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Abstract
In this work, a review of six functional forms used to represent potential energy curves (PECs) is presented. The starting point
is the Rydberg potential, followed by functions by Hulburt–Hirschfelder, Murrell–Sorbie, Thakkar, Hua and finalizing with
the potential for diatomic systems by Aguado and Paniagua. The mathematical behavior of these functions for the short- and
long-range regions is discussed. A comparison highlighting the positive and negative aspects of each representation is also
presented. As study cases, three diatomic systems O2, N2 and SO in their respective ground electronic states were selected.
To obtain spectroscopic parameters, ab initio energies were first calculated at multi-reference configuration interaction
(MRCI) with the Davidson modification (MRCI+Q) level of theory, using aug-cc-pVXZ (X = T,Q,5,6) Dunning basis sets.
Such energies were then fitted to respective functional forms. The so-obtained spectroscopic constants are compared also
with available literature data.
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Introduction

The relationship between the potential energy and the inter-
nuclear distance of two atoms is of the greatest importance
in physical chemistry. The study of processes like molec-
ular scattering, photodissociation, chemical kinetics, and
electric discharges relies on the knowledge of these func-
tions [1–6]. Due to practical limitations in the solution of
the Schrödinger equation for a molecular system, physi-
cally supported approximations are required. In 1927, Born
and Oppenheimer, also with the contribution of Huang,
presented a pathway to circumvent this problem [7].
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The Born–Oppenheimer approximation (BOA) consists
of the separation of the nuclear and electron motions: once
nuclei have much larger masses than the electron (more than
1838 times), they can be considered as stationary compared
to the moving electrons. The mathematical formalism
for such an approach can be followed elsewhere [7]
and is fundamental in understanding the key concept of
potential energy surface (PES). Within BOA, nuclei in
a molecular system move on the PES resulting from
the solution of the electronic problem. Since BOA,
several researchers have been attempting to obtain analytic
representations of energy as a function of the interatomic
distances. Such a representation is usually required to
be mathematically simple while accurately reproducing
theoretical and experimental data.

The potential energy curve provides broad insight into
the structure of a molecular system. The minimum in this
curve defines the bond length of the diatomic molecule. Its
second derivative provides the force constants, from which
vibrational and rotational energy levels of the molecule can
be calculated. Higher-order derivatives are required for the
calculation of the anharmonicity constants.

Among the analytical representations available in the
literature (over 50 to our knowledge), six functions
were chosen: Rydberg, Hulburt–Hirschfelder, Murrell–
Sorbie, Thakkar, Hua, and Aguado-Camacho-Paniagua.
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This selection was motivated considering that the first
three were proposed a long time ago, and the curves
were obtained theoretically or semi-empirically, in the
case in which the functions were based on a compromise
between results of empirical measures of experimental
character and few reliable theoretical calculations available
until the mid-1980s, except for very simple diatomic
systems [8]. In counterpart, the latter three potentials
Thakkar, Hua, and Aguado-Paniagua, had been presented
using ab initio calculations together with semi-empirical
calculation techniques. Thus, the aim of this work is to apply
ab initio calculation techniques to the earliest potentials and
compare them with more recent ones using O2, N2, and SO
as case study diatomic systems.

This paper is organized as follows. Section “Potential
curves” contains a wide description of the interest PECs.
A discussion about technical details for theoretical calcula-
tions is presented in “Electronic structure calculations”. The
results are gathered in “Results and discussion” and the
conclusions are given in the last section.

Potential energy curves

The Rydberg function

The potential functions used before Rydberg proposal
described only the lowest vibrational levels and were not
useful in the extrapolation to dissociation limit [9]. It was
then necessary to seek more general analytical ways to
describe potential energy functions for diatomic systems,
best fitting also the dissociation region. Moreover, an
accurate representation of the series of nuclear vibrations
was not known, and nuclear vibrations are experimentally
measured in terms of �G, being �G = G(ν + 1) − G(ν),
where G(ν) is the nuclear vibrational energy corresponding
to the quantum number ν. Then �G is assumed to be a
linear function of the quantum number ν, approximation
valid only for the simple diatomic system H2. For somewhat
more complex systems like N2, O2 and NO, a function of
the type (�G)2 was used, more properly describing the
nuclear vibrations. However, such a function still depended
only on the quantum number ν. It was then, in 1931, when
Rydberg [9] suggested an empirical relationship between
(�G)2 and Bν :

(�G)2
ν = f · B3

ν+1 (1)

where

Bν = �

8π2

(
1

μR2

)
ν

, (2)

is the rotational constants, f is the force constant, and μ is
the reduced mass.

The relation in Eq. 1 depends entirely on the behavior
of the potential curve, i.e., the forces acting on the atomic
nuclei. Rydberg showed the potential V(R) for H2, CdH and
O2 required further fine-tuning to meet the conditions of
Oldenberg and Hulthén [9]:

1.
∮

pdR = ∮ [2μ(V(R)-Eν)] 1
2 dR = �

(
ν + 1

2

)
2.

(
1

R2

)
ν

= ων ·√μ√
2

∮ dR
R2

√
V(R)-Eν

.

Seeking a potential simultaneously fulfilling both condi-
tions, Rydberg [9] proposed the following potential func-
tion:

VRyd = −De(a(R-Re) + 1)e−a(R-Re) (3)

where a = (f/De)
1
2 , being f give by f =

(
d2VR
dR2

)
Re

. Here,

De should not be confused with the dissociation energy D,

since De − D = 1

2
�ωe. In this equation, f represents the

force constant. VR becomes large, but not infinite when R
= 0, similarly than Morse potential [10]. However, Rydberg
showed that its potential provided best fitting compared to
Morse function for the three diatomic systems mentioned
before H2, CdH and O2.

From the third- and fourth-order derivatives of VR(Re)

it is possible to obtain the values for the spectroscopic
parameters α and ωexe as shown by Varshni [11]:

α =
⎡
⎣2

√
2

3

(
f Re

2

2De

) 1
2

− 1

⎤
⎦ 6Be

ωe
(4)

and

ωexe = 22

3

(
fRe

2

2De

)
· 2.1078 × 10−16

Re
2μ

(5)

where Be = �/(8π2μRec).

The Hulburt–Hirschfelder function

The Morse [10] function was considered limited due to
the reduced number of parameters, initially seen as an
advantage. To tackle this limitation, in 1940, Hulburt and
Hirschfelder [12] suggested the addition of two parameters,
i.e., functions involving five spectroscopic constants. These
two parameters to be added in a so-called correction term
were easily determined, and the five-parameter functions
proved satisfactory for a large majority of diatomic
molecules. However, the problem to obtain the potential
V(R) already reported in the Morse function for large
internuclear distances was not solved with this correction.
Since the high levels of vibrational energy are unknown
for many molecules, it is virtually impossible to find a
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unique potential that could be universally used for diatomic
systems.

