3, which could
explain why the positive and small substituents are wel-
comed into this area, while Cpd3 obtains a lowest docking
score, which could be caused by the vanishment of the
interaction with hinge residue Val828. It is interesting to

Fig. 2 a The 2D representation of
the interactions between PI3Kδ
and Cpd24 by Glide docking. b
The linear relation between the
experimental activities and
docking scores showed by Glide
docking. c The 2D representation
of the interactions between PI3Kδ
and Cpd24 by IFD. d The linear
relation between the experimental
activities and docking scores
showed by IFD. The binding
modes between the PI3Kδ and e
Cpd14 and f Cpd3, using IFD
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note those important residues binding with compounds are
non-polar and hydrophobic, which suggests the importance
of non-polar and hydrophobic interactions for PI3Kδ/
inhibitor binding.

MD simulations and binding free energy calculations

To discover the binding modes between the inhibitors and
PI3Kδ during the dynamic binding process, MD simulations
were performed for two crystal structures of the first listed
inhibitor idelalisib/PI3Kδ complex and PI3Kδ/Cpd24 complex,
and also for the worst experimental activity Cpd3/PI3Kδ pre-
pared by IFD. The RMSDwere calculated and exhibited in Fig.
S4, which showed the three studied systems almost reached an
equilibrium state after 30 ns of theMD simulations. In addition,
the RMSD of heavy atoms of ligands were also calculated, as
shown in Fig. 3a; all ligands reached equilibrium state in the last
10 ns. In order to investigate the dynamical properties of the
ligands, the MD ligands were all aligned onto the correspond-
ing apo-ligands and the results were illustrated in Fig. 3b, c, and
d. Among these ligands, Cpd3 showed the largest flexibility in
the binding site (Fig. 3d) that may be caused by the lower
binding affinity between Cpd3 and PI3Kδ. On the contrary,
Cpd24, with the highest bioactivity, exhibited better structural
stability, which indicated that Cpd24 may form the strongest
interaction with PI3Kδ. These results were in agreement with
the experimental data and the docking results, but more details
are still needed for further analysis.

Based on the 1000th-ps snapshot extracted from the last
10-ns stable MD trajectory of three systems, the binding free

energies were calculated. As shown in Table 1, the predicted
binding free energies (ΔGpred) are − 50.71 kcal/mol for
PI3Kδ/Cpd24, − 37.42 kcal/mol for PI3Kδ/idelalisib, and −
29.34 kcal/mol for PI3Kδ/Cpd3. PI3Kδ than idelalisib and
Cpd3. And the linear relationship (r2) between the predicted
binding free energies and experimental activities is 0.97, sug-
gesting the predictions are in good agreement with the exper-
imental activities. To ascertain the prime contributors to inhib-
itor binding, we also calculated the linear correlation (r2) be-
tween different energy components of each complex and their
predicted binding free energies (ΔGpred). According to
Table 1,ΔGvdw (van der Waals interaction) is the largest con-
tributor to the inhibitor binding (r2 = 0.997). The non-polar
contributions (ΔGvdw + ΔGSA) of PI3Kδ/Cpd24, PI3Kδ/
idelalisib, and PI3Kδ/Cpd3 are − 61.99, − 47.08, and −
39.79 kcal/mol, respectively, which nearly predominates com-
plex binding (r2 = 0.997) in comparison with the polar contri-
butions (ΔGele + ΔGGB) with r2 = 0.397. Therefore, the
ΔGvdw and the non-polar contribution are the foundation of
favorable binding free energy, which is positive with our
QSAR and the docking analysis. As shown in Fig. 2e and f,
Cpd14 with two positive amino substituents and a bulk hydro-
phobic cyano in the pyrimidine ring shows observable im-
provement on the experimental activity than Cpd3, which
could be due to the high increase of van derWaals interactions
and non-polar interactions with some important residues like
Val828, Glu826, Ile910, etc.

