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What is semiempirical molecular orbital theory approximating?
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Abstract
We elucidate the approaches used to incorporate electron correlation in existing semiempirical molecular orbital theory (SEMO)
methods and compare them with the techniques used in other quantum chemical methods. After analyzing expressions for
electron correlation in ab initio wavefunction theory, density functional theory, and density functional-based tight-binding
(TB) methods, we suggest a framework for developing hybrid TB-SEMO methods. We provide a numerical proof-of-concept
for such a method based on the OM2 method.
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Introduction

Semiempirical molecular orbital theory (SEMO) is an umbrel-
la term for a family of methods that originated in the work of
John Pople in the 1960s as approximations to minimal basis
Hartree–Fock (HF) theory [1–3]. The main hallmarks of these
methods are the neglect of the atomic orbital (AO) overlap
matrix (S = 1) in the secular equation and the neglect of a large
number of (multi-center) two-electron integrals. While these
approximations were originally intended to simply maintain
the invariance properties of HF, they could partially be justi-
fied later on [4–6].

Even though it quickly became apparent that ab initio min-
imal basis HF is a woefully inadequate model chemistry,
SEMO methods have survived to this day [7–13]. This is
due to a shift in philosophy most prominently associated with
Michael Dewar and Michael Zerner [14–18]. Instead of un-
derstanding SEMO as an approximation to HF, they simply
used it as a parametric framework, which was fitted to exper-
imental data. This allowed them to obtain thermochemical

(Dewar) and spectroscopic (Zerner) predictions with (at the
time) unrivaled accuracy and efficiency. Importantly, the
physical basis of the SEMO equations ensured that these
methods were reasonably transferable, compared to fully em-
pirical force-fields. At the same time, two different approaches
to the development of the SEMO methods emerged: the first
approach is exploiting parametric flexibility in a Bbrute-force^
fitting strategy on as large and diverse training set as possible
and the second approach is pursuing improvement of the
physical model to be parametrized on a carefully selected
limited training set [19–21].

The fully empirical route of the first approach brings the
danger of unexpected (and sometimes catastrophic) failures
for systems outside the training set. As an example, to im-
prove hydrogen bond energies, additional Gaussian potentials
were introduced in AM1 (and used in most PMx methods)
[13, 22, 23]. These corrections do improve hydrogen bond
geometries (though not necessarily energies [24]), but they
lead to non-covalent alkyl-alkyl equilibrium distances of be-
low 1 Å. Ironically, dispersion corrections to PM6 therefore
contain an additional empirical repulsive potential between
hydrogen atoms [25, 26]. While this solves the specific issue
of alkyl-alkyl interactions, it will likely cause new problems
elsewhere (e.g., in the covalent bond of H2). Overall, patching
problems caused by empirical corrections with new empirical
corrections resembles the old theory of epicycles in Ptolemaic
astronomy.

In the second approach, the underlying non-parametric
SEMO model is modified to come as close as possible to the
parent minimal basis HF and to retain the speed of the SEMO
methods, as in Thiel’s OMx methods [6, 27]. Nevertheless,
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recovering minimal basis HF is not the goal per se due to the
known inadequacy of this method as a modern model chem-
istry. Instead, the hope is that given a better model (closer to
HF), it should be easier to introduce and fit parameters to
reproduce experimental and high-level theoretical properties
and that the resulting method will be more robust in situations
outside the training set. Indeed, the OMx methods greatly
outperform methods of the first approach for very challenging
systems with peculiar electronic structure [27, 28]. We argue,
however, that the next-generation SEMOmodels should target
not HF, but quantum chemical methods that include correla-
tion in their model. These SEMO models should also remain
as fast as modern general-purpose SEMO methods.

To approach the design of such next-generation SEMO
models, we have to reconsider what the SEMO model is sup-
posed to be approximating. In particular, it has long been
argued that the empirical scaling of two-electron integrals in
methods like MNDO (modified neglect of diatomic overlap)
can be justified as an incorporation of dynamical correlation
[14, 29]. If that is the case, then it is potentially misleading to
look to HF for guidance regarding the desired form and prop-
erties of SEMOHamiltonians. After all, HF by definition con-
tains no electron correlation [30].