From the fact that the spectroscopic constants ωe, ωexe,
Be = �/(8π2μRec) and α are known for most diatomic
molecules, the function proposed by them, used three
parameters to recover the usual Morse function [10] plus
two parameters, b and c, correcting Morse potential, and
at the same time were obtained by means of the known
constants. The function of Hulburt and Hirschfelder, here
called the HH potential, has the form:

VHH = De[(1 − e−x)2 + (1 + bx)cx3e−2x] (6)

where x= ωe

2(BeDe)
1
2

[
R-Re
Re

]
, and the constants b and c are:

c = 1 + a1(De/a0)
1
2 , (7)

b = 2 +
[

7
12 − Dea2

a0

]
c

(8)

being a0, a1 and a2 the Dunham coefficients given by
expansion [13]

a0 = ω2
e/4Be (9)

a1 = −1 − αωe/6Be
2 (10)

a2 = 5

4
a1

2 − 2

3

ωexe

Be
. (11)

To represent the potential HH (6) as a function of the nuclear
distance R, x is rewritten as x =β(R − Re), where

β = ωe

2Re(BeDe)
1
2

(12)

thus, VHH becomes:

VHH = De[(1 − e−β(R−Re))2

+(1 + bβ(R − Re))cβ
3(R − Re)

3e−2β(R−Re)] (13)

The potential of HH was introduced aiming at better
fit spectroscopic constants. Nevertheless, it is difficult to
find a suitable polynomial to express both the lowest and
the highest vibrational energy levels. For this goal, the
polynomial function was then multiplied by an exponential
term:

Eν = A[1 − exp(−1/2(ν + 1/2))]

×
[

1 + 0, 1

(
ν + 1

2

)
− 0.005

(
ν + 1

2

)2
]

. (14)

The energy levels, for small values of (ν + 1/2), are
calculated by the series [12]:

Eν/kcal mol−1 = 0, 5

(
ν + 1

2

)
− 0.075

(
ν + 1

2

)2

+ · · ·,
(15)

while for corresponding high values the following series is
used:

Eν/kcal mol−1 = 1 + 0, 1

(
ν + 1

2

)
− 0.005

(
ν + 1

2

)2

+ · · · . (16)

The method to obtain the corresponding energy levels
would replace (13) in the Schrödinger equation and perform
numerical integrations.

In 1961, Hulburt and Hirschfelder [14] perceived an error
in the first sign of the expression for the parameter b, the
corrected signal is negative not positive, i.e.,

b = 2 −
[

7
12 − Dea2

a0

]
c

. (17)

This led researchers as Tawde [15] and Herzberg [16] to
question the fit of their potential function, being considered
poorly fitted because of this error. In a paper published in
1954, Tawde and Gopalakrishnan [15] even stated that the
fitting of the HH function was good only for distances larger
than the equilibrium distance, i.e., for R¿Re in the case
of the C2 molecule. However, after analyzing the potential
with the correct sign in parameter b, Tawde and Katti, who
were the first to notice and communicate the authors about
the error in b, concluded that the function by Hulburt and
Hirschfelder was indeed a good representation [17].

TheMurrell and Sorbie function

In 1974, the Morse [10] potential was still considered one of
the most popular to describe the PES of diatomic systems.
The potential of Hulburt and Hirschfelder [12] was also well
known for improving Morse potential, as it corrected the
long region of the function. Furthermore, the Rydberg [9]
potential, largely used by spectroscopists, with its simple
functional form, differing little from the potential of Morse,
was also a reference at the time to describe such systems.

Taking these three potentials into consideration, seeking
for a functional shape best representing various diatomic
systems, Murrell and Sorbie [18] proposed a modification
of the Rydberg [9] function. They then compared this
new potential with results obtained using Morse [10] and
Hulburt-Hirschfelder [12] functions, taking as reference the
fitting obtained by the RKR method [9, 19, 20].

The original potential function by Rydberg [9] is:

VR = −De[1+a(R-Re)] exp(−a(R-Re)) (18)
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where De is the well depth

a = (f/De)
1/2 (19)

being the n order derivatives given by:

f(n) = f(−1)n(n-1)a(n−2) (20)

where f is the force constant.
MS began to investigate the properties of the modified

potentials of Rydberg [9],

V =
(

−De

[∑
n an(R-Re)

n
]

∑
m bm(R-Re)m

)
e−γ (R-Re). (21)

For the calculation of an and bn in Eq. 21, MS assumed
a0 = b0 = 1, while spectroscopic expansion was used for
other parameters:

V = −De + 1

2

∑
n=2

Fn(R-Re)
n = −De

∑
n=0

Gn(R-Re)
n;

Fn = 2f(n)/n!,
Gn = −Fn/2De and G0 = 1, G1 = 0 (22)

or more conveniently

an =
n∑

s=0

Gn-s

s∑
t=0

btγ
s-t/(s-t)!. (23)

Since F1 = [2 (dV/dR)Re]/n! = 0, and the spectroscopic
parameters F2, F3 and F4 are known, MS [18] imposed
three conditions warrantying the solutions of Eq. 23 are
physically acceptable. These are:

1. γ shall be positive;
2. There shall be no zeros of the b-polynomial in the

region physically significant R (i.e., all positive and
small negative R);

3. There shall be no maxima in the attractive branch of the
potential.

Murrell and Sorbie analyzed all cases of poten-
tial (21) having the following sets of non-zero coef-
ficients: (a1, a2, a3); (a1, a2, b1); (a1, a3, a4); (a1, a3, a1);
(a1, a1, a2); and (b1, b2, b3). The only combination leading
to a satisfactory potential to describe the long-range region
was the first one. The potential (21) then takes the form:

VMS =De(1+a1(R-Re)+a2(R-Re)
2+a3(R-Re)

3)e−γ (R-Re)

(24)

where the constants a1, a2 and a3 and γ are obtained
through the coupled relations:

a1 = γ

a2 = G2 + γ 2/2

a3 = G3 + γ G2 + γ 3/6

0 = G4 + γ G3 + γ 2G2/2 + γ 4/24 (25)

The last equation in Eq. 25 has at least one positive root, as
condition 1 demands. Its solution is numerically obtained.

The Thakkar function

In 1975, Thakkar [21] proposed a new and generalized
power series expansion for diatomic potentials. There, a
nonlinear parameter p, leading to both Dunham [13] and
SPF [22] expansions as special cases were used. The
function assumed the form:

VT(R) = e0(p)λ2

[
1 +

∞∑
n=1

en(p)λn

]
(26)

where

λ(R,p) = s(p)[1 − (Re − R)p] (27)

being p a nonzero number, Re the equilibrium internuclear
separation and s(p) an abbreviated notation for the sgn
function defined for

s(p) = sgn(p) =
{ +1, p > 0

−1, p < 0
. (28)

For p = −1, the Eq. 26 becomes

V(R) = a0[R-Re/Re]2

{
1 +

∞∑
n=1

an[R-Re/Re]n

}
(29)

where an = en(−1), and the Eq. 29 is exactly the Dunham
expansion [13].

For p = +1, the Eq. 26 becomes

V(R) = b0[R-Re/R]2

{
1 +

∞∑
n=1

bn[R-Re/R]n

}
(30)

where bn = en(1), and the Eq. 30 is exactly the SPF
expansion [22].

