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Abstract
An alternative way of calculating the Fukui function and the partial derivative of second order of the electronic density with
respect to the number of electrons N is presented, the new formulas agree with the usual ones but only in cases without
degeneracy. The new operative formulas are more general than the previous ones and are the right ones for those problematic
cases where one or both of the frontier molecular orbitals are degenerate. Finally, we present a new way of applying the finite
difference approximation that leads to more realistic results than the usual formulas.
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Introduction

Local reactivity parameters are necessary to differentiate the
reagent behavior of atoms forming a molecule. The Fukui
function [1–4] [f(r)] and local softness [5, 6] [s(r)] are two
of the most commonly used local reactivity parameters (Eq.
1).

f rð Þ ¼ ∂ρ rð Þ
∂N

� �
ν

s rð Þ ¼ ∂ρ rð Þ
∂μ

� �
ν

¼ ∂ρ rð Þ
∂N

� �
ν

⋅
∂N
∂μ

� �
ν

¼ f rð Þ⋅S
ð1Þ

The Fukui function is associated primarily with the re-
sponse of the density function of a system to a change in the
number of electrons (N) under the constraint of a constant
external potential [v(r)]. The mathematical definitions of the
Fukui function and local softness (Eq. 1) come from the so-
called ensembles of the conceptual density functional theory

(C-DFT) [7] where all global, local and non local reactivity
descriptors are hierarchically organized. The Fukui function
arises from the canonical ensemble where the number of elec-
trons and the external potential are the essential variables.
Meanwhile, the number of electrons and the electronic chem-
ical potential are the essential variables for the local softness.

Due to the discontinuity of the electron density with regard
to N, finite difference approximation leads to three types of
Fukui function: f+(r), f−(r) and f0(r). They are defined as fol-
lows:

f þ rð Þ ¼ ρN0þ1 rð Þ−ρN0
rð Þ; fornucleophilic attack; ð2Þ

f − rð Þ ¼ ρN0
rð Þ−ρN0−1 rð Þ; forelectrophilic attack; ð3Þ

f 0 rð Þ ¼ 1

2
f þ rð Þ þ f − rð Þð Þ; for neutral or radicalð Þ attack

ð4Þ

Theoretical development

The energy change [8] (ΔE) due to the electron transfer (ΔN)
satisfies the parabolic approximation:

ΔE≈
∂E
∂N

� �
υ

ΔN þ 1

2

∂2E
∂N2

� �
υ

ΔN 2≈μ ΔN þ 1

2
η ΔN2 ð5Þ

where μ and η are the electronic chemical potential and global
hardness. Perdew et al. [9] show how the Hohenberg-Kohn
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theorem is extended to a fractional electron number (N), and
the implications of derivative discontinuity for conceptual
DFT are explored by Ayers and colleagues [10, 11]. Taking
into account Eq. (5), and that the total energy is a functional of
the density, it is reasonable to think that the second order
expansion Eq. (6) can be an appropriate approximation.

ΔρN rð Þ≈ ∂ρN rð Þ
∂N

� �
υ

ΔN þ 1

2

∂2ρN rð Þ
∂N 2

� �
υ

ΔN 2 ð6Þ

if we substitute the valuesΔN= 1 andΔN= −1 in Eq. (6), and
also calculate Δρ−N rð Þ (corresponding to ΔN= −1) and ΔρþN
rð Þ (corresponding toΔN= 1). And finally, substituting in Eq.
(6), we obtain:

