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Abstract
The Zika virus has recently become a subject of acute interest after the discovery of the link between viral infection and
microcephaly in infants. Though a number of treatments are under active investigation, there are currently no approved treatments
for the disease. To address this critical need, we screened more than 7 million compounds targeting the NS2B-NS3 protease in an
attempt to identify promising inhibitor candidates. Starting with commercially and freely available compounds, we identified six
hits utilizing an exhaustive consensus screening protocol, followed by molecular dynamics simulation and binding energy
estimation using MM/GBSA and MM/PBSA methods. These compounds feature a variety of cores and functionalities, and all
are predicted to have good pharmacokinetic profiles, making them promising candidates for screening assays.
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Introduction

The Zika virus is a mosquito-borne flavivirus that has been
known since 1947, but historically only caused mild symp-
toms such as fever in about 20% of infected individuals and
rarely caused serious complications [1]. Public concern
changed drastically during the 2015 epidemic in South
America, where a number of reports of neurological disorders
and microcephaly were reported [2]. Zika infection has been
linked to a number of effects, including congenital microceph-
aly, heart defects and Guillain-Barre syndrome [3–7]. Since
the spate of recent outbreaks, a number of vaccines are ad-
vancing through the clinical pipeline [8]. However, there are
expected to be significant challenges associated with a Zika

vaccine, as flaviviruses have a history of promoting antibody-
mediated enhancement of infection [9]. Until the development
of a vaccine, small molecule therapeutics are a promising can-
didate as both a treatment and as a prophylactic.

The Zika virus contains a positive-sense single-stranded
RNA genome that encodes a single 3419-amino-acid-long
polypeptide, which is cleaved to form three structural pro-
teins (capsid, pre-membrane and envelope) and seven non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B and NS5) [10]. NS3 contains the catalytic triad,
and along with the transmembrane NS2B (which anchors
NS3 to the endoplasmic reticulum) together form the
NS2B-NS3 protease that is critical to viral replication and
survival [11]. Given the critical role played by NS2B-NS3,
it is an attractive target for small molecule inhibitors.
While a handful of inhibitors have been evaluated, none
to date have had acceptable profiles for advancement
through preclinical trials, underscoring the critical need
for the discovery of new drug-like scaffolds [12–16]. In
order to address this need, we decided to run a virtual
screen of millions of commercially and freely available
drug-like molecules in order to identify compounds that
could be readily purchased and screened for inhibitory ac-
tivity. By using commercially and freely available com-
pounds, we hope to accelerate the screening of these
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compounds and make them widely available to teams that
lack access to synthetic chemistry resources.

Methods

Protein crystal selection and preparation

Fortunately, a handful of crystal structures are currently avail-
able for the NS2B-NS3 protease. However, the crystallization
of Zika NS2B-NS3 and other closely related homologs has
been complicated by its heterodimeric structure and the fact
that the NS2B polypeptide is flexible, often leading to a dis-
ordered open conformation. In contrast, structures with bound
inhibitors show that NS2B wraps around the NS3 structure
and makes contact with some inhibitors, forming a closed
conformation [17–22]. Some solved structures have utilized
an artificial linker to stabilize the complex, but this has been
shown to introduce steric hindrance and alter inhibitor binding
interactions [23]. Based on this information, we decided to
utilize an unlinked structure of NS2B-NS3 in complex with
a small molecule in the closed conformation (PDB ID: 5H4I).
This structure is in the more relevant closed conformation and
has already been shown to be a good model for binding small
molecules, thus we felt this structure was best suited for
docking and evaluating drug-like inhibitors (Fig. 1) [24]. A
Ramachandran plot generated using the RAMPAGE assess-
ment tool [25] also showed that no residues resided in the
outlier region, underlining the high quality of the structure
(see supplementary material).