Still, for p > 0 and en(p) = 0(p ≥ 1) the Eq. 26
becomes:

V(R) = e0(p) + e0(p)[(Re/R)2p − 2(Re/R)p] (31)

which is simply the Leonard–Jones (2p, p) potential [23].
The radius of convergence of the Eq. 26 is determined

by the singularity of VT(R) closest to R = Re in the
complex R plane. For p < 0, the singularity occurs at
(R|p| − R

|p|
e )/R

|p|
e = −1, which implies that for p < 0

the potential (26) cannot converge for R > 21/|p|Re [21]. In
the case of Dunham potential (p = −1), as pointed out in
SPF [22], the expansion can not converge to R > Re. For
p > 0, the pole at R = 0 occurs at (Rp − Re

p)/Rp = −∞,
and therefore the radius of convergence of Eq. 26 is limited
by infinity.

Thakkar [21] conjectured that the Eq. 26 converges to R
in the interval (0, 21/|p|Re) for p < 0 and converges to R
in the interval (0, ∞) for p > 0, converging faster only in
the interval (Re/21/|p|, ∞) for p > 0. For the calculation
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of the coefficients en(p) in the expansion (26), Thakkar
adapted the Dunham [13] procedure, and obtained a relation
between en(p) and an [21].

Regarding the choice of p, p > 0 values produce
better results since the potential converges rapidly in the
long-range region, which is of great interest for molecular
dynamics studies. Thakkar [21], proposes

p = −a1 − 1 (32)

and estimates some values for p through the extensive
Calder and Reudenberg analysis of the Dunham coefficients
for 160 diatomic molecules [21].

Thakkar analyzed the behavior of the potential VT(R),
with p given by the relation (32) using the truncated
expansion:

VT
N(R) = e0(p)λ2

[
1 +

N∑
n=1

en(p)λn

]
. (33)

The dissociation energy D is given by:

DN = e0(p)

[
1 +

N∑
n=1

en(p)

]
, p > 0 (34)

being p calculated by Eq. 32.

The Hua function

In 1990, Hua [24] conducted a comparative study with the
potentials of Morse [10], Varshni [11] and Levine [25].
These three potentials had a common characteristic: all
showed large deviations compared to RKR curves [9, 19,
20] when the domain of the potential is extended to the limit
of dissociation. Moreover, for the potentials of Varshni and
Levine the Schrödinger equation can be exactly solved, with
rather complicate calculations [24].

With this in mind, in order to meet both requirements,
Hua proposes a potential of four parameters, which is
accurate in the dissociation limit and exactly solve the
Schrödinger equation in a simpler manner. Such a function
is given by:

VH(R) = De

[
1 − e−b(R−Re)

1 − ce−b(R−Re)

]2

, |c| < 1 (35)

with

b = α(1 − c) (36)

being α the same of the Morse function [10]. The parameter
c is fitted as to minimize mean deviations.

The function of Hua VH has the advantage that when
inserted into the Schrödinger equation, it can be solved
exactly for angular momentum J = 0 and can be treated
precisely for J �= 0, allowing to calculate the corresponding
ro-vibrational energy levels for a given system.

The four parameters potential of Hua gained prominence
because it presented a good fit for the systems tested [24]
in the total potential, both in the spectroscopic region and
in the dissociation limit. Such results were obtained even
for large domains, dispensing a piece-wise fitting of the
potential without requiring spline functions associated or
other functions, as is the case of the Morse potential (see for
example [27]).

The Aguado and Paniagua function

One of the simplest and generally successful methods of
obtaining potential energy curves for diatomic systems
directly from spectroscopic data is through the RKR
methods [9, 19, 20], as already mentioned in previous
sections. Such methodology is also used in comparisons to
verify the quality of the fitted potential. However, the results
obtained by the RKR method are presented in the form of
tables containing, in general, the numbers ν, G(ν), Bν , R+
and R−, not being very convenient for a rapid interpretation
of the potential behavior.

Aiming at producing accurate and well-behaved potential
energy curves in 1992, Aguado, Camacho and Paniagua [1]
(ACP) presented a simple functional form, similar to the
perturbed-Morse-oscillator (PMO) potential, with better
results mainly for the long-range region.

For a tabulated function yi = f(xi) (i = 1, 2, · · · , n),
where yi are the observed G(ν) + Y00 and xi are the
turning points rotation potential curve, ACP suggested a
approximated potential function VACP written as a linear
combination of functions φ that will be conveniently
chosen,

VACP =
m∑

k=0

ckφk(x) (37)

where φk(x) belongs to the basis of functions {φk},
k = 0, 1, · · · , m.

To calculate error vector Q, with components qi given
by qi = V(xi) − yi, related RKR data, the method the
maximum norm that uses the Chebyshev technique was
chosen. Such a methodology was selected because of the
interest in getting an error vector Q with a limited value
point by point [1]. Within this method, the problem is to find
the c0, c1, · · · cm parameters of the Eq. 37.

The chosen basis function was one that contains
functions similar to PMO

φk(x) = [1 − eβx]k, k = 0, 1, · · · , m. (38)

where β is a nonlinear parameter independently set to obtain
the best approximation and x = R − Re, with R and Re as
already defined in this work.

The procedure proposed by ACP [1] to obtain the
energies and consequently of the potential energy curves for
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the systems of interest, starts with the use of VACP (37) and
the functions φk (38) in the radial equation of Schrödinger
for J = 0:(

− �

4πμc

d2

dR2
+ V(R)

)
ψν = Eνψν (39)

Its resolution is carried out through the diagonalization of
the Hamiltonian matrix, in order to obtain the eigenvalues
Eν . For this, Hermite functions are used as orthogonal basis
set:

χn(x) = e−αx2/2Hn(α
1/2x), n = 0, 1, 2 · · · (40)

where Hn are the Hermite polynomials and α ≈ 2πνeμ/�.
The Hamiltonian matrix is obtained through of the

integrals Vnm =< χn|e−βjx|χm >, which can be calculated
using the recurrence relation,

Vnm = − βj

α1/2
Vn−1m + 2mVn−1m−1 (41)

where the first column (m = 0), provides

V00 = (
π
α

)1/2 e
β2j2

4α .
In 1992, Aguado and Paniagua [26] proposed a

functional form to obtain analytical potentials of triatomic
molecules ABC, in which the full potential was written as
an many-body-expansion (MBE) [27]:

VABC =
∑

A

VA
(1) + VAB

(2)(RAB) + VABC
(3)(RAB, RAC, RBC)

(42)

where RAB, RAC and RBC are the internuclear distances and
the sums are over all the terms of a given type and where
VA

(1) is the energy of atom A in its appropriate electronic
state; VAB

(2) is the two-body energy that corresponds
to the diatomic potential energy curve which vanishes
asymptotically when RAB → ∞ and goes to infinity when
RAB → 0; VABC

(3) is the three-body energy.
As the two-body terms represent the potential energy

curve for a diatomic molecule, the functional form selected
for the fit must depends on the general behavior of such
potential curve. The diatomic terms VAB

(2) of the potential
(42) are expressed as a sum of two terms corresponding
to the short- and long-range potentials, and will be called
VAP [26]:

VAP
(2) = Vshort

(2) + Vlong
(2) (43)

where

Vshort
(2) = c0e−αABRAB

RAB
(44)

and

Vlong
(2) =

N∑
i=1

ciρ
i
AB (45)

where (44), with the restriction c0 > 0, ensures that the
diatomic potential goes to infinity when RAB → 0. Aguado
and Paniagua [28] showed that a modified form of the
functions, introduced by Rydberg [9], in the polynomial
variables ρ, given by Eq. 43

ρAB = RABe−βAB
(2)RAB, βAB

(2) > 0 (46)

The linear parameters ci , i = 0, 1, ..., N and the nonlinear
parameters αAB, both in the Eq. 43 and βAB (46) are
determined by fitting the ab initio energies for the diatomic
fragments computed at the same level of theory than the
used in the triatomic system [26].