In this paper, we consider the question posed in the title in
light of these considerations. To this end, we briefly review the
equations of MNDO and related methods as they are derived
in the context of HF. We then consider how correlation is
introduced in other HF-like theories based on ab initio
wavefunction theory (WFT) and Kohn–Sham (KS) density
functional theory (DFT). From this analysis, we argue that
the introduction of correlation effects into the SEMO Fock
matrix is inconsistent with the use of a HF-like total energy
expression. Alternative expressions are discussed, and a con-
sistent parameterization strategy is proposed. Finally, some
preliminary numerical results are shown, indicating the feasi-
bility of improved, consistent SEMO methods.

Theory

Electron correlation in semiempirical Hamiltonians

The central equation to be solved in HF and other mean-field
electronic structure methods is a generalized matrix eigenval-
ue problem in a basis of non-orthogonal AO basis functions
[31]:

FC ¼ εSC; ð1Þ
with the Fock matrixF, the molecular orbital (MO) coefficient
matrix C, the AO overlap matrix S and the diagonal MO
eigenvalue matrix ε. This is typically solved by orthogonaliz-
ing the Fock matrix so that [32]:

λF¼ S−1=2FS−1=2 ð2Þ
and

λC¼ S1=2C ð3Þ

This leads to the canonical eigenvalue problem:

λFλC¼ ελC; ð4Þ
which can be solved by diagonalization of λF. In MNDO and
related methods, the approximation is made that λF =F, so
that Eq. (4) can be solved directly. The matrix elements of F
resemble the HF ones, i.e.:

Fμν ¼ Tμν þ Vμν þ ∑
AO

λσ
Pλσ μνjλσð Þ−1

2 μλjνσð Þ� �
: ð5Þ

Here, Tμν and Vμν are the one-electron kinetic and potential
energy contributions, (μν| λσ) are two-electron repulsion in-
tegrals and Pλσ are density matrix elements defined as:

Pλσ ¼ ∑
occ

i
niCλiCσi; ð6Þ

with the summation going over all occupied MOs. Here ni are
orbital occupation numbers.

For convenience, the first two terms on the r.h.s of Eq. (5)
can be combined into the core Hamiltonian matrix Hcore,
whereas the remaining terms are grouped into the two-
electron matrix G (i.e., F =Hcore + G). The two-electron ma-
trix can be further decomposed into the Coulomb (J) and
exchange matrices (K).

In MNDO and related methods, Hcore
μν is directly given via

empirical expressions. Meanwhile, G is strongly simplified
via the neglect of diatomic differential overlap (NDDO) ap-
proximation, which leads to a neglect of most two-electron
integrals according to [5]:

μAνBð jλCσDÞ ¼ δABδCD μAνAð jλCσCÞ ð7Þ
where the notation μA indicates that basis function μ is cen-
tered on atom A.

As an aside, this approximation (which amounts to a neglect
of all three- and four-center integrals and some two-center two-
electron integrals) is only partially justified in an orthogonal
Löwdin basis for the valence-only minimal basis set, meaning
that the assumption that λF=F and the NDDO approximation
are not entirely consistent with each other [6]. Consequently,
the reintroduction of the generalized eigenvalue equation into
one of the least accurate SEMO models led to noticeable im-
provements [33]. In addition, broadly used OMxmethods rem-
edy the imbalance in the one-electron integrals, which among
the NDDO-retained integrals are most strongly affected by the
orthogonalization [6, 7].
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In the formulation of the MNDOmethod, Dewar and Thiel
used an empirical expression for the remaining two-electron
integrals (μAνA| λCσC). This expression is based on a multi-
pole expansion of the densities μAνA and λCσC, which is as-
ymptotically correct for large distances rAC. Meanwhile, in the
limit rAC = 0, the values of the one-center two-electron inte-
grals (μAνA| λAσA) should be recovered (which were derived
from experimental data). In MNDO, this is achieved via the
Dewar–Sabelli–Klopman (DSK) scaling function.

It was observed that this scaling leads to semi-empirical
integrals that are smaller than the corresponding ab initio ones.
Since the one-center integrals are derived from spectroscopic
data (which obviously includes all electron correlation ef-
fects), this was interpreted as an average inclusion of dynam-
ical correlation. Indeed, the mean-field potential of HF is
known to be overly repulsive, an effect that is, e.g., reflected
in erroneous one-electron properties such as dipole moments
[34, 35].