To prepare 5H4I for docking, the structure was
downloaded as a PDB file from the Protein Data Bank
(https://www.rcsb.org/structure/5h4I) and the waters, acetate
ion, and crystalized inhibitor were removed. The docking grid
was prepared using AutoDockTools (ADT) [26] using the
center of the crystallized inhibitor as the center of the search
space grid (x = −5.576, y = 8.208, z = −13.937), the spacing
set to 1 Å, and the dimensions set to 22x16x22 in the x, y, and
z dimension, respectively. These parameters were selected to
ensure coverage of the entire binding surface within the grid.

Preparation of the ligand libraries

Our initial library was built utilizing the ZINC15 database,
which contains more than 230 million compounds in 3D for-
mat and provides vendor information for all commercially
available items [27]. This data set was refined by only
selecting compounds that were commercially available and
in stock; we then applied a series of Lipinski filters to further
refine the virtual library (molecular weight = 250–500, log
P < 5, number of rotatable bonds ≤7, polar surface
area ≤ 150 Å2, H-bond donors ≤5, H-bond acceptors ≤10),
removed known toxicophores and PAINS [28] scaffolds,

adjusted the pH of all compounds to physiological conditions,
then compiled the library in PDBQT format. The final com-
piled library (hereafter referred to as the ZINC library)
contained a total of 7,038,391 compounds.

In addition to the ZINC library, we also compiled a second
library of compounds that are freely available through the
National Cancer Institute (NCI) Developmental Therapeutics
Program’s Open Chemical Repository [29]. We combined the
Plated 2007, Mechanism 3 and Diversity 5 sets into a single
library of 112,102 compounds in PDBQT format (hereafter
referred to as the NCI library). While this library is significant-
ly smaller, all compounds are made freely available to the
research community.

Screening protocol

Our overall screening protocol for the ZINC library is outlined
in Fig. 2.

After applying the Lipinski filters to the ZINC database, we
screened the entire library utilizing both the Vina [26] and
iDock [30] programs. The parameters for both programs were
set such that each ligand had an average evaluation time of
approximately 1 min based on initial timing tests. For the Vina
program, the parameters were set to the following values:
num_modes = 10, cpu = 6, exhaustiveness = 12. For the

Fig. 1 Structure of the unlinked NS2B-NS3 protease (PDB ID: 5H4I).
Teal NS3 chain, maroon NS2B chain
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iDock program, the parameters were set to the following
values: threads = 6, conformations = 10. All other program
parameters were left at default values. A consensus scoring
function was used to identify the top 1000 hits from this initial
screen. These 1000 compounds were then re-screened again
with both Vina and iDock using more exhaustive parameters
designed such that each ligand had an average evaluation time
of 1 h. For the Vina program, the parameters were set to the
following values: num_modes = 20, cpu = 12, exhaustive-
ness = 1000. For the iDock program, the parameters were set
to the following values: threads = 12, conformations = 20,
trees = 5000, tasks = 640. The results from this exhaustive
screen were re-scored again using the same consensus func-
tion. The top 25 hits were then visually inspected to ensure
that the docking poses were reasonable and subsequently
screened using a Tanimoto coefficient threshold of less than
0.4 based on the FP2 path-based fingerprint [31], resulting in
the removal of nine compounds due to structural similarities.
From the remaining 16 compounds, the top 10 were then
examined using molecular dynamics (MD) simulations (de-
scribed below) to confirm that the binding mode is preserved
during equilibration and to estimate the binding energy,
resulting in the final top 5 compounds with the most promis-
ing performance and scores. The top 1000 ranked consensus
hits from our docking search against the ZINC database are
provided in the supplementary material (Table S1).

The smaller NCI library was screened according to the
protocol outlined in Fig. 3.

The library was first screened with Vina and iDock using
the same parameters and consensus scoring function as the
initial ZINC library screen, but only the top 100 compounds
were selected for the more exhaustive screen. After re-scoring,
the top three compounds from the exhaustive screen were
visually inspected and checked to ensure a Tanimoto coeffi-
cient of less than 0.4. These three compounds were then sub-
jected to MD simulation followed by a binding energy deter-
mination, with the best performing compound selected as the
single top hit for the NCI library. The top 100 ranked consen-
sus hits from the NCI database are provided in the supplemen-
tary material (Table S2).

