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Abstract
Calculations of acidities of molecules with multiple tautomeric and/or conformational states require adequate treatment
of the relative energetics of accessible states accompanied by a statistical-mechanical formulation of their contribution to
the macroscopic pKa value. Here, we demonstrate rigorously the formal equivalence of two such approaches: a partition
function treatment and statistics over transitions between molecular tautomeric and conformational states in the limit of a
theory that does not require adjustment by empirical parameters correcting energetic values. However, for a frequently
employed correction scheme, linear scaling of (free) energies and regression with respect to reference data taking an
additive constant into account, this equivalence breaks down if more than one acid or base state is involved. The
consequences of the resulting inconsistency are discussed on our datasets developed for aqueous pKa predictions during
the recent SAMPL6 challenge, where molecular state energetics were computed based on the Bembedded cluster refer-
ence interaction site model^ (EC-RISM). This method couples integral equation theory as a solvation model to quantum-
chemical calculations and yielded a test set root mean square error of 1.1 pK units from a partition function ansatz. For
all practical purposes, the present results indicate that a state transition approach yields comparable accuracy despite the
formal theoretical inconsistency, and that an additive regression intercept, which is strictly constant in the limit of large
compound mass only, is a valid approximation.

Keywords pKa prediction . Solvationmodel . Quantum chemistry . Integral equation theory . EC-RISM . Tautomers/conformers

Introduction

Calculations of acidity constants, Ka, are important not only
for practical purposes but also serve as important benchmarks
for testing solvation models used in conjunction with
quantum-chemical calculations, particularly in an aqueous en-

vironment [1]. Without loss of generality, and specializing to
water as a solvent, the constitutive reaction equation

HAaq→Hþ
aq þ A−

aq ð1Þ

is characterized thermodynamically by the relation between
equilibrium constant, activities a, standard Gibbs energy of
reaction ΔrG

0 and standard chemical potentials μ0 via

−β−1lnKa ¼ −β−1ln
a Hþ

aq

� �
a A−

aq

� �
a HAaq

� � ¼ ΔrG0

¼ μ0 Hþ
aq

� �
þ μ0 A−

aq

� �
−μ0 HAaq

� � ð2Þ

where β is an inverse temperature. The standard chemical
potentials in solution are commonly referenced to a standard
state of 1 bar and a formal concentration of c0 = 1 M at the
specified temperature (hereinafter assumed to be 298.15 K)
under the assumption of infinite dilution.
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Quantum calculations of these quantities, for instance by
employing a continuum solvation approach, usually model such
an ideal solution state by construction, approximating the stan-
dard chemical potential of a compound i in a given, fixed con-
formational and tautomeric state j, for instance, by [2–5].

μ0
j ið Þ≈μ0;id

j ið Þ þ E0;sol
j ið Þ þ μ0;ex

j ið Þ þ G0;RRHO
j ið Þ≡μ0;id

j ið Þ þ G0
j ið Þ: ð3Þ

It is given by the sum of an ideal (Bid^) part, which contains
the explicit reference to the standard concentration to be spec-

ified below, and an interaction component, termedG0
j ið Þ here.

The latter can be approximated by adding an electronic energy

in solution, E0;sol
j ið Þ, an excess chemical potential, μ0;ex

j ið Þ,
that represents the Gibbs energy of solvation upon transferring
a solute in the Bfrozen^ structural and electronic solution state
from the (ideal) gas phase into the solvent (assuming identical
formal gas and solution phase concentrations), and potentially
a Brigid rotor, harmonic oscillator^ (RRHO) model of rota-
tional and vibrational contributions to the Gibbs energy. As
the standard condition of infinite dilution is implicitly as-
sumed by constructing the Hamiltonian, the superscript B0^

at the interaction terms G0
j ið Þ can be dropped for simplicity.