Δρ−N rð Þ ¼ ρN−1 rð Þ−ρN rð Þ≈− ∂ρN rð Þ
∂N

� �
υ

þ 1

2

∂2ρN rð Þ
∂N 2

� �
υ

ΔρþN rð Þ ¼ ρNþ1 rð Þ−ρN rð Þ≈ ∂ρN rð Þ
∂N

� �
υ

þ 1

2

∂2ρN rð Þ
∂N2

� �
υ

ð7Þ
and we find a very simple system of equations with two un-
knowns; by solving them, we obtain Eq. (8). Expressions of
this type (Eq. 6) have been used in previous works [12–14].
Also, implicit in the two articles the introduction of the con-
cept of the dual descriptor [15, 16] because the expression
used for the second derivative of the density with respect to
the number of electrons corresponds to this kind of quadratic
interpolation. Figure 1 graphically represents the physical
meaning of the main parameters of Eqs. (6–8). It can be seen
that the new formula of f(r) (see Eq. 8) is the same as that of
f0(r) [see Eq. (4), neutral attack], this is logical since the qua-
dratic expansion does not imply an electrophilic or nucleophil-
ic attack.

∂ρN rð Þ
∂N

� �
υ

¼ f rð Þ≈ 1

2
⋅ ρNþ1 rð Þ−ρN−1 rð Þ� �

∂2ρN rð Þ
∂N2

� �
υ

¼ f 2ð Þ rð Þ≈ρNþ1 rð Þ−2⋅ρN rð Þ þ ρN−1 rð Þ
ð8Þ

On the other hand, the original operational formula pro-
posed by Morell et al. [16] for the dual descriptor [15, 17,
18] is:

∂2ρ rð Þ
∂N2

� �
ν rð Þ

¼ f 2ð Þ rð Þ ¼ ρ rð ÞNþ1−2⋅ρ rð ÞN þ ρ rð ÞN−1 ð9Þ

As can be seen, the formula obtained byMorell et al. in Eq.
(9) is the same as the formula of Eq. (8).

What changes when there is degeneracy of frontier molecular
orbitals?

The use of these operational formulae, Eq. (9), can result in
failure when applying them to molecular systems that present
degeneracy in their frontier molecular orbitals [19]. The issue
of degeneracy in conceptual DFT is not restricted to degener-
ate frontier orbitals because (in rare cases) you can have de-
generate ground states in DFT without degenerate frontier
orbitals [19–22].

To overcome this limitation of the dual descriptor (and
Fukui functions), a more general operational formula was pro-
posed by Martínez-Araya [23, 24]:

f 2ð Þ rð ÞMartínez−Araya≈
q⋅ρ rð ÞNþp− pþ qð Þ⋅ρ rð ÞN þ p⋅ρ rð ÞN−q

p⋅q
ð10Þ

Fig. 1 Graphic representation of
the main parameters of Eqs. (6–8)
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where p and q stand for the degree of degeneracy of LUMO
and HOMO, respectively.

When we apply these ideas proposed byMartínez-Araya to
the system of Eq. (7), we obtain a new operative formula of
f(2)(r) for degenerate cases:

f 2ð Þ rð ÞQuadratic expansion≈
2⋅ q⋅ρ rð ÞNþp− pþ qð Þ⋅ρ rð ÞN þ p⋅ρ rð ÞN−q

h i
p⋅q⋅ pþ qð Þ

ð11Þ
which is slightly different from the formula obtained by
Martínez-Araya Eq. (10), but they are proportional. On the
other hand, Eq. (12) is the operative formula for f0(r) in cases
with degeneracy (applying the ideas of Martínez-Araya),

f 0 rð ÞMartínez−Araya

¼ q⋅ρ rð ÞNþp þ p−qð Þ⋅ρ rð ÞN−p⋅ρ rð ÞN−q

2⋅p⋅q
ð12Þ

on the other hand, starting from the system of Eq. (7), we
obtain:

f rð ÞQuadratic expansion

¼ q2⋅ρ rð ÞNþp þ p2−q2ð Þ⋅ρ rð ÞN−p2⋅ρ rð ÞN−q

p2⋅qþ q2⋅pð Þ ð13Þ

In this case, it can be seen that f0(r)Martínez−Araya and
f(r)Quadratic expansion are not proportional. Appendix I in sup-
plementary material includes a simple example that comple-
ments this conclusion and shows that the new operative for-
mulas f (r) and f (2)(r) are different from the old ones. Finally,
we propose a parabolic expansion as an alternative methodol-
ogy to the finite difference approximation, and we rationalize
this affirmation with the very simple example shown in
Appendix II.