In order to understand the binding mode of PI3Kδ/inhibi-
tor, the binding free energy of each complex was decomposed
into the inhibitor-residue interaction spectra (Fig. S5), which

Fig. 3 aRMSDs of heavy atoms of three ligands. The alignment of b apo-idelalisib (colored in yellow) andMD-idelalisib (colored in pink). c apo-Cpd24
(colored in green) and MD-Cpd24 (colored in orange). d apo-Cpd3 (colored in blue) and MD-Cpd3 (colored in purple)
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should be noted that we only concentrated on the important
residues within the ATP-binding pocket of PI3Kδ ranging
from 540 (Leu740) to 717 (Gly917). In general, the residue-
inhibitor interaction spectrum for each inhibitor is similar,
especially the residues Met752, Trp760, Ile777, Val827, and
Val828. From the binding mode between the PI3Kδ and three
inhibitors (Fig. 4a, b, and c), we could find the pyrimidine
rings of all the inhibitors are embraced with the hinge residues
Val827 and Val828 forming van der Waals interactions, where
the adenine pocket is. Besides, the interesting thing is that the
quinazolinone rings of the inhibitors are all sandwiched into
the specificity hydrophobic pocket between the residues
Trp760 or/and Ile777 on one side and P-loop residue

Met752 on the other side (Fig. 4a, b, and c). In order to eval-
uate how the flexibility of the pocket residues affected binding
affinity, the surface presentations of PI3Kδ binding pockets
were illustrated in Fig. 4d, e, and f, and the alignments of each
apo-ligand and corresponding MD ligand could be more con-
venient to observe. Figure 4b shows that the chlorine-
quinazolinone ring of Cpd24 is more parallel with the residues
Trp760, Ile777, and Met752, which may be one factor for
notable improvement in the experimental activities of Cpd24
(pIC50 = 9.52) compared with Cpd3 (pIC50 = 5.77) and
idelalisib (pIC50 = 7.72). These three residues are significant
for improving the binding affinities of the PI3Kδ/inhibitor
complex. And compared with apo-structure, MD-Cpd24 was

Fig. 4 The representation of the interactions between PI3Kδ and a
idelalisib, b Cpd24, and c Cpd3 (hydrogen bonds colored in red). The
surface presentations of movement of importance residues in the binding
pockets of PI3Kδ with d apo-idelalisib (colored in yellow) and MD-

idelalisib (colored in pink), e apo-Cpd24 (colored in green) and MD-
Cpd24 (colored in orange), and f apo-Cpd3 (colored in blue) and MD-
Cpd3 (colored in purple)

Table 1 Binding free energy calculations for different compound binding with PI3Kδ (kcal/mol)

Compound ΔGele ΔGvdw ΔGSA ΔGGB ΔGtotal pIC50 (nM)

Idelalisib − 26.43 ± 3.98 − 43.55 ± 3.96 − 3.53 ± 0.18 36.08 ± 2.86 − 37.42 ± 2.64 7.72

Cpd24 − 41.24 ± 4.25 − 57.31 ± 3.18 − 4.68 ± 0.14 52.52 ± 2.97 − 50.71 ± 2.90 9.52

Cpd3 − 20.86 ± 3.63 − 36.72 ± 2.99 − 3.07 ± 0.27 31.30 ± 3.72 − 29.34 ± 2.75 5.77
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soaked deeper into the pocket (Fig. 4e); the yellow surface
exhibited that the cavity of PI3Kδ binding pocket was corre-
spondingly distended a little. But because of the highest bind-
ing affinity of Cpd24, the dynamic change was not obvious
(Fig. 3a and c). The great impacts on the movements of active
pocket residues with the binding of a compound could be
obviously presented in Cpd3/PI3Kδ complex (Fig. 4f). We
could find the whole binding domain displayed a wide range
of upward movement, while the residue Val828 and the resi-
due Met900 were more close to the ligand than the apo-Cpd3;
it led that the hinge domain and the hydrophobic domain [37]
formed by Met900 are linked together, while the hydrophobic
region II [37] formed by Ile910 andMet900 is only completed
in the Cpd24 system (Fig. 4e), and this regionmay be too large
to keep Cpd3 stabilization, thus resulting in the greater flexi-
bility of Cpd3 (Fig. 3d). This hydrophobic region could be
another crucial factor for the improving affinitive of Cpd24
binding with PI3Kδ. As shown in Fig. 4d, the MD-idelalisib
was tilted a little to the upper right comparing the initial struc-
ture, which accordingly induced the upward movements of
Trp760 and Met900 residues that made the pocket enlarge to
accommodate the combination of idelalisib. Moreover, we
find that Cpd24 contacts with more residues than the other
two compounds (Fig. 4b), such as the “Gatekeeper” residue
Ile825, and hinge Glu826. Those residues are important for
stabilizing the binding of PI3Kδ inhibitors, which help explain
why Cpd24 has the best predicted binding free energy,
docking score, and experimental data.

