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Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) is one of the regulatory elements of angiogenesis that is expressed
highly in various diseases and is also essential for solid tumor growth. The present study was aimed at identifying potent
inhibitors of VEGFR-2 by considering herbal secondary metabolites; as natural molecules are less toxic than synthetic deriva-
tives. A structure-based virtual screening protocol consisting of molecular docking, MM-GBSA and ADME/T analysis was
initially used to screen a library of in vivo metabolites of the herbal ingredient. Using a fixed cutoff value, four potent virtual hits
were identified frommolecular docking, ADME/Tand binding affinity calculations, which were considered further for molecular
dynamics (MD) simulation to broadly describe the binding mechanisms to VEGFR-2. The results suggested that these molecules
have high affinity for the catalytic region of VEGFR-2, and form strong hydrophobic and polar interactions with the amino acids
involved in the binding site of ATP and linker regions of the catalytic site. Subsequently, the stability of the docked complexes
and binding mechanisms were evaluated by MD simulations, and the energy of binding was calculated through MM-PBSA
analysis. The results uncovered two virtual hits, designated ZINC14762520 and ZINC36470466, as VEGFR-2 inhibitors, and
suggested that they bind to kinase domain in an ATP-competitive manner. These virtual hits will offer a suitable starting point for
the further design of their various analogs, allowing a rational search for more effective inhibitors in the future.
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PME Particle mesh Ewald
Rg Radius of gyration
RMSD Root mean square deviation
RMSF Root mean square fluctuation
SAR Structure activity relationship
SASA Solvent accessible surface area
SGB Surface generalized Born
SP Standard precision
TIP3P The transferable intermolecular

potential3 points
VEGFR-
2

Vascular endothelial growth
factor receptor 2

XP Extra precision
YASARA Yet another scientific artificial

reality application

Introduction

The process by which new blood vessel is formed—dubbed
Angiogenesis—has recently gained significant attention in an-
ticancer drug development. The process of angiogenesis is
pivotal in solid tumor growth, diabetes and other age-related
diseases [1, 2]. In solid tumor, blood vessels are formed ex-
cessively to confer sufficient oxygen and nutrient supply to
malignant cells in order to establish the process of metastasis
[3]. Evidence has also shown that vascular endothelial growth
factor (VEGF) and its receptors (VEGFRs) are the main mod-
ulators of angiogenesis [4, 5].

The members of VEGFR including VEGFRs 1–3 are
targeted by VEGF, which binds to the extracellular domain
of VEGFRs to activate downstream signaling pathways [3].
VEGFR-2 (KDR) directly regulates endothelial cell prolifera-
tion and migration [6–8]. Upon binding of VEGF-A, the ty-
rosine residues at the carboxy-terminal of the receptor are
autophosphorylated, thus activating cell signaling,
vasculogenesis, and angiogenesis [9, 10]. Aggressive expres-
sion of VEGFR-2 activates downstream pathways of cell sur-
vival, which makes this an attractive target for developing
novel anticancer agents.

A number of VEGFR inhibitors are currently in phase I or
phase II clinical trials [11], while other inhibitors, such as
sorafenib (Nexavar®, BAY 43–9006), sunitinib malate
(Sutent®, SU11248), and bevacizumab (Avastin®), are al-
ready approved for cancer treatment by the Food and Drug
Administration (FDA) [12]. Pharmacologically, they act by
blocking the VEGFR pathway; however, their prolonged use
can lead to serious side-effects, such as bleeding, gastrointes-
tinal perforation and hypertension [13, 14]. Therefore, the
search for novel and potent VEGFR inhibitors that could ef-
fectively block angiogenesis remains a major challenge in
anti-angiogenic drug development.

Due to their high efficacy and lower toxicity, compounds
from natural sources have recently gained more attention as
anti-angiogenesis agents [15]. Nevertheless, they still suffer
from poor bioavailability [16]. Consequently, in vivo metab-
olites of some herbal compounds were found to show better
pharmacokinetic, potency and safety profiles in comparison to
their parent compounds [17]. For this reason, to find potent
VEGFR-2 inhibitors with optimum pharmacokinetic profiles,
this study applied a virtual in silico screening approach using a
database of in vivo metabolites of herbal ingredients. The
virtual screening procedure was integrated with a three-step
filtering approach, including Glide XP docking, ADME/Tand
MM-GBSA analysis, to sort out the top hits from the database
(Fig. S1, see Supplementary file 1). After that, each docked
protein–ligand complex was subjected to 100-ns MD simula-
tions along with binding energy calculations through MM-
PBSA analysis, in order to elucidate the VEGFR-2 binding
mechanisms of identified compounds. The study identified
two virtual hits, ZINC14762520 and ZINC36470466, that
could be potent VEGFR-2 inhibitors, and also suggested a
basis for further rational design of their various analogs to find
more effective inhibitors in the future.