The new operational formulae for Fukui function and dual
descriptor taking into account degrees of degeneracy in
HOMO and LUMO are different to those ones based on finite
difference. That makes sense in the case of a fractional value
ofΔN. But when there is a degree of degeneracy greater than
1, meaning ΔN > 1, in such case there is no certainty that the
Taylor expansion (Eq. 6) converges. The,n from the mathe-
matical point of view, finite difference is a suitable approxi-
mation because it does not depend on the means of truncation
of the Taylor expansion. That is why Eqs. (10) and (12) can be
used as reference expressions, so that:

f 2ð Þ rð ÞMartínez−Araya− f
2ð Þ rð ÞQuadratic expansion

¼ 1−
2

pþ q

� �
f 2ð Þ rð ÞMartínez−Araya ð14Þ

and for the Fukui function (the expression is not so simple):

f 0 rð ÞMartínez−Araya− f rð ÞQuadratic expansion ¼

¼ q⋅ρ rð ÞNþp þ p−qð Þ⋅ρ rð ÞN−p⋅ρ rð ÞN−q

2⋅p⋅q
−
q2⋅ρ rð ÞNþp þ p2−q2ð Þ⋅ρ rð ÞN−p2⋅ρ rð ÞN−q

p2⋅qþ q2⋅pð Þ
ð15Þ

Computational details

All the structures included in this study were optimized at
B3LYP/6-31G(d) [25, 26] theory level by using the
Gaussian09 package. [27] The densities used in the newmeth-
odology were calculated at the same level of calculation for
the neutral molecule, the cation and anion, through
Gaussian09 software.

The new indices included in this study were calculated with
a modified version of UCA-FUKUI v.2.1 software (http://
www2.uca.es/dept/quimica_fisica/software/UCA-FUKUI_
v2.exe) [28]. Figure 2 includes two screenshots of the main
menu showing the calculation modules that have been added
to obtain the new indexes. Figures S1–S3 in the supplemen-
tarymaterial show some screenshots of the UCA-FUKUI soft-
ware displaying the correspondence between the program in-
terface and the equations of the text.

Results and discussion

Obtaining atomic indices (condensed-to-atom)

Starting from Eq. (7) and by taking into account the response-
of-molecular-fragment approach [29], (which is equivalent to
the fragment-of-molecular-response approach for Hirshfeld
partitioning [30–32]), the next condensed-to-atom system
can be obtained:

Δq−k ¼ qN−r
k −qNk ≈−

∂qNk
∂N

� �
υ

⋅r þ 1

2

∂2qNk
∂N2

� �
υ

⋅r2

Δqþk ¼ qNþp
k −qNk ≈

∂qNk
∂N

� �
υ

⋅pþ 1

2

∂2qNk
∂N 2

� �
υ

⋅p2
ð16Þ

where r and p are the global net charges of the ions. Solving
the system:

∂qNk
∂N

� �
υ

¼ r2⋅qNþp
k þ p2−r2ð Þ⋅qNk −p2⋅qN−r

k

p2⋅r þ r2⋅pð Þ
∂2qNk
∂N2

� �
υ

¼
2⋅ r⋅qNþp

k − pþ rð Þ⋅qNk þ p⋅qN−r
k

h i
p⋅r⋅ pþ rð Þ

ð17Þ

where qNk , q
Nþp
k and qN−s

k are the net atomic charges calculated
with some population analysis (Hirshfeld, Mulliken, ...) for
the neutral molecule and the corresponding ions. As an exam-

ple, Table 1 shows the condensed f Quadratic expansion
k and f 0k

(finite difference approximation [33]) indices obtained for
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SF6, which has triply degenerate HOMO, using the three dif-
ferent population analysis: Hirshfeld [34–36], Mulliken [37]
and natural population analysis (NPA) [38–40]. As can be

seen in Table 1, the f Quadratic expansion
k and f 0k indices are

different.