For treating multistate species comprising an ensemble of
distinct tautomeric and conformational states, two strategies
are available. One approach is to sum over states by defining,
in a more or less ad hoc manner, a canonical partition function
while ignoring pressure-volume contributions [3–5], to end up
for the protonation equilibrium with

ΔrG0 ¼ μ0;id Hþ
aq

� �
þ μ0;id A−

aq

� �
−μ0;id HAaq

� �

þ μex Hþ
aq

� �
−β−1ln

∑
M

j¼1
exp −βGj A−

aq

� �h i

∑
N

k¼1
exp −βGk HAaq

� �� � ð4Þ

where we sum overM base and N acid states. The fourth term
on the right hand side (r.h.s.) represents the Gibbs energy of
hydration of the Bproton^ (again assuming identical gas phase
and solution state concentrations) [6, 7] and otherwise only
ideal terms that are usually assumed to be an additive constant.
Therefore, on the decadic pK scale we finally obtain the ex-
pression for the partition function (PF) approach,

pKPF
a ¼ βΔrG0

ln10
¼ b−

m
ln10

ln

∑
M

j¼1
exp −βGj A−

aq

� �h i

∑
N

k¼1
exp −βGk HAaq

� �� � ð5Þ

with

b ¼ β
ln10

μ0;id Hþ
aq

� �
þ μ0;id A−

aq

� �
−μ0;id HAaq

� �þ μex Hþ
aq

� �h i
; ð6Þ

where the terms assumed to be constant in total (i.e., ideal gas
and proton) are contained in b and, additionally, computation-
al flexibility is offered by introducing a parameter m, which,
ideally, is 1. The parameters m and b are typically adjusted by
fitting to experimental reference data, as was done by us [3, 4,
8] and others [5, 9, 10] (the latter reference also representing
an early example of a PF-type treatment), to name just a few.

The alternative is to connect all base and acid states by
individual transition equilibria as

HAaq;k→Hþ
aq þ A−

aq; j ð7Þ

for which straightforward reduction of Eq. (5) would give

pKa;jk ¼ bþ mβ
ln10

Gj A−
aq

� �
−Gk HAaq

� �h i
: ð8Þ

The individual state-to-state equilibrium constants can then
be assembled to yield themacroscopic form frommass balance,

Ka ¼
a Hþ

aq

� �
∑M

j¼1c j A−
aq

� �
=c0

∑n
k¼1ck HAaq

� �
=c0

; ð9Þ

as [11].

KST
a ¼ ∑M

j¼1

1

∑N
k¼1

1

Ka;jk

ð10Þ

where BST^ denotes the state transition approach. Here, in con-
trast to the analysis by Bochevarov et al. [11], who distinguish
between Bmicro- B(i.e., tautomeric) and Bnano- B(i.e., confor-
mational) states, which leads to another layer in the continued
fraction expansion, we need no such discrimination as the con-
cepts of tautomers and (underlying) conformers is purely se-
mantic, though pragmatically useful for certain models [11].
Physically, tautomers and conformers for a certain ionization
state refer to different local minima of the (free) energy surface
derived from one and the same molecular Hamiltonian, where-
as the Hamiltonians of acid and base forms differ. Hence, we
simply refer to Bstates^ between which transitions can occur in
the equilibrium mixture.

Though plausible, as the information content of both the PF
and the ST approaches in terms of the state-specific Gibbs ener-
gies is identical, it is not immediately obvious under which cir-
cumstances both methods yield identical results. The goal of the
present work was therefore to elucidate the formal equivalence
both analytically and numerically. As will be shown below, both
methods agree only in the limiting cases of a regression Bslope^
parameter m being exactly 1, i.e., for ideal (and usually inappli-
cable)models that do not require any form of empirical scaling of
energies, or, trivially, in situation where only single acid and base
states are considered. Numerically, this conclusion will be illus-
trated and discussed by re-analysis of our previous results
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obtained during the recent SAMPL6 (BStatistical Assessment of
the Modeling of Proteins and Ligands^) challenge [4, 12] on
blindly predicting aqueous pKa values for a number of kinase
inhibitor fragments with multiple protonation states and consid-
erable conformational flexibility.

Theory

Formal correspondence of the PF and ST approaches can be
proved if the mass balance equation leading to the continued
fraction representation (10) can be derived on the same
statistical-mechanical footing as Eq. (5) and its reduction to
Eq. (8).We therefore start with the fundamental expression for
the chemical potential of a molecule (omitting index i for
notational simplicity) composed of distinct states j such that
the approximation (3) and the assumption of negligible
pressure-volume work hold,

μ ¼ −β−1ln
V

Λ3NM
−β−1ln∑ jexp −βGj

� �

¼ μid−β−1lnZ≡μid þ G: ð11Þ

Here,G is the excess (interaction) part of the total chemical
potential as in Eq. (3), V represents the volume, NM is the
number of solute molecules which is 1 at infinite dilution, Z
is the partition function, and Λ denotes the thermal wave-
length given by