For better visualization of the difference of these residue-
inhibitor interactions, we calculated the binding free energy
changes (ΔΔGbind) between Cpd24 and the other two com-
pounds (Fig. 5a).ΔΔGbind were defined asΔGbind (Cpd24) −
ΔGbind (Cpd3 or idelalisib), and thus the negative value of
ΔΔGbind represents a favorable contribution for Cpd24, and
on the contrary, the positive value represents a favorable

contribution for Cpd3 or idelalisib. As shown in Fig. 5a, al-
most all studied residues of PI3Kδ form more affinitive inter-
actions with Cpd24 than the other two inhibitors, especially
hinge residue Glu826 and “Gatekeeper” residue Ile825. These
two residues collaborated with other three residues Met752,
Trp760, and Ile777, in the specificity hydrophobic pocket and
help maintain Cpd24 in the active pocket. The difference be-
tween the three compounds could be caused by the introduc-
tion of bulk and negative pyrazole ring into the C5 position,
which could form stronger non-polar interaction with the
“Gatekeeper” residue Ile825 and more hydrophobic interac-
tion with acid hinge residue Glu826 (Fig. 5b, c). In addition to
the hydrophobic region II (Fig. 5a), the binding free energy
changes of the two residues Met900 and Ile910 are largely
different between Cpd24 and the other two compounds, espe-
cially the changes of Ile910 between Cpd24 and Cpd3, which
may be caused by the introduction of the electronegative
pyrazole ring to neutralize the electron density of the pyrimi-
dine ring, resulting in forming more easily non-polar interac-
tions with non-polar residues Met900 and Ile910.
Interestingly, the similar effect will be obtained along with
the introduction of small and positive substituents into the
N3 position of the pyrimidine ring, which could also neutral-
ize the electrons on the pyrimidine ring. But the purine of
idelalisib forms stronger hydrophobic interaction with
Val827 than the pyrimidine of Cpd24, which may be caused
by the stronger non-polar force and the bigger steric structure
of purine than pyrimidine.

Design of new compounds

According to the above structure-activity relationship analysis
of COMFA, the binding mechanisms of molecular docking,
and the binding free energy of MD, we designed 14 new
PI3Kδ inhibitors and these inhibitors were prepared by the

Fig. 5 The changes of the inhibitor-residue spectrum for a Cpd24/idelalisib and Cpd24/Cpd3. The alignment of active pocket of Cpd24 colored with
light blue with b idelalisib in pink and c Cpd3 in yellow
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Table 2 Predicted values and docking scores of new designed compounds

No.

R R’

Predicted IFD scores

K1 9.848 -9.520

K2 11.628 -12.127

K3 8.614 -12.100

K4 9.464 -9.500

K5 7.456 -9.161

K6 6.970 -7.372

K7 8.905 -9.146

K8 7.092 -6.850

K9 9.461 -10.378

K10 9.837 -11.790

K11 9.783 -11.258

K12 9.158 -11.096

K13 8.599 -10.804

K14 8.698 -10.637
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same method as above; the structures are summarized in
Table 2. Firstly, the developed COMFA model was used to
predict the activities of those inhibitors. And then, IFD was
employed to dock those inhibitors into the active pocket of
PI3Kδ and the best docked conformation of each designed
inhibitors was chosen to further analysis. The structures and
predicted activities and docking scores of designed com-
pounds were all showed in Table 2.

According to the general SAR analysis provided by the pub-
lication reported by Leena Patel, the quinazolinone ring was put
forward structural optimizations as the mother nucleus [35]. The
structure of the N1 and N3 pyrimidine nitrogens and the C4-
amino moiety is necessary for selectivity, so the C4-amino moi-
ety in pyrimidine was kept. Besides, with the C5-cyano group
on the pyrimidine hinge binder, Cpd5 showed high clearance in
human hepatocytes [35] that made us chose Cpd2 without any
substituent in the C5-position of the pyrimidine as the basic
structure for the following new compound design.

According to the SAR results, these new compounds all
retained the 4-amino pyrimidine ring and phenyl
quinazolinone groups, which could maintain the bioactivities
with the hydrogen bonds formed with the amino residues of
active pocket. Based on the contour map of COMFA, com-
pounds K1–K2 were both introduced to small and positive
groups, methyl, to N3 pyrimidine ring where one yellow re-
gion and a large blue contour were mapped, and because of