To make this implicit correlation treatment more apparent,
we can write the semi-empirical (SE) integrals as:

μAνAð jλCσCÞSE ¼ μAνAjλCσCÞð þ VC
μνλσ rACð Þ ð8Þ

where we have introduced a correlation potential VC
μνλσ rACð Þ,

which is defined as the difference between the semiempirical
and ab initio integrals. Using the definitions of the Coulomb
and exchange matrix elements (Eq. 5), we can define an anal-
ogous matrix VC for the correlation potential, which adds up
the SE corrections (Eq. 8) to J and K. With this, we can
reformulate the SEMO Fock matrix as:

FSEMO
μν ¼ Hcore

μν þ Jμν−Kμν þ VC
μν ð9Þ

It should be emphasized that the point of this reformulation
of theMNDO equations is not to actually implement the meth-
od in this way, but rather to make the treatment of electron
correlation more obvious, and to facilitate comparison with
WFT and DFT methods. In general, Eq. (9) defines a correlat-
ed single determinant (independent particle) theory [36–38].

Correlation potentials in Kohn–Sham density
functional theory

In an AO basis set, the KS equations closely resemble Eq. (9)
[39]:

FKS
μν ¼ Hcore

μν þ Jμν þ VXC
μν ð10Þ

Here, VXC
μν is a matrix element of the exchange-correlation

potential (Vxc) in the AO basis [40]. Indeed, hybrid functionals
like B3LYP or PBE0 also include a scaled contribution of HF
exchange (Kμν), further increasing the structural similarity be-
tween the KS and SEMO equations [41, 42].

Let us consider the properties of Vxc and the corre-
sponding KS determinants. Most importantly, the exact
Vxc is the potential that yields the correct ground-state
density of the system [40, 43]. Consequently, a good
approximation to Vxc should yield a determinant that
accurately reflects the exact electron density and related
one-electron properties such as dipole moments and mo-
lecular electrostatic potentials.

A second important property of the exact Vxc is that
the eigenvalue of the highest occupied molecular orbital
(HOMO) of the corresponding self-consistent KS deter-
minant is exactly equal to the vertical ionization poten-
tial (IP) of the system [44]. Furthermore, Bartlett has
formulated a more general IP theorem, based on the
adiabatic time-dependent DFT equation [36, 45, 46].
According to this, all occupied orbital eigenvalues
should correspond to vertical ionization potentials.
Baerends and coworkers found this to be true for a
broad range of molecules when using the statistical av-
eraging of orbital potentials (SAOP) approximation to
Vxc [47].

The exact Vxc is not known in general, but it can be
determined for specific systems, e.g., via the optimized
effective potential method or by inverting accurate elec-
tron densities [48–52]. Such studies offer numerical
confirmation that the above conditions (in particular re-
garding ionization potentials) are indeed properties of
the ideal Vxc. For general applications, many approxima-
tions to Vxc exist, which fulfill these conditions to a
greater or lesser extent [45, 53].

In this context, it should be noted that the focus of most
functional developers has been on the exchange-correlation
functional (Exc, see below), and not on the potential [54].
This is attractive because the corresponding potential can in
principle be derived for any functional via the functional de-
rivative with respect to the electron density ρ:

Vxc rð Þ ¼ ∂Exc ρ½ �
∂ρ rð Þ ð11Þ

Meanwhile, the inverse is not true, i.e., it is in general
not possible to derive a functional that corresponds to
some known potential. However, the convenience of Eq.
(11) is misleading. The consistent potentials derived in
this way tend to be of poor quality, reflecting e.g., in an
erroneous description of transition states and other self-
interaction based problems. Burke and coworkers have
characterized these problems as Bdensity-driven^ errors
[55, 56]. It is telling that these issues can (to a large
extent) be fixed by combining HF densities non-self-
consistently with common density functionals [57, 58].
In other words, having no correlation potential seems to
be better than having a poor one in many cases.
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Correlation potentials in wavefunction theory
methods

Conventionally, higher-level WFT methods are based on a
canonical HF reference, without any correlation contribution
to the Fock matrix. The HF equations yield the variationally
optimal reference, i.e., the one with the lowest energy. There
are, however, also alternative choices to be made, such as
Brueckner, natural or orbital-optimized references [38,
59–63].