Consensus scoring

As is often the case when compounds are scored by different
docking programs, we utilized a consensus scoring function to
rank our results [32, 33]. For the initial screening of both
libraries, the mean of the binding affinities were used to gen-
erate the top 1000 compounds from the ZINC library and the
top 100 compounds from the NCI library. These subsets were
then re-docked with the more exhaustive parameters described
previously and the output binding affinities were then trans-
formed by quantile normalization using MATLAB R2017a.

Fig. 2 Screening protocol of the
ZINC library

J Mol Model (2019) 25: 194 Page 3 of 10 194



The mean of the normalized energies for a compound then
provided the basis for ranking. Previous work [20a] has sug-
gested that this mean approach performs equivalently or better
than other simple consensus methods using the median, max-
imum or minimum.

Molecular dynamics

MD simulations of the NS2B-NS3 complex with potential
inhibitors identified by virtual screening were performed
using Amber16 and AmberTools16 packages [34] with rela-
tive binding energies estimated from computed trajectories
using molecular mechanics Poisson-Boltzmann surface area
(MM/PBSA) and molecular mechanics generalized Born sur-
face area (MM/GBSA) algorithms [35–37]. Topology files for
the protein–ligand complex were constructed in TLEAP [34]
using the FF14SB [38] and GAFF force fields [39]. The
docked small molecule ligands were parameterized using
ANTECHAMBER [34]. The complexes formed from the pro-
tein and the parameterized ligands were solvated in explicit
TIP3P water [40], arranged in a truncated octahedron 8 Å
from the surface of the protein. Prior to minimization, equili-
bration, and production run, the complexes were charge-
neutralized by the addition of sodium ions.

The MD simulations were carried out using the particle
mesh Ewald (PME) implementation of graphical processor
unit–accelerated MD with the PME MD Compute Unified
Device Architecture module of Amber16 [41]. Initially, the

complexes were subjected to: (1) minimization with restraint
of the protein for 1000 cycles; (2) unrestrained minimization
for 1000 cycles; (3) equilibration while warming from 50 K to
300 K for 30 ps using a constant-volume periodic boundary
condition; (4) equilibration with restraint of the protein at
310 K for 20 ps with a constant-pressure periodic boundary
condition and using isotropic pressure scaling; and (5) unre-
strained equilibration at 300 K for 500 ps. After minimization
and equilibration, the complexes were subjected to a produc-
tion run at 300 K for 50 ns. Preparation steps 1 and 2 com-
prised 500 steps of steepest descent, followed by 500 steps of
conjugate-gradient descent. Steps 3–5 and the production runs
used Langevin temperature regulation [42] with the collision
frequency of 2.0 ps−1, bonds involving hydrogen were
constrained by the SHAKE algorithm [43]; and a 12 Å cutoff
was used for non-bonded interactions calculated by the PME
method [44]. The MD simulations were monitored by exam-
ination of the internal energy and root mean standard devia-
tion (RMSD) of the resulting trajectories (see Fig. S1 in the
supplementary material). Production run trajectories were vi-
sualized using visual molecular dynamics (VMD; version
1.9.3) [45].

Binding energy computations

After completion of the production runs, binding energies
were estimated using the MMPBSA.py module of
AmberTools16 [35–37]. The simulations used the single

Fig. 3 Screening protocol for the
National Cancer Institute (NCI)
library
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trajectory method, and binding energies were calculated using
the MM/PBSA and MM/GBSA algorithms [46]. The PBSA
simulation used ionic strength of 0.15 mM (istrng = 0.150)
and employed default radii from the prmtop file (radiop t =
0). The GBSA simulation used generalized Born Bmethod
two^ (igb = 5) with 0.15 M salt concentration. We initially
considered binding energy values over three 10-ps samples
of a 50-ns MD-simulation, measured at 25 ns, 40 ns, and
50 ns (see Table S3 in the supplementary material). These
observations suggested the estimated binding energies stabi-
lized after 40 ns. As such, the binding energy of each protein–
ligand complex was calculated utilizing the final 5 ns of each
trajectory (Table 1).