the same reason, K3–K7 were also introduced to methyl or
amino to the C2 pyrimidine ring (Table 2). K6 was introduced
to another methyl groups, the N3 position of the 4-amino
pyrimidine ring, but the predicted activity of K6 (pIC50 =
6.970) was lower than K1 (pIC50 = 9.848) or K5 (pIC50 =
7.456), which contained only one methyl on the 4-amino py-
rimidine ring that may be caused by the steric hindrance effect
(Table 2). Considering one red contour and one big green
region located under the C5 position of the 4-amino pyrimi-
dine ring, K8 (pIC50 = 7.092) introduced one negative and
bulk group (CCl3) into the C5-pyrimidine ring, which im-
proved a little compared with Cpd2 (pIC50 = 7.000), and that
may lead to the loss of hydrogen bond formed between the C2
position of the 4-amino pyrimidine ring and Val828 residue
(Fig. 2e). Thus, K9 (pIC50 = 9.461) was introduced to one
amino to the C2 position based on the structure of K8, which
had a greatly improved predicted activity compared with K8
(pIC50 = 7.092). In the structures of K10–K14, some different
positive and small substituents were introduced to the phenyl
ring, because of one blue contour and one yellow region lo-
cated upon the C2′ position and C3′ position of the phenyl
ring. And then, all novel compounds were docked into the
pocket of PI3Kδ by IFD. The linear relationship between pre-
dicted activities and docking scores of all designed com-
pounds was showed in Fig. 6 a. We could find that K2
(pIC50 = 11.628) and K10 (pIC50 = 9.837) exhibited the

Fig. 6 a The linear relation
between the predicted activities
and docking scores of designed
compounds, with the structure of
K2. The 2D representation of the
interactions between PI3Kδ and b
K2/ c K10 by IFD
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higher predicted bioactivities and better docking scores
among all designed compounds (the synthetic route schemes
shown in Fig. S6 and S7). K2 was introduced one bulk and
negative acetylene to the C5-pyrimidine ring and one positive
methyl to the N3 position of the 4-amino pyrimidine ring,
which improved the binding affinities between K2 and
PI3Kδ, especially in the specific hydrophobic pocket formed
by the residues Trp760 and Met752 and the hydrophobic re-
gion II formed by Met900 and Ile910 (Fig. 6b). K10 was
introduced one amino group to the C3′ position of the phenyl
ring (Fig. 6c), which formed hydrogen bonds with the hydro-
phobic residue Ile910 and two hinge residues Glu826 and
Val828. In conclusion, based on the analysis discussed above,
some new inhibitors, especially K2 and K10, showed higher
predicted binding affinity to PI3Kδ. It indicated that our find-
ings may provide some guidance to rational design novel
PI3Kδ inhibitors.

Conclusions

In this work, a series of computer-aided drug design strategies,
including 3D-QSAR studies, molecular docking, MD simula-
tions, and binding free energy calculations were employed to
study the binding mode between inhibitors and PI3Kδ. The
developed QSAR model with high linear correlation r2pred
provides reliable predictive ability (q2 = 0.59, ONC = 8, r2 =
0.966, the test sets of r2pred = 0.719), which could be effective-
ly used to predict the bioactivities of selective PI3Kδ inhibi-
tors. Meanwhile, the steric and electrostatic contours obtained
by COMFA model delicately revealed the structure-activity
relationship between those idelalisib derivatives and PI3Kδ,
providing valuable information for the rational design of
existing selective PI3Kδ inhibitors. Besides, the RRD and
IFD suggest that the introduction of the flexibility of PI3Kδ
may significantly improve the accuracy of predicting the bind-
ing mode between inhibitors and PI3Kδ, and then IFD rough-
ly figured out the ingredient residues of the “specificity” pock-
et, whichmay be useful for virtual screening of specific PI3Kδ
inhibitors. Besides,MD simulations were performed to deeply
understand the dynamic binding mode between PI3Kδ/ligand
complexes. The binding energy calculations show that the van
der Waals interactions and the non-polar contributions are
crucial for maintaining the affinities of complex binding.
The introduction of some bulk and negative substituents into
the C5 position of pyrimidine could increase the van der
Waals interactions and the non-polar interactions with the ad-
enine pocket formed by hinge residues Glu826, Val827, and
Val828 and the “Gatekeeper” residue Ile825, and that restrain
the ligand from running away from the active pocket with the
cooperation between the specific hydrophobic pocket includ-
ing Met752, Trp760, and Ile777. The MM/GBSA free energy
decomposition was simultaneously employed and some key

residues for improving the affinities to PI3Kδ were found,
including Ile910, Met900, and the “Gatekeeper” residue
Ile825, especially the residues Trp760 and Met752 forming
the specific hydrophobic pocket. In the end, 14 novel PI3Kδ
inhibitors were designed based on our analyses of COMFA,
docking, and MD simulation, and two prospective com-
pounds, K2 and K10, were highlighted. In conclusion, all
the above results could give some meaningful information
for further studies in the design of novel effective selective
PI3Kδ inhibitors.
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