Although it is a proposition for a triatomic potential, the
two-body term VAP in Eq. 43 was known as a new diatomic
potential of Aguado and Paniagua, being very used today
due to its high precision for several systems, in excited states
including (see for example Ref. [29]).

Electronic structure calculations

In order to obtain a sufficiently accurate potential energy
curve, the electronic structure calculations for the homo-and
heteronuclear systems were carried out using as reference
complete active space self-consistent (CASSCF) [30] wave
function. Dynamical correlation effects were included by
means internally contracted multi-reference configuration
interaction (MRCI) [31]. Such a strategy has been
previously applied in several diatomic molecules [32–34].
Furthermore, the multi-reference Davidson correction (+Q)
was included to compensate for the effects of higher-
order correlation. The aug-cc-pVXZ (X = T,Q,5,6) basis
sets of Dunning were employed. For each basis set, we
have performed CASSCF followed by MRCI approach. It
must be also highlighted that for the sulfur atom, we have
used the Dunning correlation consistent basis set (aug-cc-
pV(X+d)Z), which contain an additional d function for
the purpose of partially ameliorating a known SCF-level
deficiency in the AVXZ sets for second-row elements of
periodic table [35].

All calculations were performed with the Molpro 2012
package of ab initio programs [36]. We must point out that
Molpro only uses Abelian point group symmetry. Following
this, we consider irreducible representations of the D∞h

point group for homonuclear molecules (N2 and O2) but due
to limitations of the procedure, we adopted D2h subgroup of
D∞h point group in the calculations; for SO, C2v subgroup
of C∞v is used. In general, the mapping calculations of the
PEC were made at intervals of 0.025 a0 over the internuclear
distance range from 1.0 to 15.0 a0, where a0 is the Bohr
radius.
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Results and discussion

Performance analysis

We start this discussion showing the results obtained from
the root-mean-square deviation (RMSD) for the different
potentials, basis set and diatomic systems. From the
statistical point of view, RMSD values are generally used
to evaluate the error of the PEC in relation to the curve
obtained via the points ab initio data. The root-mean-square
deviation is calculated by:

�ERMSD =
[

1

N

N∑
i=1

(Vab initio − V)2

]1/2

(47)

where Vab initio represents the ab initio points and V is
the potential energy given by four analytic forms selected
among those previously presented.

To obtain the two-body energies, we have employed the
functions of Rydberg (RYD), Murrell and Sorbie (MS),
Hulburt–Hirschfelder (HH), and Aguado and Paniagua
(AP). These potentials are very well documented in the
literature being, accordingly, good models for this study
[37–39]. We remember, of course, that the smaller RMSD
values represents the better performance of the fit. To avoid
long tables of coefficients, only the results calculated using
these functions set are shown. The remaining data are
gathered in the Supplementary Materials.

To investigate in details the quality of the fits, graphics of
the calculated RMSD values for N2, O2, and SO molecules
can be seen in Fig. 1. As expected, the best results are found
when the AP function is used in combination with a higher
basis set, so that for the three systems, differences in the
order of 0.10, 0.04, and 0.02 kcal/mol were obtained from
other data, respectively.

The ability of the other analyzed potentials, Ryd, MS,
and HH, to reproduce ab initio points [calculated mainly in
the intermediate region] can be clearly seen in the Fig. 2.
The Ryd function is represented by a red solid line, while
MS is in blue. In black are shown the results of the HH
functions and those for AP are in magenta.

Comparing the RMSD test, in almost all cases the fits are
above the threshold of chemical accuracy (1 kcal/mol) [40].
In particular, the AP function shows good performance with
RMSD values below 0.25 kcal/mol. For sulfur monoxide
Fig. 1c, note the very poor quality and the greater deviation
of the fit in the AV(T+d)Z when the MS function is
applied (RMSD value close to 7 kcal/mol). In such a figure,
the values of �ERMSD for Rydberg function (2.75, 3.04,
3.21, 3.07 kcal/mol) are not significantly modified when
changing the basis set. The same behavior is observed for
the MS potential (1.41, 1.42, 1.37 kcal/mol) in the basis sets
AV(X+d)Z (X = Q,5,6).

In the case of nitrogen molecule (Fig. 1a), when the Ryd
potential is applied, unexpectedly the values of �ERMSD

increases monotonically as the basis sets increases from
AVTZ (2.16 kcal/mol) to AV6Z (2.77 kcal/mol). For the
Hulburt–Hirschfelder function, the average value of the
RMSD is around 2.0 kcal/mol. For the MS function,
although 0.55 kcal/mol be the smaller value of RMSD found
at AVQZ, the other basis sets present bigger values, near to
1.80 kcal/mol. The Aguado and Paniagua potential led to
deviations of the magnitude of 0.10 kcal/mol these values
being close to those found by Xiao-Niu et al. (0.09 kcal/mol)
[41].

Finally, the plot of the oxygen molecule represented in
Fig. 1b demonstrated a Gaussian-like behavior for the Ryd,
MS, and HH functions with a peak at 2.80, 1.25, and 2.50
kcal/mol, respectively. Again, the lower RMSD values are
found for the potential AP with a value of approximately
0.04 kcal/mol. As can be noted, the quality of the computed
potentials critically depends upon the size of the basis set
employed.

To conclude this section, the potential energy curves
for ground electronic states of N2, O2, and SO, are
plotted in Figs. 3, 4 and 5. For convenience, in both
cases, we used only the analytical representation proposed
by Aguado and Paniagua (see Eq. 43) together with
basis set aug-cc-pVXZ where X is the cardinal number
of the basis set (X = T, Q, 5, 6). For comparison,
the theoretical data are available in Refs. [42] for N2,
[44] for O2, and [45, 46] for SO are also included in
this work. We justify the choice of these works mainly
because their results reproduce well the experimental
energies. Therefore, they are very close to spectroscopic
accuracy.

Figure 3 exhibits the curves for the ground electronic
state of the N2 molecule obtained in this work, along with
the PEC extracted from the double many-body expansion
(DMBE) potential energy surface for ground state HN2 [42].
We highlight that the analytical form used by Poveda and
Varandas to fit the ab initio points for nitrogen molecule
is based on the EHFACE2U model [43]. It can be seen
from this plot that the potential curves computed for
AV5Z (dashed black line) and AV6Z (dashed magenta line)
indicate excellent agreement for all points except in the
region between 3.5 ≤ R/a0 ≤ 5.0, where the energies of
the EHFACE model (circles) are lower than our potential
curves. In addition, the major difference (around of 0.013
Eh or 0.35 eV) is observed in the zoom of this same figure if
we compare the energies calculated at AVTZ (solid red line)
basis set and the EHFACE model in the range of 1.8 a0 to
2.4 a0.