These alternative determinants by definition have a
higher energy than the canonical HF one. At first sight,
this may seem like a drawback, as it means that more
energy has to be recovered by the correlation treatment.
However, these references are optimal in different ways.
For instance, the Brueckner determinant has the largest
overlap with the exact wavefunction and orbital-
optimization yields the determinant which minimizes
the total energy (i.e., the Hartree–Fock energy, EHF, plus
the correlation energy, EC) [64]. These determinants are
therefore more di rec t ly t ied to the corre la ted
wavefunction. The electrons are not simply subject to
the mean-field potential, but feel an additional correla-
tion potential [38]. The corresponding generalized Fock
matrices thus formally resemble Eq. (9).

As for DFT, we can ask what the properties of these
correlation potential and the related determinants are.
Hesselmann and Jansen showed that the one-electron
and response properties of Brueckner determinant are
in significantly better agreement with experiment than
those of the uncorrelated HF determinant [35]. The
same is true for natural orbitals, which are obtained
from diagonalization of correlated one-electron re-
duced-density matrices. By construction, they therefore
reflect the more accurate electron density of the corre-
lated treatment. Similarly, orbital-optimized MP2 calcu-
lations have been shown to produce accurate spin den-
sities [62]. Finally, there is a close relationship between
the extended Brueckner Fock matrix and correlation cor-
rections to Koopman’s theorem, meaning that the corre-
lation potential also improves the orbital energies [65,
66].

Though not usually counted as WFT methods, we
should also mention electron propagator and Green’s
function approaches, such as the Outer Valence
Green’s Function and GW approximations [38, 65,
67–70]. Here, electrons interact with a screened poten-
tial that is described by a so-called Bself-energy^ term.
Again, the methods can formally be written via a gen-
eralized Fock matrix resembling Eq. (9), with the self-
energy corresponding to the correlation potential [65].
The eigenvalues of this equation then correspond to
vertical IPs (and electron affinities).

Comparison between SEMO, DFT, and WFT methods

As a short summary of the previous three sections, we note
that: 1) The effect of scaling two-electron integrals in SEMO
corresponds to introducing a correlation potential into the
Fock matrix. 2) The exact exchange-correlation potential in
KS-DFT leads to a determinant that has the exact ground state
electron density and occupied orbital eigenvalues, which cor-
respond to vertical IPs. 3) Correlation potentials in WFT also
improve the electron density and eigenvalue spectra (but not
the energy of the determinant) relative to HF.

As both DFT and WFT are in principle exact, the corre-
sponding exact correlation potentials must have the same prop-
erties. This should also be true for good approximations in both
theories, although the KS potentials of popular density func-
tional approximations like BLYP are actually rather poor [49].
While SEMO correlation potentials have not usually been con-
sidered explicitly, the parameterization of the methods typically
uses reference dipole moments and (principal) IPs. The recent
hpCADD-Hamiltonian of Clark and coworkers further includes
molecular electrostatic potentials [71]. In light of the above
discussion, this is a very good choice. Furthermore, the use of
experimentally (or theoretically) derived one-center two-elec-
tron integrals ensures that the SEMO Hamiltonian is tied to the
correlated ionization potentials of isolated atoms [72, 73].

In this sense, the established practice in the SEMO com-
munity is vindicated by our analysis. However, heats of for-
mation and molecular geometries also play a very significant
role in the parameterization. As we will discuss in the follow-
ing section, this should be addressed independently.

Total energy expressions

The total electronic energy Eel in HF and SEMO is calculated
via:

EHF
el ¼ 1

2
∑
AO

μν
Pμν Hcore

μν þ Fμν

h i

¼ ∑
AO

μν
Pμν Hcore

μν þ 1

2
Gμν

� �
ð12Þ

As is well known, this total electronic energy in not equal
to the sum of occupied MO eigenvalues, sometimes referred
to as the band energy Eband:

Eband ¼ ∑
occ

i
niεi ¼ ∑

occ

i
∑
AO

μν
niCμiCνi Fμν

¼ ∑
AO

μν
Pμν Hcore

μν þ Gμν

h i
ð13Þ

It follows that the band energy includes a double counting
of two-electron terms, which can be removed to obtain the
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total energy, in terms of Eband [74]:

EHF
el ¼ ∑

occ

i
niεi−

1

2
∑
AO

μν
PμνGμν ð14Þ

This gives the total electronic energy of a single de-
terminant in HF. However, as discussed above, the in-
clusion of a correlation potential does not improve (in
fact worsens) the energy of the reference determinant.
From a total energy perspective, the benefit of using a
correlated determinant is only seen when it is combined
with an explicit expression for the correlation energy,
e.g., via coupled cluster (CC) or perturbation theory
(so-called post-HF methods).