Λ ¼ βh2

2πmM

� 	1=2

ð12Þ

with molecular mass mM and Planck’s constant h. The
statistical-mechanical chemical potential should be equivalent
to the macroscopic thermodynamic definition

μ ¼ μ0 þ β−1lna ¼ μ0 þ β−1ln γc=c0
� �

¼ μ0 þ β−1ln∑ jγ jc j=c
0 ¼
c→0

μ0 þ β−1ln∑ jc j=c
0 ð13Þ

with total solute concentration c, split into state contributions
cj according to mass balance, and activity coefficients γj that
approach 1 at infinite dilution. By noting that the probability
of a state j can be written as

pj ¼
exp −βGj

� �
Z

¼ c j
c
¼ c j

c
c0

c0
ð14Þ

where we inserted 1 = c0/c0, and inserting 1 =∑jpj as denom-
inator in G of Eq. (11) we have

G ¼ −β−1ln
∑ jexp −βGj

� �
∑ jp j

¼ þβ−1ln∑ j

p j

Z
¼ þβ−1ln

c0

Zc
∑ j

c j
c0

� 	

¼ β−1ln
c0

Zc
þ β−1ln∑ j

c j
c0
:

ð15Þ

We recover the concentration dependence of (13) as the last
term on the r.h.s., and the standard chemical potential there-
fore becomes

μ0 ¼ μid þ β−1ln
c0

Zc
¼ −β−1ln

ZVc

c0Λ3 ð16Þ

which, by also noting that c→ 1/V at infinite dilution, finally
yields

μ0 ¼ −β−1ln
Z

c0Λ3 ¼ −β−1ln
∑ jexp −βGj

� �
c0Λ3 : ð17Þ

For the protonation equilibrium in the partition function
derivation we then ultimately find from inserting the expres-
sions for the standard chemical potential for the reacting spe-
cies into Eq. (2) and taking the negative decadic logarithm

pKa ¼ −
1

ln10
ln

Λ3 HAð Þ c0ð Þ−1
Λ3 A−ð ÞΛ3 Hþð Þ

þ 1

ln10
μex Hþ

aq

� �
−

1

ln10
ln

∑M
j¼1exp −βGj A−

aq

� �h i
∑N

k¼1exp −βGk HAaq

� �� � :
ð18Þ

Comparisonwith Eq. (5) shows that both relations are equiv-
alent (form = 1), showing that mass balance leads directly to the
partition function approach. It is, however, important to note
that the regression intercept b, i.e., the sum of the first two terms
in the latter equation is actually not a constant as it depends not
only on themass of proton but also on themass ratio of acid and
base forms via the thermal wavelengths, though not on the
particular state. Unless the mass-dependent terms are grouped
with the Boltzmann factors the intercept can be interpreted as
essentially constant only in the limit of much larger molecular
mass of the compound compared to the proton, which, howev-
er, holds true in most situations. In this limit, the first term
becomes −4.39 kcal mol−1 (see also [13]) compared to the
much larger Tissandier value for the Gibbs solvation energy
of the proton of −265.89 kcal mol−1 [6] (assuming identical
gas and solution phase concentrations). For, e.g., HF, the first
quantity would change by 7.5%, corresponding to ca. 0.24 pK
units. Very accurate calculations should, therefore, take this
effect into account. Note that this result holds not only within
the quantum-statistical formalism invoked for the chemical po-
tential, but also in a classical framework, where integration over
momentum space yields the identical dependence of the stan-
dard chemical potential on molecular mass and standard con-
centration (see Eq. (8) in [14]).

To close the proof of equivalence, mass balance also leads
to the continued fraction expansion (10) where Eq. (8) can be
inserted to show under which conditions Eqs. (5) and (18)
arise. Mass balance according to Eq. (9) for the protonation
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equilibrium readily leads to the continued fraction expansion
(10) as derived in [11]. Rewriting Eq. (8) on the energy scale
and inserting into (10) yields

KST
a ¼ ∑M

j¼1

1

∑N
k¼1

1

Ka;jk

¼ ∑M
j¼1

1

∑N
k¼1

exp −βGk AHaqð Þ½ �
exp −βG j A−

aqð Þ½ �
� 	m

10b
: ð19Þ

In the innermost sum, the j-dependent denominator is con-
stant for all k such that we obtain