Figure 4 shows our potential energy curves now for
the oxygen molecule, together with the ab initio energies
reported by Bytautas et al. [44]. The electronic energies
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a b c

Fig. 1 Root-mean-squared deviation of diatomic molecules: a N2(X1�+
g ), b O2(X3�−

g ), c SO(X3�−) calculated in different basis set and
potentials

Fig. 2 Potential energy curves
for N2, O2, and SO calculated at
the MRCI+Q/AV6Z level of
theory

Fig. 3 Potential energy curves
for the ground electronic state of
the N2 molecule calculated with
different basis sets. The circles
represent energies calculated by
EHFACE model from Ref. [42].
In addition, also plotted in the
inset is a zoom of the minimum
region of the curve
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Fig. 4 Potential energy curves
for the ground electronic state of
the O2 molecule calculated with
different basis sets. The circles
represent ab initio points
calculated in Ref. [44]. In
addition, also plotted in the inset
is a zoom of the minimum
region of the curve

for X3�−
g were calculated with the CBS limit, in addition,

corrections such as the scalar relativity, spin-orbit coupling,
and the core-electron correlation are included. The energies,
namely, CBS+SR+SO+CV are listed in the last column of
Table I from Ref. [44]. As before, our results at AVXZ
(X = 5,6) basis set are in agreement with those previously
reported in Ref. [44] within the range of internuclear
distances considered here. When examining the inset of this
same figure, we observe that there are slight differences
around the minimum between AVTZ basis set and the other
ones.

Finally, in Fig. 5 are represented potential energy curves
for the sulfur monoxide molecule. The circles represent ab
initio energies reported by Borin and Ornellas at internally

contracted multi-reference configuration interaction (icM-
RCI) level of theory with the cc-pVQZ basis set [45]. For
completeness, the solid green line illustrates the PEC for SO
molecule extracted from the DMBE potential energy surface
for ground state SO2 [46, 47]. Again, the diatomic interac-
tions are represented according to the EHFACE2U model.
It can be noted that the electronic energies in function of
internuclear distances listed in column 2 of Table 1 (Ref.
[45]) are between our results obtained from the AV(T+d)Z
(solid red line) and AV(Q+d)Z (dashed blue line) basis set
(see zoom in the minimum region). There are small differ-
ences in all energies, in particular, in the energies calculated
at AV(T+d)Z basis set are larger than EHFACE2U model
(0.009 Eh or 0.24 eV).

Fig. 5 Potential energy curves
for the ground electronic state of
the SO calculated with different
basis sets. The circles represent
ab initio points calculated in
Ref. [45]. The solid green line
represents the analytical form
(EHFACE model) obtained in
Ref. [46]. In addition, also
plotted in the inset is a zoom of
the minimum region of the curve
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Table 1 Basis set dependence of the spectroscopic constants for the N2(X1�+
g )

Potential Basis set Re �Re/Re
a ωe �ωe/ωe

b De �De/De
c ωexe �ωexe/ωexe

(a0) (%) (cm−1) (%) (eV) (%) (cm−1) (%)

Ryd. AVTZ 2.07431 0.0 2394 1.52 9.41768 23.48 15.80 10.33

AVQZ 2.07431 0.0 2391 1.39 9.63082 13.20 15.60 8.93

AV5Z 2.07310 0.05 2395 1.56 9.73632 8.12 15.87 10.82

AV6Z 2.07531 0.04 2396 1.61 9.76785 6.60 15.93 11.24

MS AVTZ 2.06669 0.36 2449 3.85 9.54045 17.56 17.68 23.46

AVQZ 2.08315 0.42 2399 1.73 9.76039 6.96 15.95 11.38

AV5Z 2.05913 0.73 2474 4.91 9.88354 1.02 17.81 24.37

AV6Z 2.05857 0.75 2476 5.00 9.91620 0.54 17.85 24.65

HH AVTZ 2.06865 0.27 2418 2.54 9.46758 21.07 16.67 16.41

AVQZ 2.06580 0.40 2434 3.22 9.61217 14.10 17.04 18.99

AV5Z 2.06075 0.65 2443 3.60 9.81957 4.10 17.52 22.34

AV6Z 2.06031 0.67 2445 3.68 9.86220 2.05 17.63 23.11

AP AVTZ 2.09175 0.84 2326 1.35 9.44831 22.00 15.21 6.21

AVQZ 2.08314 0.42 2349 0.38 9.69849 9.94 14.46 0.97

AV5Z 2.08333 0.43 2345 0.55 9.77486 6.26 14.53 1.46

AV6Z 2.08285 0.41 2346 0.50 9.80564 4.78 14.58 1.81

a The experimental values of �Re can be seen in Table 4
b The experimental values of �ωe can be seen in Table 4
c The experimental values of �De can be seen in Table 4

Table 2 Basis set dependence of the spectroscopic constants for the O2(X3�−
g )

Potential Basis set Re �Re/Re
a ωe �ωe/ωe

b De �De/De
c ωexe �ωexe/ωexe

(a0) (%) (cm−1) (%) (eV) (%) (cm−1) (%)

Ryd. AVTZ 2.28969 0.42 1605 1.58 5.00247 8.55 13.21 10.26

AVQZ 2.28970 0.42 1600 1.26 5.08499 4.93 13.18 10.01

AV5Z 2.28970 0.42 1600 1.26 5.11076 3.80 13.17 9.93

AV6Z 2.28970 0.42 1600 1.26 5.12831 3.03 13.15 9.76

MS AVTZ 2.28889 0.39 1664 5.31 5.15345 1.93 13.72 14.52

AVQZ 2.28115 0.05 1677 6.13 5.25710 2.61 13.78 15.02

AV5Z 2.26425 0.69 1680 6.32 5.28918 4.02 13.82 15.35

AV6Z 2.27939 0.02 1682 6.45 5.31066 4.96 13.85 15.60

HH AVTZ 2.27876 0.05 1651 4.49 4.99806 8.74 13.64 13.85

AVQZ 2.27106 0.39 1667 5.50 5.10291 4.14 13.70 14.35

AV5Z 2.26937 0.46 1671 5.75 5.13348 2.80 13.72 14.52

AV6Z 2.26898 0.48 1672 5.82 5.16390 1.47 13.77 14.94

AP AVTZ 2.30267 0.99 1543 2.28 5.04119 6.85 12.80 6.84

AVQZ 2.29298 0.56 1567 0.81 5.14910 2.12 12.45 3.92

AV5Z 2.29152 0.50 1569 0.64 5.17947 0.79 12.39 3.42

AV6Z 2.29166 0.51 1565 0.88 5.19745 0.001 12.42 3.67

a The experimental values of �Re can be seen in Table 5
b The experimental values of �ωe can be seen in Table 5
c The experimental values of �De can be seen in Table 5
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Table 3 Basis set dependence of the spectroscopic constants for the SO(X3�−)