Results and discussion

The molecular properties of the top five screening hits from
the ZINC library (named ZC_01, ZC_02, etc.) and the top
compound from the NCI library (NCI_01) are shown in
Fig. 4, and selected molecular properties are listed in Table 1.

All selected compounds are calculated to have a high bind-
ing affinity, with binding energies ranging from −10.8 to
−11.45 kcal mol−1. Each of the docking results was subjected
to a MD simulation to examine the ability of the ligand to
remain bound under equilibrating conditions, and also to pro-
vide an estimation of binding energy. Protein–ligand topolo-
gies were prepared and subjected to a 50 ns production run at
300 K. Qualitative examination of the protein–ligand struc-
tures during the trajectories show them to maintain stable
complexes through various stages of the MD production run.
For the complex of NS2-NS3B with ligand ZC_01, the
RMSD increased slightly from 0 to 15 ns, presumably as the
protein accommodated the ligand, and then relaxed into an
apparently stable configuration from 15 ns to 50 ns with little
change of RMSD in this latter part of the experiment (Fig. S1).
For this representative example, the potential energy was also
stable throughout the course of the 50 ns production run (Fig.
S1). We found that the majority of the equilibration was com-
plete within 10–20 ns for each of the protein–ligand

complexes, making 50 ns production runs suitable for this
system. Binding energies (ΔGbinding) were estimated using
the MM/GBSA and MM/PBSA tools [46] and summarized
in Table 1. While the MM/GBSA and MM/PBSA binding
energies were measured by the respective algorithms, they
were generally in agreement in terms of ranking. The predict-
ed best compounds ZC-01, ZC-03, and ZC-05 had lowest
predicted binding energies (−38.9 to −44.0 kcal mol−1 based
onMM/GBSA; and − 28.2 to −35.7 kcal mol−1 based onMM/
PBSA). The ΔGbinding values determined by the MM/GBSA
and MM/PBSA methods provide a relative ranking that is
fairly consistent with docking score, although the absolute
binding energies should not be compared between these two
algorithms. Across the series of compounds, the relative rank-
ing produced by MM/GBSA appeared consistent compared
with the MM/PBSA method. Potential inhibitor ZC_01 had
the most favorable binding energy by the MM/GBSA and
MM/PBSA methods. We observed that ZC_01, ZC_03, and
ZC_05 had multiple H-bonding contacts with the putative
binding site maintained through the course of the 50 ns MD
simulation, and possibly contributed to their lower predicted
binding energy. Qualitatively, these better scoring compounds
also appeared to have complementary interactions with the
hydrophobic protein residues at the binding site.
Comparison of binding energies with a positive control inhib-
itor would be ideal, although currently a validated potent in-
hibitor at this binding site is not available. Given these limita-
tions, we sought to identify inhibitors incorporated into novel
scaffolds with low estimated binding energy in this study.

An additional ADMETanalysis was performed on all com-
pounds utilizing the admetSAR database [47] with the results
listed in Table 2.

All compounds are predicted to have excellent absorption
profiles and low oral toxicity, making them excellent starting
candidates for small molecule therapeutic treatments. All
compounds are also predicted to be non-carcinogenic, in ad-
dition to their low toxicity. It is also important to note that
most compounds are predicted to have excellent permeability
through the blood-brain barrier. It is known that the Zika virus
can pass through the blood brain barrier, so any effective

Table 1 Selected properties of the top hits from the screening libraries. HBD Hydrogen bond donor, HBA hydrogen bond acceptor

Compound ZINC ID Vina Score
(kcal mol−1)

iDock Score
(kcal mol−1)

ΔGbinding: MM/GBSA
(kcal mol−1)

ΔGbinding: MM/PBSA
(kcal mol−1)

HBD HBA tPSA (Å2)

ZC_01 ZINC35375709 −11.1 −11.45 −44.0 −35.7 3 7 94

ZC_02 ZINC9659365 −11.0 −11.17 −31.3 −25.1 0 6 82

ZC_03 ZINC14253259 −11.0 −11.16 −38.9 −34.6 3 9 122

ZC_04 ZINC8766724 −10.9 −11.16 −26.6 −16.0 0 5 52

ZC_05 ZINC46046809 −10.8 −10.97 −38.9 −28.2 1 6 53

NCI_01 ZINC1580643 −10.9 −11.10 −28.0 −21.7 1 6 106

For ΔGbinding calculations using the MM/GBSA and MM/PBSA methods
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treatment would be expected to also share this property to
effectively treat infected brain tissues [48].