There has in fact been a long history of applying
such post-HF treatments to SEMO Hamiltonians. Most
prominently, the configuration interaction (CI) method
can be combined with SEMO determinants to obtain
excited state properties [8, 75–79]. While there is some
concern with respect to double-counting between the
implicit and explicit description of correlation, this does
not seem to be a major issue as long as the CI treat-
ment is mostly used to describe static correlation within
a limited active space [78].

In contrast, explicit correlation treatments for ground-
state properties are rarely used, although the MNDO/C
method was explicitly parameterized for ground-state
energetics, in combination with second-order perturba-
tion theory [29]. This approach is formally well justified
in our view, but the use of traditional correlated quan-
tum chemistry methods in a minimal basis set does not
yield satisfactory results, as high-angular momentum po-
larization functions are necessary to adequately describe
the electron-electron cusp [80]. From a more practical
point of view, using a WFT-based correlation energy
expression significantly impacts the main advantage of
SEMO methods, namely their computational efficiency.

It is therefore worthwhile to look at DFT, where the
correlated total energy is obtained at a mean-field cost.
This is achieved through the exchange-correlation func-
tional Exc. In analogy to Eq. (14), the total electronic
energy in DFT can be written in terms of a sum of
orbital energies and correction terms [74, 81]:

EDFT
el ¼ ∑

occ

i
niεi−EH ρ½ �−∫Vxc rð Þρ rð Þdr þ Exc ρ½ � ð15Þ

Here, EH[ρ] is the Hartree energy (corresponding to Jμν in
Eq. 9), and the integral over Vxc corresponds to the contribu-
tions of Kμν and VC

μν . In other words, the first three terms in

Eq. (15) are analogous to the semiempirical version of Eq.
(14), where VC

μν is implicitly included in Gμν via the scaled

integrals. However, Eqs. (12) and (14) contain no analogue of
the last term Exc[ρ].

From the point-of-view advocated in this paper (namely
that the semiempirical scaling of two-electron integrals corre-
sponds to an implicit definition of a correlation potential anal-
ogous to Vxc), the use of Eqs. 12 or 14 to determine the elec-
tronic energy in SEMO is therefore inconsistent.

How can this inconsistency be resolved? The
straightforward solution would be to include an explicit
Exc[ρ]. However, this is not ideal for several reasons.
Firstly, the quality of SEMO electron densities is limited
due to the minimal basis set and frozen core approxi-
mation. Secondly, Exc[ρ] is generally evaluated with nu-
merical quadrature, which has negligible computational
cost in the context of a full first-principles DFT calcu-
lation, but may significantly impact the efficiency of a
SEMO approach. Finally, as we alluded to above, there
is no simple prescription for obtaining the Exc[ρ], which
corresponds to a given Vxc.

It is instead worth looking to semiempirical density func-
tional based tight-binding (TB) schemes such as DFTB
[82–86]. These methods also avoid the explicit evaluation of
Exc[ρ], despite being approximations to DFT. In the simplest
case, the total energy of a TB scheme is given by:

ETB
tot ¼ ∑

occ

i
niεi þ 1

2
∑

atoms

A;B
Vrep rABð Þ ð16Þ

Here, Vrep(rAB) are pair-potentials, which fold in all
effects from the last three terms of Eq. (15), as well as
the core–core repulsion between atoms A and B. This
term is purely empirical, but it has been shown that the
sum of these contributions is indeed approximately
pairwise and short-ranged in DFT [74]. Formally, it re-
sembles empirical modifications of the core–core terms
that are also known in SEMO methods based on Eq.
(12) (used, e.g., to improve the description of hydrogen
bonds) [87]. Similar pairwise expressions have also
been used by Grimme et al. to correct basis-set insuffi-
ciencies [88, 89].

Determining the total energy of a semiempirical
Hamiltonian via Eq. (16) defines a hybrid TB-SEMO
method. In the tight-binding literature, the short-ranged,
repulsive nature of Vrep(rAB) is attributed to a cancella-
tion between double-counting terms, Exc[ρ] and the
core–core repulsion [74]. This indicates that the use of
Eq. (16) might be advantageous over two other alterna-
tives, which could be used.