Potential Basis set Re �Re/Re
a ωe �ωe/ωe

b De �De/De
b ωexe �ωexe/ωexe

(a0) (%) (cm−1) (%) (eV) (%) (cm−1) (%)

Ryd AV(T+d)Z 2.79884 3.21(-4) 1204 4.87 5.17952 8.91 6.71 9.64

AV(Q+d)Z 2.79884 3.21(-4) 1195 4.09 5.29416 4.81 6.68 9.15

AV(5+d)Z 2.79884 3.21(-4) 1192 3.83 5.33319 3.42 6.66 8.82

AV(6+d)Z 2.79884 3.21(-4) 1191 3.74 5.36028 2.45 6.63 8.33

MS AV(T+d)Z 2.81980 0.74 1195 4.09 5.24626 6.52 6.68 9.15

AV(Q+d)Z 2.81239 0.48 1211 5.48 5.40960 0.69 6.65 8.66

AV(5+d)Z 2.80792 0.32 1216 5.92 5.46320 1.22 6.67 8.98

AV(6+d)Z 2.80625 0.26 1218 6.09 5.49369 2.31 6.70 9.47

HH AV(T+d)Z 2.82807 1.04 1103 3.91 4.66886 27.15 7.15 16.83

AV(Q+d)Z 2.79948 0.02 1204 4.87 5.36251 2.37 6.40 4.57

AV(5+d)Z 2.81032 0.41 1128 1.74 4.94807 17.18 6.73 9.96

AV(6+d)Z 2.77639 0.80 1244 8.36 5.23775 6.83 7.05 15.19

AP AV(T+d)Z 2.82532 0.94 1124 2.09 5.15158 9.91 6.41 4.73

AV(Q+d)Z 2.81270 0.49 1134 1.21 5.29857 4.65 6.32 3.26

AV(5+d)Z 2.80765 0.31 1139 0.78 5.35029 2.81 6.25 2.12

AV(6+d)Z 2.80572 0.24 1141 0.60 5.38058 1.72 6.20 1.30

a The experimental values of �Re can be seen in Table 6
c The experimental values of �ωe can be seen in Table 6.
d The experimental values of �De can be seen in Table 6

Spectroscopic parameters

Based on PECs obtained by fit ab initio points, we computed the
ground state spectroscopic parameters of the molecules
analyzed here determined from the Eqs. 3, 6, 24 and 43.
These results are presented in the Tables 1, 2 and 3 and can
be seen graphically in the Figs. 6 to 8. The column one of all
tables indicates the analytical form used in the fit, whereas
the basis sets are given in column two. The third, fifth,
and seventh columns of these tables show calculated values
of the equilibrium bond distances Re, harmonic vibrational
frequencies ωe, and the potential well depth De. The relative
differences between the available experimental data and the

results obtained by us given by �Y/Y (Y = Re, ωe, and
De), are displayed in the fourth, sixth, and eighth columns,
and are expressed in percentages. The experimental values
adopted in this work were obtained from Refs. [48] for
N2 and [49] for O2 and SO molecules. For completeness,
the anharmonicity parameter (ωexe) from our curves and
its comparison with the corresponding experimental values
(�ωexe) are also shown in last columns.

Although higher values of RMSD are found for the
functional forms of RYD, MS, and HH, it can be seen from
these tables that in general, some spectroscopic parameters
obtained by these analytical representations appear to be
close to the experimental results. Note that in Figs. 6, 7,

a b c

Fig. 6 Largest basis set used versus differences between our results obtained with the setup of Table 1 and the experimental data: a �Re, b �ωe,
c �De for N2 molecule. The experimental values of 2.0743 a0, 2358 cm−1, and 9.9008 eV are from Ref. [48]
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a b c

Fig. 7 Largest basis set used versus differences between our results obtained with the setup of Table 2 and the experimental data: a �Re, b �ωe,
c �De for O2 molecule. The experimental values of 2.280 a0, 1580 cm−1, and 5.197 eV are from Ref. [49]

and 8, the red bars represent the Rydberg function, while in
blue it refers to the Murrell–Sorbie potential. The black and
magenta bars are used to refer to the potential HH and AP,
respectively.

Notice now the results of the Table 1. Note that when we
compare the bond lengths calculated by us (third column)
with experimental values [48] for ground state N2 molecule,
we obtained very good agreement with relative differences
of 0 ≤ �Re/Re ≤ 0.84, in percentages. Surprisingly, the
results for the Rydberg function (the earliest studied
here) presents almost negligible �Re since their root-
mean-square deviation results overestimate the threshold
of chemical accuracy by about 1.2 kcal/mol. Analyzing
the fourth column, the consistently increasing quality with
increasing base set size only for the potential AP is
remarkable. However, the results of other functions exhibit
inverse behavior, i.e., increasing the size of the basis set
produces bond lengths less precise. This is the case, for
example, of the MS function where we obtained DeltaRe/Re

equal to 0.36% for AVTZ, 0.42% for AVQZ, 0.73% for
AV5Z, and 0.75% for AV6Z. In contrast, the AP functions
provide the following values for this relation: 0.84% for
AVTZ, 0.42% for AVQZ, 0.43% for AV5Z and 0.41%
for AV6Z. The Hulburt-Hirschfelder potential yields close

values with experimental differences of: AVTZ ∼ 0.007a0,
AVQZ ∼ 0.008a0, AV5Z ∼ 0.001a0, and AV6Z ∼ 0.001a0.
Such information can be seen of form summarized in
Fig. 6a.

In the sixth column of the Table 1, note that the
vibrational frequencies present relative differences, with
�ωe/ωe between 0.38 and 5.0%. Comparing the values
obtained for ωe for the four potentials in question,
we conclude that the best result is obtained when the
functional form proposed by Aguado and Paniagua is used
at MRCI(Q)/AVXZ (X = T,Q,5,6) level of theory (see
also Fig. 6b). For this particular potential, our theoretical
harmonic vibrational frequencies differ by less than 1.4%
of the experimental values from Ref. [48]. Concerning the
Rydberg function, similar results emerges from our analysis
(around 1.6%), with deviations close to 38 cm−1 (in red),
while for the MS potential are overestimated in ∼ 118
cm−1. In addition, with respect to cardinal number X of
the basis set, we obtained the values 2418, 2434, 2443,
and 2445 cm−1, corresponding to HH potential. In Fig. 6b,
we identify that �ωe for these values (in black) slightly
increases with the basis set as well as for Murrell–Sorbie
potential (in blue), except in the case of aug-cc-pVQZ
basis.

a b c

Fig. 8 Largest basis set used versus differences between our results obtained with the setup of Table 3 and the experimental data: a �Re, b �ωe,
c �De for SO molecule. The experimental values of 2.7986 a0, 1148 cm−1, and 5.429 eV are from Ref. [49]
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Table 4 Spectroscopic parameter from available results for
N2(X1�+

g ) molecule

Method Re (a0) ωe (cm−1) De (eV) Source

NOF-OIMP2/VTZ 2.0749 – 10.004 [51]

RHF 2.0862 2971 – [52]

CCSD(T)/V6Z 2.0732 2370 – [53]

RMR CCSD(T)/VQZ 2.0813 2343 9.893 [54]

Exp. 2.0743 2358 9.9008 [48]

Further, in Table 1, the dissociation energies (De),
obtained using all potentials are unexpectedly larger than
the corresponding experimental values, relative differences
are between 0.54 to 23.48%. This large error can be
partly attributed to the fit process, in particular for AVTZ
basis. Energetically, the MS potential seems to represents
reasonably well the experimental value of 9.9008 eV [48],
however it may differ quantitatively in more than 7%
when Dunning’s augmented correlation consistent valence
triple-ζ basis set (aug-cc-pVTZ) is used (see Fig. 6c).
From Fig. 2, one can see that the Murrell–Sorbie function
has a larger depth in the well than the other functions
described. This fact indicates consistency in our results.
Moreover, according to Ref. [50] the reliable description of
the dissociation profile of the ground state of the nitrogen
molecule is a difficult problem for any ab initio method
due to the presence of strong dynamical and nondynamical
correlation effects.