KST
a ¼ ∑M

j¼1

1

∑N
k¼1exp −βGk AHaq

� �� �m
exp −βGj A−

aq

� �h im 10b
¼ ∑M

j¼1

exp −βGj A−
aq

� �h im
10−b

∑N
k¼1exp −βGk AHaq

� �� �m

¼ 10−b
∑M

j¼1exp −βGj A−
aq

� �h im
∑N

k¼1exp −βGk AHaq

� �� �m
ð20Þ

in the ST form. In contrast, the corresponding PF result de-
rived from Eq. (5) reads

KPF
a ¼ 10−b

∑M
j¼1exp −βGj A−

aq

� �h i
∑N

k¼1exp −βGk HAaq

� �� �
0
@

1
A

m

ð21Þ

which clearly shows that both expressions can only be identi-
cal if either m = 1 for multistate mixtures or if only one state
per acid and base form exists while b is unaffected.

Numerical illustration

To demonstrate the effect of slope parameters m ≠ 1 on the
relative performance of both the PF and ST models for a
realistic prediction problem, here we re-analyze training
and test set data obtained during the SAMPL6 challenge
[4], where the PF model was employed exclusively.
Briefly, we tested EC-RISM [2] theory for treating aque-
ous solvation in conjunction with quantum-chemical cal-
culations, and were able to show that root mean square
errors (RMSE) of ca. 1.0 pK units could be achieved for a
well-known training set [15]. About the same error (1.1
pK units) was obtained for the independent test set com-
posed of kinase inhibitor fragments, whose microstates
were provided as part of the SAMPL6 challenge where
the task was to blindly predict their pKa values. The chal-
lenge was explicitly designed to cover molecules with
multiple protonation sites, ionization states, and high con-
formational freedom, which necessitated adequate confor-
mational sampling based on a large reference set of

tautomers provided by the organizers. It is therefore not
immediately clear that the PF and the ST approaches
should perform similarly, as a non-unity slope together
with large state ensembles suggests discrepancies (see
derivation and discussion above).

We confine our re-analysis to the best-performing quan-
tum-chemical level of theory and solvation model, termed
BMP2/6-311+G(d,p)/φopt/copt2^ in [4], where we used the
two best-ranked conformations per tautomeric state (Bcopt2^)
with an optimized model to compute electrostatic solute-
solvent interactions (Bφopt^) in combination with the 6-311+
G(d,p) basis set within MP2 calculations. As a consistency
check, besides the B2par^ regression models (m and b vari-
able), we additionally tested the PF and the ST models with a
fixed slope of m = 1 (B1par^), not only to demonstrate the
resulting equivalence, but also to analyze the impact on pre-
dictive performance. All statistical regression and metrics data
are found in Tables 1 (training set) and 2 (test set), while the
individual correlations of calculated and experimental data for
the various methods are depicted in Fig. 1. Note that, unlike
the linear regression problem of the PF approach, the STmod-
el requires nonlinear optimization of a loss function defined
by the sum of squared residuals.

Training both models in 1par and 2par variants showed
the expected results. While the trained parameters and the
resulting statistical metrics are identical in the 1par case,
as mathematically required, there is a small but almost

Table 1 Parameters of optimized embedded cluster reference
interaction site model (EC-RISM-) based aqueous pKa models for the
training set along with statistical metrics [root mean square error
(RMSE), mean absolute error (MAE), mean signed error (MSE), slope
m, intercept b, and coefficient of determination R2 from predictive
regression]. BPF/2par^ represents metrics reported in [4]

RMSE MAE MSE R2 m b

PF/2par

All 1.04 0.87 0.00 0.93 0.74 −150.72
Acids 0.93 0.77 0.56 0.93

Bases 1.14 0.97 −0.54 0.95

ST/2par

All 1.05 0.87 0.00 0.93 0.74 −150.64
Acids 0.93 0.77 0.56 0.93

Bases 1.14 0.97 −0.54 0.95

PF/1par

All 1.66 1.43 0.00 0.93 1.00 −204.24
Acids 1.20 1.06 0.53 0.93

Bases 2.00 1.78 −0.51 0.95

ST/1par

All 1.66 1.43 0.00 0.93 1.00 −204.24
Acids 1.20 1.06 0.53 0.93

Bases 2.00 1.78 −0.51 0.95
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negligible difference in the results for the 2par models,
which is mainly a result of the limited amount of tauto-
meric and conformational freedom in the training data set
(see Online Resources in [4]). The same holds true when
applying the trained models to the test dataset from the
SAMPL6 challenge. Despite the drastically differing di-
versity, the results are in line with the results from the
training set. One has to keep in mind, though, that the
1par models are substantially inferior regarding perfor-
mance (training set), and even more so in terms of
predictivity (test set), which emphasizes the importance
of scaling (free) energies by the slope parameter.
Surprisingly, since the differences between PF and ST
models are so small, it is in practice almost irrelevant
which approach is preferred for acidity predictions.