Advantages of this method: Generalization
of the finite difference approximation

The quadratic expansion Eq. (6) provides an important advan-
tage, allowing interpolationΔρ(r) for fractional values ofΔN
(−1 <ΔN<1). Thanks to this, we can use the finite difference
approximation more generally. Suppose that ΔN is the frac-
tional value ΔN∗, and, that, by substituting this value in Eq.
(6), we are led to Δρ∗(r):

Δρ rð Þ*≈ ∂ρ rð Þ
∂N

� �
υ

ΔN* þ 1

2

∂2ρ rð Þ
∂N 2

� �
υ

ΔN*� �2 ð18Þ

Now, the function Δρ(r)∗ allows the finite difference ap-
proximation to be applied to calculate the Fukui indices in a
more general way:

f rð Þ* ¼ Δρ rð Þ*
ΔN* ð19Þ

Note that Fukui functions f(r)+ and f(r)− are particular cases
of Eq. (19), whereΔN∗ takes the non-fractional values +1 and
− 1. The recent work from the Gazquez group [41, 42] is the
closest approach that we have been able to find in relation to
this idea.

On the other hand, the amount of charge transfer ΔNA : B

associated to the formation of A:B complex from acid A and
base B, may be written as [43]:

ΔNA:B ¼ μB−μA

ηA þ ηB
ð20Þ

then, combining Eqs. (18), (19), and (20), we obtain the for-
mula:

f rð ÞA:B ¼ Δρ rð ÞA:B
ΔNA:B ð21Þ

that allows to estimate an approximate Fukui function corre-
sponding to a molecule (for example an acid A) when it is
attacked by another concrete molecule (for example a base
B). It is important to note that f(r)A : B (Eq. 21) is being calcu-
lated with a charge variation ΔNA : B with physical meaning,
and the same can be said for variationsΔρ(r)A : B. The idea of
using a model based on chemical potentials μA and μB, instead
of a finite-difference approximation, can be traced back to Parr

Table 1 Comparison of the f Quadratic expansion
k indices with the corresponding f 0k

Hirshfeld population Mulliken population NPA

f 0k f Quadratic expansion
k f 0k f Quad:exp:k f 0k f Quad:exp:k

S 0.1189 0.1452 0.1705 0.2215 0.1190 0.1989

F 0.1469 0.1424 0.1383 0.1298 0.1469 0.1335
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and Bartolotti [44] (the value of such an approach and also its
limitations was recently stressed by Heidar-Zadeh et al. [45,
46] and the Gazquez group recently showed that the parabolic
model is especially relevant [47]).

As an example, Fig. 3 (left) shows function f(r)A : B

for the dienophile CH2CHCHO when it is attacked by a
H2 molecule. In Fig. 3 (right) the function of Fukui
f(r)− (Eq. 3) has been included to facilitate comparison.
The images are similar because the two functions rep-
resent the nucleophile character of the CH2CHCHO
molecule but they show some differences since function
f(r)A : B takes into account the characteristics of the at-
tacker (H2 molecule). All the images of Fig. 3 have
been performed with Gaussview [48] and the B.cub^
files used as a starting point were obtained from
UCA-FUKUI software.

Starting from the previous idea and Eq. (17) the condensed-
to-atom value Δq*k of Eq. (22) can be obtained:

Δq*k≈
∂qNk
∂N

� �
υ

ΔN* þ 1

2

∂2qNk
∂N2

� �
υ

ΔN*� �2 ð22Þ

The values Δq*k and ΔN∗ lead to the operative formula:

f *k ¼
Δq*k
ΔN* ð23Þ

Note that the Fukui indices f þk and f −k are particular cases
of Eq. (21). Finally, combining Eqs. (22), (23), and (20) we
obtain the formula:

f A:Bk ¼ ΔqA:Bk

ΔNA:B ð24Þ

that is the condensed-to-atom version of Eq. (21).