Besides this study, a series of theoretical spectroscopic
investigations have been performed about the N2 system
[51–54]. For the convenience of comparison, all these
results are described in Table 4. In these investigations,
probably the first calculations for this system, made by
Fraga and Ransil [52], were made through the Hartree–Fock
(RHF) restricted method. Their Re and ωe values are larger
than the experimental results [48] by 0.01a0 and 613 cm−1,
respectively. Pawlowski et al. [53] computed the values of
molecular properties by using the MP2/CCSD(T) level of
theory in combination with a series of correlation-consistent
basis sets. From what we know, the depth of the well was
not calculated in their work. The bond length and harmonic
frequency values calculated at CCSD(T)/V6Z differ of ours
results with the AP function/AV6Z (and experimental) in
∼ 0.009 (0.001)a0 and 24 (12) cm−1. Subsequently, the
treatments of the nitrogen molecule using the RMR CCSD
and RMR CCSD(T) methods was verified by Li and Paldus
[54]. As a result, in both cases, the spectroscopic constants
perform well when compared to the experimental ones.
More recently, Piris, using the formulation of the natural-
orbital-functional second-order-Møller-Plesset (NOF-MP2)

calculated binding energies and bond lengths for this system
and others [51]. In general, the present spectroscopic
parameters for the ground state of N2 are in good agreement
with the experimental [48] and previous theoretical data [51,
54].

Now, a complete discussion about the results from
Table 2 and Fig. 7 for oxygen molecule is done. When
equilibrium bond distances (Re) are analyzed, the best
value found corresponds to the relative difference of 0.02%
for MS potential at MRCI(Q)/AV6Z level. In Fig. 7a, the
Rydberg potential (in red) displays values almost constants
around 0.01a0. On the other hand, the Table 2 shows that
the deviations are in the range 0% ≤ �Re/Re ≤ 1.0%,
which is in general agreement with Ref. [49]. An unusually
large error in the AP representation leads to bond lengths
with slightly overestimated (AVTZ basis), and they are more
accurately predicted with the aug-cc-pV6Z basis. As one
can see from Fig. 7a or in the Table 2, Rydberg and HH
predictions do not improve when larger basis are used for
the bond lengths. However, the O2 bond lengths are very
good with the AVXZ (X = Q, 6) basis sets, with small
relative errors.

The relative errors in harmonic vibrational frequencies
(ωe) are represented in Fig. 7a. The MS function predictions
show a typical error of 80 to 100 cm−1 overestimate in
most cases, whereas the AP frequencies are considerably
improved, with most errors less than or equal to 1%.
Obviously, the value 1569 cm−1 based on AV5Z is the best
compared to the experimental value [49] of 1580 cm−1.
There is no significant deviation in this case. The values
of ωe for the Hulburt–Hirschfelder representation deviate
from the experiment results by 4.49, 5.50, 5.75, and 5.82%,
respectively, for the basis AVXZ (X = T, Q, 5, 6). As before,
the Rydberg interaction potential (in red) shows almost
constant values for vibrational frequency (near 1600 cm−1).
Note that this same behavior was observed in Fig. 6b. From
the information contained in this figure and that displayed
in Table 2 (sixth column), we can easily find that the big
errors of harmonic frequencies are obtained between the
functional forms of MS (blue) and HH (black).

From the energetic point of view, we found the following
results:

(i) relative differences of 0.01 ≤ �De/De ≤ 8.0, in
percentage, were calculated being the depth of the
well major described when the AP function in aug-cc-
pV6Z basis set is used (5.19745 eV);

(ii) as well as for N2, here the spectroscopic constant De

tends to smaller differences from the experimental
values at MRCI level of theory with Davidson
correction if we increase cardinal numbers (X = T,
Q,5, and 6) of basis, however, MS (blue) does not
exhibit this behavior see Fig. 7c;
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Table 5 Spectroscopic parameter from available results for
O2(X3�−

g ) molecule

Method Re (a0) ωe (cm−1) De (eV) Source

B3P86/CC-PV5Z 2.2676 1645 5.22 [55]

DFT/ET-QZ3P-3Diffuse 2.2733 1621 – [56]

CI 2.3054 1614 4.72 [57]

DFT/B3LYP 2.2790 1585 5.96 [58]

MRCI(Q) 2.2979 1522 5.09 [58]

CASPT2 2.2884 1536 5.17 [58]

Exp. 2.280 1580 5.19 [49]

(iii) our results with Rydberg are underestimated by 8.55,
4.93, 3.80, and 3.03% compared to experimental
values [49]. On the other hand, the AVXZ (X = Q, 5,
6) basis set for MS are overestimated by 2.61, 4.02,
and 4.96%. It can be clearly seen in Fig. 2 that the
well for MS is deeper than Ryd potential.

For completeness, available theoretical results from the
literature are summarized in Table 5. We are also including
the experimental ones from Ref. [49]. Guan et al. calculate
using time-dependent density functional theory (TDDFT)
with Tamm–Dancoff approximation (TDA) spectroscopic
properties and potential energy curves for the six lowest
bound electronic states of the oxygen molecule. In Table 5,
it can be seen that their theoretical values for the ground
state at this level of theory provides: Re near to experimental
one and ωe it is overestimated by ∼41 cm−1 [56]. Our
values, using the AP function and AV5Z basis set, are of
1569 cm−1 for the harmonic frequency and 2.2915a0 for
the equilibrium bond distance, which compares better to the
experimental results, particularly ωe. Dong-Lan et al. [55]
proposed a potential energy surface for SO2 in the ground
electronic state using the many-body expansion theory.
Table 2 and 3, from Ref. [55] contain features such as Re,
ωe, and De removed of two-body terms not only for O2 but
also for SO molecule. There, the diatomics (O2 and SO) are
modeled by the MS potential function (24) minus a extra
term (c6/R6). As a result, the vibrational frequency is larger
than the experimental one in at least 65 cm−1 and the depth
of the well and equilibrium internuclear distance are in
good agreement with your respective experimental values.
However, the reported values of Schaefer obviously deviate
from Ref. [49], see Table 5 for details. Finally, comparing
some of our results with those of Azizi et al. [58] slight
differences are found. According to them, calculations
at second-order multiconfigurational perturbation theory
(CASPT2) and MRCI(Q) are of comparable accuracy for
few-electron systems.