Compound ZC_01 is a spiro compound and was calculated
to have the highest binding affinity of all screened compounds
that did not disassociate during MD simulations. Both
docking programs predicted nearly identical binding poses,
with a RMSD value of 0.197 Å (Fig. 5).

A number of hydrogen bonding interactions between the
core of ZC_01 and nearby residues of NS3 are apparent, with
two between the succinimide carbonyls with H51 and Y161,
one between the backbone of G153 and the oxindole nitrogen,
and one between the indole nitrogen and N152. One addition-
al hydrogen bond between the pyrrolidine nitrogen and D33
of NS2B provides additional stabilization. Hydrophobic inter-
actions are most apparent around them-xylene moiety and are
provided by A132 and Y161. Additional hydrophobic inter-
actions are made by the nearby valine residues V72 and V155.

ZC_02 shares some similar interactions as with ZC_01, but
is a much more synthetically attractive compound (Fig. 6).

Again, the two docking poses predicted by Vina and iDock
are very similar, with a RMSD value of 0.716 Å. The majority

of hydrogen bonding interactions occur between the
succinimide core and three NS3 residues, namely H51, S135
and Y161. An additional polar contact is made between Y150
and them-trifluoromethylphenyl substituent, and hydrophobic
interactions appear present fromY161, A143 and V72. Unlike
ZC_01, however, ZC_02 does not appear to make any signif-
icant interaction with any NS2B residues.

Compound ZC_03 features a related 2,4-imidazolidinedione
core in place of the succinimide core of ZC_01 and ZC_02,
making contact with many of the same NS3 residues
(Fig. 7).

Specifically, hydrogen bonding interactions are apparent
between the 2,4-imidazolidinedione moiety and H51 and
N152. A naphthyl system resides in the hydrophobic pocket
shared with V72, while the formamide substituted 1,4-ben-
zoxazine makes polar contacts with S135, Y150 and Y161,
with additional hydrophobic interactions provided Y161 and
A132.

The somewhat lipophilic compound ZC_04 appears to
bind primarily through hydrophobic interactions as expected,
primarily with Y161, A132 and V72 (Fig. 8).

Fig. 4 Structure of the top hits from the screening libraries

Table 2 Selected ADMET properties of the top hits from the screening libraries

Parameter ZC_01 ZC_02 ZC_03 ZC_04 ZC_05 NCI_01

Blood-brain barrier (+) 0.72 0.98 0.86 0.99 0.98 0.56

Intestinal absorption (+) 0.98 0.98 0.99 1.00 1.00 0.94

Caco-2 permeability (−) 0.60 0.50 0.63 0.49 0.70 0.56

P-glycoprotein inhibitor (−) 0.76 0.71 0.95 0.82 0.70 0.96

Acute oral toxicity Cat. III Cat. III Cat. III Cat. III Cat. III Cat. III

Rat acute toxicity (LD50, mol kg−1) 2.45 2.26 2.46 2.21 2.70 2.61

Carcinogenicity (rat, three-class) Non-required Non-required Non-required Non-required Non-required Non-required
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ZC_04 also differs due to the fact that it has a
triazolopyrimidine core, which appears to form a

hydrogen bonding interaction with the S135 residue of
NS3. Despite having fewer apparent polar interactions

Fig. 5 a Docking poses of ZC_01 calculated by Vina (peach backbone)
and iDock (green backbone). RMSD= 0.197 Å. Grey NS3 peptide and
interacting residues, magenta NS2B peptide and binding residues. b 2D

molecular interaction map for ZC_01; dotted red lines polar interactions,
green lines non-polar interactions