One of them is to add an additional nucleus-electron
potential to the core-Hamiltonian [90]. This technique
allows for description of noncovalent interactions, which
are not described adequately by HF and the SEMO
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methods without dispersion corrections, but are de-
scribed adequately with post-HF methods including cor-
relation explicitly. This recovers the long-range correla-
tion contribution, but not the complete correlation
energy.

Another approach is to model the effects of the correlation
functional explicitly:

ESEMO
el ¼ ∑

occ

i
niεi−

1

2
∑
AO

μν
PμνGμν þ ESE

C ð17Þ

Here, ESE
C represents some semiempirical expression for

the correlation energy, which remains to be defined, although
empirical and machine-learning (ML)-based approximations
for the correlation energy have been reported [91–94]. From a
formal perspective, Eq. (17) mirrors Møller–Plesset perturba-
tion theory. Specifically, if the Hamiltonian is partitioned as

Ĥ ¼ F̂ þ λV̂ ; ð18Þ

the first and second terms on the r.h.s of Eq. (17) correspond to
the MP0 and MP1 energies, whereas the last term in principle
contains all higher orders (and in practice would be truncated,
e.g., to second order). As mentioned above, the explicit cal-
culation of the correlation energy in a minimal basis set is not
desirable, however.

Independent of the final form of the total energy expression,
the above arguments have important consequences with respect
to the parameterization procedure. In the spirit of a correlated
orbital theory, all SEMO parameters that directly affect the
Fock matrix elements (electronic parameters) should be opti-
mized to fulfill the known properties of a correlation potential.
Specifically, only IPs and one-electron properties (such as di-
pole moments) should be used as reference data at this stage.
Clearly, this will lead to a poorer performance for thermochem-
istry and molecular geometries, if the electronic energy is de-
termined according to Eqs. (12) or (14). These errors should
then be corrected by a further parametric expression (e.g.,
Vrep(rAB)), which now includes the effects of Exc[ρ].

Importantly, the parameterization of this term is not
performed simultaneously with the electronic parameters,
but subsequently. In other words, first the electronic pa-
rameters are optimized to correctly describe a reference
set of IPs and dipole moments (for molecules with fixed
geometries). Second, the pair potentials are parameterized
to correctly describe thermochemistry and geometries.
Besides being physically motivated, this separation of po-
tential and energy functional also has practical advantages
for the parameterization process. We expect that the error
function for both steps should be significantly smoother,
compared to when thermochemical and electronic refer-
ence data is included simultaneously.

Results and discussion

In the previous section, we analyzed the nature of the implicit
description of electron correlation in SEMO methods. This
analysis showed that (1) a single-particle correlation potential
leads to improved one-electron properties (orbital energies,
dipole moments, etc.) and (2) evaluating the total energy of
a correlated determinant with the HF energy expression does
not lead to improved energies. We concluded that the param-
eterization of SEMO Hamiltonians should focus on one-
electron properties (rather than energies and molecular geom-
etries), and that the SEMO total energy expression needs an
additional term to account for the correlation energy.
Unfortunately, the full development and parameterization of
a new SEMOmethod along these lines is beyond the scope of
this manuscript. In the following, we provide some numerical
evidence that such a method is feasible, however.

Specifically, we construct a prototype method using the
unmodified SEMO formalism for the Fock matrix. We decid-
ed to build this TB-SEMO method based on the OM2 [7, 95,
96] Hamiltonian, which is known [27, 97] to be among the
most robust NDDO-based SEMO methods. The Hamiltonian
is reparameterized using only one-electron properties as refer-
ence data. We then apply this Hamiltonian in an energy ex-
pression like Eq. (16), and explore the properties of the corre-
sponding repulsive potential Vrep(rAB). All OM2 calculations
were performed with the development version of the MNDO
program [98].