Figure 4 shows the parameters f A:Bk calculated for the
dienophile CH2CHCl when it is attacked by different reagents

Fig. 3 Left Function f(r)A :B of the
CH2CHCHO when it is attacked
by a H2 molecule. Right Fukui
function f(r)− of the
CH2CHCHO. The four images
were obtained with isovalue:
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Fig. 4 Parameter f A:Bk calculated
with Eq. (21) and Hirshfeld
population analysis for the
CH2CHCl molecule taking into
account different attackers. The
parameters f þk , f

−
k and f 0k have

been added for comparison
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(Hirshfeld population analysis was used to obtain atomic pop-
ulations). The attackers A–C correspond to a set of dienes (see
Fig. S4 in the Supplementary material), in addition the at-
tackers H3O

+ and OH− have been included. The condensed-

to-atom indices f þk , f
−
k and f 0k (Eqs. 2–4), nucleophilic, elec-

trophilic and neutral attacks) have also been added for com-
parison. When the attacker is very electrophilic (for example

see H3O
+) the f A:Bk values are close to the curve f −k (electro-

philic attack); on the contrary, when the attacker is very nu-

cleophilic (for example see OH−) the f A:Bk values are close to

the curve f þk (nucleophilic attack). Where the attacker pos-
sesses an electronic chemical potential similar to CH2CHCl

(for example the dienes A-C) the f A:Bk values tend to curve f 0k
(neutral or radical attack). Figure S2 in the supplementary
material shows an enlargement of Fig. 4 where D–H dienes,
H2, HCl and Cl2 attackers have also been included (the data of
Figs. 4 and S5 are shown in Table S1 in the supplementary
material). Figures S6 to S10 of the Supplementary Material
include some equivalent graphics for the CH2CHCHO,
CH2CHNO2, CH2CHCN, CH2CHCH3 and CH2CHOCH3

molecules (see Fig. S11) and the results are equivalent to those
shown in Fig. 4. In addition, Figure S12 in the Supplementary
Material includes an additional graphic achieved from Batoms
inmolecules^ (AIM) [49–51] theory through the AIMAll soft-
ware (http://aim.tkgristmill.com/index.html), Figure S13 in-
cludes a graphic achieved from natural population analysis
and Fig. S14 a graphic achieved from Mulliken approximation
with a minimal basis set [52, 53] for the CH2CHCl reagent.
The results, shown on these graphs, are qualitatively the same
as those shown in Fig. 4. The comparison of all these meth-
odologies led to the conclusion that the calculation method
used to obtain the atomic populations does not change quali-
tatively the conclusions obtained.

Future perspectives

Our intention is to modify the UCA-FUKUI [28] software,
based on Bconceptual DFT^ and specialized in the calculation
of local reactivity indices, to introduce the new definition of
Fukui’s function in some methodologies (bond-reactivity-in-
dices calculation and improved-frontier-molecular-orbital ap-
proximation) implemented in the program [54–56]. Once the
software works properly with the new definitions, we will
make representative calculations in order to compare the re-
sults with those obtained from previous definitions.

Conclusions

A new way of calculating f(r) and f(2)(r) has been developed,
resulting in new operative formulas. The Fukui function has
been obtained for those cases where one or both of the frontier

orbitals are degenerate, and a more general operative formula
was obtained. The new formulae are in agreement with the
usual formulae but only in cases without degeneracy. The new
f(2)(r) function is identical to the previous formula of dual
descriptor in all cases where the frontier molecular orbitals
are not degenerate, and in those cases with degeneracy it has
been found that they are proportional functions. Finally, a new
way of applying the finite difference approximation has been
developed that leads to more realistic results (with more phys-
ical meaning) than the usual formulas.
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Informático Científico de Andalucía).
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