Concluding remarks

In summary, we addressed a conceptual problem for practical
pKa calculations that results from the necessity to include an
energy scaling parameter m into the prediction model that is

Table 2 Statistical metrics for pKa predictions on the test set (RMSE,
MAE, MSE, slope m’, intercept b’, and coefficient of determination R2

from descriptive regression) for various models. BPF/2par^ represents
metrics reported in [4]

Model RMSE MAE MSE m’ b’ R2

PF/2par

All 1.13 0.97 −0.36 1.17 −1.38 0.91

Anionic 0.80 0.61 0.46 0.86 1.70 0.91

Cationic 1.30 1.20 −0.88 1.08 −1.25 0.69

ST/2par

All 1.13 0.96 −0.35 1.17 −1.40 0.91

Anionic 0.81 0.61 0.48 0.86 1.72 0.91

Cationic 1.30 1.18 −0.88 1.10 −1.33 0.70

PF/1par

All 2.04 1.87 −0.32 1.57 −3.75 0.91

Anionic 1.90 1.70 1.70 1.15 0.38 0.91

Cationic 2.12 1.97 −1.59 1.46 −3.58 0.68

ST/1par

All 2.04 1.87 −0.32 1.57 −3.75 0.91

Anionic 1.90 1.70 1.70 1.15 0.38 0.91

Cationic 2.12 1.97 −1.59 1.46 −3.58 0.68

Fig. 1a–d Embedded cluster
reference interaction site model
(EC-RISM-)derived vs.
experimental pKa for training [15]
(top row) and test set [4] (bottom
row) calculated with either the
partition function (PF; blue) or the
state transition (ST) approach
(red, mostly overlaying blue
symbols). The charge state of the
molecular species involved in the
transition is reflected by different
symbols: squares acids (training
set)/anionic transition (test set),
triangles bases (training set)/cat-
ionic transition (test set). Anionic
and cationic refer to the sum over
the charges of all species involved
in a reaction which is negative or
positive, respectively. Pairs of
calculated and experimental data
points are collected in
Online Resource 1, raw data un-
derlying the regression analysis
was taken from Online Resources
to [4]. a, c using m as a free pa-
rameter and b, d: using a fixed
m = 1.
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typically adjusted empirically. To this end, we derived the
rigorous statistical-mechanical expressions for the acidity con-
stants for two variants of multistate calculations, which re-
vealed the source of an inconsistency when used within re-
gression analysis.

From amathematical perspective, the issue boils down to the
inequality (x + y)m ≠ xm + ym for arbitrary m ≠ 1 where x and y
represent non-zero Boltzmann factors of different tautomeric or
conformational states of a given molecule. This finding is an
example of a case in which formal equivalence of two ap-
proaches does not necessarily translate into equivalence in prac-
tical applications where numerical model adjustments turn out
to be necessary. One might have expected significant differ-
ences between the partition function (l.h.s.) and the state tran-
sition (r.h.s.) approaches as the regression results indicate sig-
nificant deviations from 1. However, for the training set the
largest difference between PF and ST results is on the order of
0.1 pK units with our slope parameter of 0.74. Even with a
smallerm of 0.5, this difference would not exceed approximate-
ly 0.2 pK units. This means that both models are quantitatively
very similar for practical purposes, at least as long as a suffi-
ciently accurate methodology is applied as in this work, and
there is no obvious reason to prefer one method over the other.

Another result of the rigorous derivation was that the re-
gression constant is actually variable, though with limited,
and, in practice, mostly negligible range, as it depends, strictly
speaking, on the mass ratio between acid and base form,
which approaches unity only in the limit of large molecules.
Taken together, these findings could be useful to the commu-
nity as they clarify potential sources of controversy.
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