We started construction of the TB-OM2 method by
reparametrization of the OM2 technique to minimize the
sum of squares of errors (SSQ) in IPs (calculated according
to Koopmans’ theorem) and dipole moments for the set of
fixed reference geometries. The training set was the CHNO
set [27] used in parametrization of the OM2 method. We op-
timized all OM2 parameters except for the one-center two-
electron integrals and parameters for the effective core poten-
tials. First, we optimized each parameter one after the other.
Second, we simultaneously re-optimized all parameters ob-
tained in the first step. We used the Subplex optimization
algorithm as implemented in the NLopt library [99, 100].
Weighting factors for errors in IPs and dipole moments were
adjusted so that their SSQs were numerically equal for calcu-
lations with the standard OM2 parameters used as the initial
guess in reparametrization ( wIP

wDipole
¼ 1:04259 ). Optimized pa-

rameter values of TB-OM2 are given in Table 1.
The thus obtained TB-OM2Hamiltonian performs system-

atically much better for IPs and dipole moments than the stan-
dard OM2 Hamiltonian as is clear from the correlation plots
between calculated and reference values for the CHNO set
(Figs. 1 and 2). The correlation coefficients are higher, the
slope of the linear trend line is closer to unity, and its y-
intercept is closer to zero for TB-OM2 compared to OM2.
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The mean absolute errors (MAEs) in IPs are 0.13 and 0.30 eV
at TB-OM2 and OM2, respectively. MAEs in dipole moments
are 0.13 and 0.27 D at TB-OM2 and OM2, respectively. We
note that the errors of OM2 somewhat decrease for IPs (MAE
of 0.26 eV) and dipole moments (MAE of 0.25 D) when full
optimizations are performed at this level of theory (this is how
the OM2 method was parametrized), but they remain much
higher than errors of TB-OM2 [27]. The linear trend lines are
very similar for IPs and dipole moments calculated with OM2
regardless of whether geometry optimizations were performed
or not at this level of theory.

The TB-OM2 Hamiltonian thus performs quite well for the
targeted properties. It is, of course, not very surprising that the
new method outperforms the standard OM2 for these proper-
ties, given the parameterization. However, we do find it

notable that such high accuracy can be achieved in absolute
terms. This means that the minimal-basis NDDO framework
can faithfully represent the exact one-electron potentials. This
confirms that SEMO methods are an attractive basis for the
development of an efficient correlated orbital theory.

Nevertheless, the new parameters are not suitable for total
energy calculations following the conventional theory (i.e.,
based on Eq. 12). Properties depending on total energies are
described poorly, e.g., errors in heats of formation at 298 K
exceed 100 kcal/mol for most of the molecules in the CHNO
set. Errors in relative energies are also unacceptably large.
Geometry optimizations lead to wrong structures.

These deficiencies can potentially be corrected with a new
energy expression following Eq. (16). While developing these
new approximations is beyond the scope of this study, it is

Fig. 1 Correlation between
reference ionization potentials
(IPref) and IPs calculated with the
OM2 (left) and TB-OM2 (right)
methods on the reference geome-
tries (IPcalc)

Table 1 Parameters of the TB-OM2 method and their deviations from the standard OM2 parameters (in parentheses) for H, C, N, and O elements. See
Ref. [7] for the definitions of the OM2 parameters

H C N O

Uss (eV) −12.93865065 (2.3%) −54.19555385 (4.9%) −72.15968201 (−3.0%) −122.69410683 (20.5%)

Upp (eV) − 39.76564918 (0.1%) −57.38765195 (−0.4%) −78.64608937 (−0.4%)

ζ (au) 1.48992759 (1.1%) 1.40107513 (−1.4%) 1.63045334 (22.4%) 1.21940062 (−21.4%)

βs (eV bohr−1/2) −3.76196154 (10.0%) −7.05958647 (−2.1%) −11.17779312 (3.1%) −13.34246104 (25.3%)

βp (eV bohr−1/2) −5.13983530 (24.0%) −11.93774750 (56.6%) −9.19185602 (6.4%)

βπ (eV bohr−1/2) −5.66899547 (−5.1%) −9.68090088 (4.3%) −13.42610721 (45.7%)

βs(X–H) (eV bohr−1/2) −6.35752364 (0.9%) −18.98337612 (99.9%) −5.51768151 (−15.7%)

βp(X–H) (eV bohr−1/2) −4.25869645 (5.3%) −10.92895254 (28.4%) −10.17896950 (0.7%)

αs (au) 0.05484270 (−17.0%) 0.08562385 (−5.3%) 0.08448189 (−5.9%) 0.11299661 (−13.5%)

αp (au) 0.05640475 (3.5%) 0.09090711 (3.8%) 0.07827396 (−18.7%)

απ (au) 0.10045879 (−1.6%) 0.13311154 (1.1%) 0.17413733 (33.2%)

αs(X–H) (au) 0.10425187 (7.8%) 0.11930093 (4.4%) 0.26066376 (134.6%)