Fig. 6 a Docking poses of ZC_02 calculated by Vina (peach backbone)
and iDock (green backbone). RMSD= 0.716 Å. Grey NS3 peptide and
interacting residues, magenta NS2B peptide. b 2D molecular interaction

map for ZC_02.Dotted red lines Polar interactions, green lines non-polar
interactions

Fig. 7 a Docking poses of ZC_03 calculated by Vina (peach backbone)
and iDock (green backbone). RMSD= 0.156 Å. Grey NS3 peptide and
interacting residues, magenta NS2B peptide. b 2D molecular interaction

map for ZC_03.Dotted red lines Polar interactions, green lines non-polar
interactions

J Mol Model (2019) 25: 194 Page 7 of 10 194



with the binding pocket than other inhibitors, both Vina
and iDock predict a strong binding interaction (Table 1)
and output nearly identical binding poses (RMSD =
0.122 Å).

Compound ZC_05 bears a urea core modified with an 1,4-
diazepane and m-trifluoromethylphenyl system (Fig. 9).

Similar to ZC_02, the trifluoromethylphenyl group makes
polar contacts with the nearby S135 and Y150 residues, as

Fig. 8 a Docking poses of ZC_04 calculated by Vina (peach backbone)
and iDock (green backbone). RMSD= 0.122 Å. Grey NS3 peptide and
interacting residues, magenta NS2B peptide. b 2D molecular interaction

map for ZC_04.Dotted red lines Polar interactions, green lines non-polar
interactions

Fig. 9 a Docking poses of ZC_05 calculated by Vina (peach backbone)
and iDock (green backbone). RMSD= 0.159 Å. Grey NS3 peptide and
interacting residues, magenta NS2B peptide. b 2D molecular interaction

map for ZC_05.Dotted red lines Polar interactions, green lines non-polar
interactions

Fig. 10 a Docking poses of NCI_01 calculated by Vina (peach
backbone) and iDock (green backbone). RMSD= 0.064 Å. Grey NS3
peptide and interacting residue, magenta NS2B peptide. b 2D

molecular interaction map for NCI_01. Dotted red linesPolar
interactions are shown as dotted red lines, green lines non-polar
interactions
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well as hydrophobic interactions with A132 and Y161. The
urea carbonyl also appears to make a polar contact with Y161.
Additional hydrophobic interactions appear between residue
V52 and the quinoxaline system.

The top compound from the NCI library, NCI_01, is a spiro
molecule somewhat akin to the top hit for the ZINC library
(ZC_01). A number of polar interactions are made between
the barbituric acid ring and the nearby residues N152 and
H51, as well as an interaction with the backbone of G153
(Fig. 10).

The aromatic ring sits snugly in the hydrophobic pocket
formed by Y161, A132 and Y150, with the Y161 residue also
making an apparent hydrogen bonding interaction with cyclic
ether oxygen atom. Both the Vina and iDock program predict
nearly identical bonding poses for NCI_01, with a RMSD =
0.064 Å.

Conclusions

A collection of more than 7 million commercially and freely
available compounds from the ZINC15 database and the NCI
repository of small molecules were subjected to a virtual
screening procedure consisting of consensus-based docking
followed by MD simulation and binding energy calculations
in order to identify promising potential inhibitors of the Zika
NS2B-NS3 protease. The top five compounds from the ZINC
library and the top compound from the NCI library are all
predicted to be potent inhibitors of NS2B-NS3 and possess
good pharmacokinetic profiles. These hits feature a number of
different scaffolds and functional groups, representing a var-
ied chemical space. To the best of our knowledge, this study is
the largest in silico screen targeting a Zika protein. As efforts
to develop treatment for Zika infection continue, there is a
critical need to identify new, promising lead candidates. By
selecting only compounds that are readily available, the hits
disclosed in this study can be quickly screened without the
need for synthetic preparation in an effort to rapidly identify
new compounds for lead development.
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