Table 6 Spectroscopic parameter from available results for
SO(X3�−) molecule

Method Re (a0) ωe (cm−1) De (eV) Source

icMRCI/VQZ 2.8213 1137 - [45]

icMRCI(Q)/AV5Z 2.8090 1149 5.418 [62]

CI 2.8326 1200 - [63]

DFT/B3LYP 2.8194 1129 5.72 [58]

MRCI(Q) 2.8289 1130 5.32 [58]

CASPT2 2.8043 1125 5.40 [58]

Exp. 2.7986 1148 5.429 [49]

For the sulfur monoxide in the ground electronic state,
the spectroscopic features of the functional forms used to
fitting ab initio points of this molecule are displayed in
Table 3 and Fig. 8. The triplet state considered here converge
to the dissociation limit S(3P)+ O(3P). Looking at basis set
effects, all binding energies calculated are lower than the
experimental one. In opposition to this, the Murrell–Sorbie
energies at AV5Z and AV6Z are above by ∼ 0.03 and 0.06
eV, respectively. These values are close to De (5.429 eV)
reported in Ref. [49], however, the harmonic frequencies
tend to increase in approximately 40 cm−1. Again, the
best results observed in Table 6 are for the Aguado and
Paniagua function in combination with AV(6+d)Z basis
(Re = 2.8057 a0, ωe = 1141 cm−1, and De = 5.3805 eV).
The same tendency holds when analyzing nitrogen and
oxygen molecules (Tables 1 and 2). As can be seen from
Table 3, the equilibrium bond lengths obtained for Rydberg
functions reproduce the experimental value. On the other
hand, this fact does not reflect better results of the other
molecular features. For example, according to the present
table, the frequencies for different basis sets are 1204, 1195,
1192, and 1191 cm−1.

It is interesting to note that in Fig. 8a, b, and c, the
Hulburt–Hirschfelder representation shows higher deviation
percentages in almost all spectroscopic constants chosen,
see also Table 3 for complementary information. So, one
verified that for our purpose, this function is inefficient
compared to the other ones. We infer that this fact can
be directly connected with the values found in Fig. 1c. In
general, the bond lengths and harmonic frequencies esti-
mates for the AP function are acceptable (less than 2.1%).
The main variations are predicted in the binding energy:
9.91, 4.65, 2.81, and 1.72%, respectively, for AV(T+d)Z,
AV(Q+d)Z, AV(5+d)Z, and AV(6+d)Z.

Over the years, SO molecule has largely attracted interest
due to its high reactivity. Furthermore, sulfur monoxide has
been detected in interstellar clouds and in the atmospheres
of planets [59]. Its interest goes beyond the astrophysical
studies being necessary in areas such as combustion
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[60] and photodissociation [61]. From extensive literature,
the spectroscopic properties of both experimental and
theoretical were chosen from Refs. [45, 58, 62, 63] in order
to compare our results. These values are conveniently listed
in Table 6. As discussed, Borin and Ornellas calculated
ab initio PECs at icMRCI/VQZ level of theory with the
intention of studying the singlet and triplet states of sulfur
monoxide. As a result, deviations from the experimental
values for ground state (triplet state) were obtained by
differences of 0.0227a0 for bond length and 11 cm−1 for
vibrational frequency. These data show smaller variations
of our best results: 0.0156a0 and 4 cm−1. Unfortunately, an
important constant, De, was not evaluated. In 2011, Yu and
Bian performed the icMRCI calculations in combination
with the aug-cc-pV5Z basis sets. The Re, ωe, and De values
they provide for the SO(X3�−) are 2.8090a0, 1149 cm−1,
and 5.418 eV, respectively. It is observed good accord
between the present spectroscopic parameters and our
results, and consequently, with experimental ones. Data
reported in Ref. [63] are also collected in Table 6. In such
a work, a complete study for seven low-lying electronic
states of sulfur monoxide is reported by Swope et al., carried
out using configuration interaction (CI). They were found
that ωe it is overestimated around 52 cm−1. Again, De

was also not evaluated for this work. All other results in
Table 6 refer to Ref. [58] except the last line (Exp.) that
contain values from Ref. [49]. It is interesting to note that
all harmonic vibrational frequencies in Table 6 are smaller
than the corresponding experimental value to 1148 cm−1

[49]. On the contrary, reported values for Re are larger than
the corresponding experimental measurement.

In general, the spectroscopic constants here predicted
are in excellent agreement with previous theoretical and
experimental results. Therefore, we can conclude that the
AP function obtained at MRCI(Q)/ aug-cc-pV6Z level of
theory can well describe the interaction potential of the
sulfur monoxide molecule in the ground state. Furthermore,
the same functional form presents similar results for other
molecules investigated by us.

Conclusions

In the present paper, ab initio calculations at MRCI with
Davidson corrections have been performed followed by aug-
cc-pvXZ (X = T, Q, 5, 6) basis set. The PECs obtained
are fitted in order to compute the molecular features of the
spectroscopic region. Test calculations were made for the
following benchmark model potentials in selected systems
such as N2, O2 and SO, all in their respective ground
electronic states. Analyzing the six potentials described

here, we are concerned with several aspects: the number
of parameters, easy to obtain the potential energy curves
and their quality in the short and long-range regions.
Furthermore, we are also interested in the diversity of
diatomic systems where each potential can be applied.

The potential of Hulburt–Hirschfelder was highlighted
by being represented by a function involving five relatively
simple parameters to be manipulated. The fact that it
contained more parameters, thus ensuring greater flexibility,
was also a defining point. However, due to a signal error
kept during a certain period, its function was considered
unsatisfactory. Once corrected, the HH potential was
considered, in most cases, one of the best with five
parameters for fitting particularly the asymptotic region,
where the Morse curve was not so properly behaved [17].
It should also be noted that the Aguado and Paniagua
method promotes a much quicker calculation of the self-
consistency tests of the eigenvalues of the Schrödinger
radial wave equation, i.e., of the energies that are essential
for the construction of the potential energy surface
[1].

Although the study of analytical forms to describe
potential energy surfaces for diatomic systems has been
explored for more than a century (the first records date
back to 1874 [64]), we believe this issue is not fully
depleted. Even with formulations like Xie and Hsu’s [65],
with a universal functional form, applied to 200 diatomic
systems, many other proposals are still emerging (see for
example Zhang et al. [66], Yu and Zhiwei [67] with further
universal propositions, Yu [68], Bouazis [69]). In addition,
as Hooydok pointed out, the Xie and Hsu model did not
appear universal, as initially claimed by the authors [70].
For example, such a model is not applicable in common
bonds with elements of the VII group and inaccurately
reproduce the H2 prototype [70]. There is a crucial point
that led us to conduct this analysis with some rather
old representations. By fitting the potentials and their
respective spectroscopic constants with the computational
methodologies today available, we have obtained more
precise data than those reported in the past. This is
especially notable in relation to those that precede MBE.
Such precision for the diatomic systems chosen in this
particular study was what most interested us. We believe
the accuracy of an analytic or numerical functional form
describing a PEC is at least as important as obtaining an
universal representation.
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