αp(X–H) (au) 0.06717192 (27.1%) 0.08192943 (−23.2%) 0.07964335 (−33.0%)

F1 0.24980893 (−15.5%) 0.35381926 (−29.2%) 0.48099152 (−24.9%) 1.09527557 (−13.4%)

F2 1.42645320 (1.8%) 0.55289933 (−23.5%) 0.00195808 (−99.0%) 2.04113892 (77.7%)

G1 0.76452681 (17.1%) 0.12392396 (−41.8%) 0.02646063 (−81.0%) 0.49849623 (76.1%)

G2 0.60740044 (−33.1%) 1.02682114 (3.5%) 3.04394865 (260.8%) 0.07074015 (−91.0%)
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instructive to investigate the properties of Eband (i.e., the sum
of occupied orbital energies). This energy is the first term in
Eq. (16) (and 17) and should recover most of the long-ranged
electronic interactions.We can therefore use Eband to probe the
properties of the unknown term in Eq. (16), i.e., Vrep(rAB).

To this end, we apply a bond-projection procedure used in
the DFTB literature [101]. Assuming that Vrep(rAB) is a short-
ranged pairwise potential, its values can be determined from
rigid potential energy surface scans along bond coordinates.
This was performed for the symmetric stretch of all C–H
bonds in methane and along the C–C bond in ethane.
Figures 3 and 4 show the forces obtained by differentiation
of the PES with respect to these coordinates. As a reference,
the same curves were computed at the PBE0/def2-TZVP
level.

In both cases, the curves obtained from Eband are in
reasonable agreement with the reference at large dis-
tances (i.e., r > 2.5 Å for C–C and r > 1.5 Å for C–H).
This is because the systems dissociate into neutral
atoms, meaning that long-range core–core interaction
are screened. Furthermore, electronic effects are well

represented by Eband in this regime. Meanwhile, the
curves deviate strongly in the bonding and repulsive
regions, where this is not the case. The plots also show
the difference between both curves, ΔF. The pairwise
potential correcting the error of Eband (i.e., Vrep(rAB))
can now be obtained by integrating ΔF (see Fig. 5).

The resulting potentials behave analogously to what
is typically observed in DFTB, i.e., they are short-
ranged and mostly repulsive. Importantly, they tend to
zero between the typical first and second nearest neigh-
bor distances. This allows choosing appropriate cutoff
values for these potentials, an essential requirement for
a robust pairwise correction.

While these initial results are encouraging, the impor-
tant question of how transferable the potentials are to
other bond types and hybridizations remains open.
Preliminary investigations for acetylene and ethylene
were inconclusive because wavefunction instabilities
were observed for the dissociation curves of these sys-
tems. Indeed, semiempirical methods are very prone to
such instabilities, in particular for π-systems [102, 103].

Fig. 2 Correlation between
reference dipole moments (μref)
and dipole moments calculated
with the OM2 (left) and TB-OM2
(right) methods on the reference
geometries (μcalc)

Fig. 3 Plot of forces obtained from the differentiation of a rigid PES scans
along the C–H bond length in methane

Fig. 4 Plot of forces obtained from the differentiation of a rigid PES scans
along the C–C bond length in ethane
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Consequently, the bond-projection scheme applied above
is likely not well suited for determining a ‘general’
Vrep(rAB). Instead, a force-matching approach for equi-
librium structures may be a better choice.

Conclusions

In this work, we discussed the approaches used to in-
corporate electron correlation in the existing semiempir-
ical molecular orbital (SEMO) theory, ab initio
wavefunction theory, density functional theory, and den-
sity functional-based tight-binding (TB) methods. We
outlined the design of next-generation TB-SEMO
methods, which includes correlation via explicit DFTB-
like pair-potentials (TB part of the model) also incorpo-
rating core–core repulsions. In these methods, the pa-
rametrization of the SEMO part of the model targets
only ionization potentials and dipole moments and then
it enters the TB-SEMO model via the sum of orbital
energies. We provide a numerical proof-of-concept for
such a method based on the OM2 method. The opti-
mized parameters of this experimental TB-OM2 method
provide a significant improvement over the OM2 meth-
od for the ionization energies and dipole moments. It
was then demonstrated that the pair-wise potentials
needed to complete the TB-OM2 model are short-
ranged and mostly repulsive in analogy to the DFTB
case.
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