Materials and methods

Database processing

A dataset of in vivo secondary metabolites of herbal ingredi-
ents was retrieved from the ZINC server named Herbal
Ingredients In-Vivo Metabolism (HIM) (last updated: 12
August 2013), giving a set of 663 in-vivo metabolites of herb-
al active ingredients. Although the ZINC database consists of
molecules ready to dock in three dimensional (3D) formats, to
make it more rationale, we further prepared the dataset using
Schrödinger Suite 2013 [18, 19] software. Here, all ligands
were minimized in Ligprep2.5 wizard [20], by implementing
OPLS 2005 [21] force field. During the minimization, the
module Epik 2.2 [22] was utilized to fix the ionization state
of the ligand at pH 7.0 ± 2.0 [23]. From this analysis, up to 32
possible stereoisomers of each compound were generated; we
selected only the conformer having the lowest energy for fur-
ther processing.

Protein preparation and grid generation

Protein structures for virtual screening were prepared using
the protein preparation module of Schrödinger Suite 2013
[19] software, in which the crystal structure is initially
assigned proper hydrogen, charges and bond orders. As the
main target of the virtual screening was VEGFR-2, its tyrosine
kinase domain was retrieved from the RCSB protein data bank
(PDB id: 3B8R) [24]. At neutral pH, all hydrogen bonds in the
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structure were optimized, deleting unnecessary water.
Afterwards, the minimization process was run with the
OPLS 2005 force field, considering structural changes of not
more than 0.30 Å of RMSD. The active site of the protein was
fixed for docking simulation by generating a grid box at the
reference ligand binding the protein. Grid generation parame-
ters were kept at default, with a box size of 18 Å × 18 Å ×
18 Å, and the OPLS 2005 force field utilized for post minimi-
zation. The charge cutoff and van der Waals scaling factor
were set to 0.25 and 1.00, respectively [25].

Virtual screening

We carried out extra precision (XP) flexible docking using the
Glide module of Schrödinger-Maestro v9.4 [26, 27], which is
more sophisticated than SP/HTVS in scoring function [27].
Here, all ligands were treated flexibly, considering the partial
charge and van derWaals factor of 0.15 and 0.80, respectively.
Minimization was performed to the docked complex after
docking using the OPLS 2005 force field. The best-docked
pose with lowest Glide score value was recorded for each
ligand [25].

ADME/T analysis

In order to predict the pharmacokinetic profile of the identified
hits, QikProp (Schrodinger Suite 2013) [28] was utilized,
where the absorption, distribution and metabolism of each
ligand were calculated. Pharmacokinetics and the drug-like
properties of the ligands, such as the rate of oral absorption,
QlogP, solvent accessible surface area (SASA), and Lipinski’s
rule of five [29], were predicted, and maximum percentage of
oral absorption rate with a cutoff of 50% was considered for
selecting the top hits for further processing.

Prime MM-GBSA

Binding affinity calculations were carried out using the Prime
MM-GBSA module of the Schrodinger suite [30], where
greater negative affinity denotes higher stability. The docked
Pose viewer file from Glide XP docking was introduced for
calculation, using the sampling minimization protocol used
Generalized Born Surface Accessible (GBSA) as a continuum
model, and OPLS 2005 force field as molecular mechanics
(MM), keeping the protein flexible [31–35]. For correcting
empirical functions of π-stacking and H-bond interactions, a
dielectric solvent model such as VSGB 2.0 [36] was used.

MD simulations

MD simulations were performed using YASARA Dynamics
software [37], and the AMBER14 force field [38]. A total of
six different systems were used to run MD simulation. The

s y s t e m s i n c l u d e d t o p f o u r v i r t u a l h i t s ,
(ZINC13370550-VEGFR-2, ZINC02585769-VEGFR-2,
ZINC14762520-VEGFR-2 and ZINC36470466-VEGFR-2
complexes), sunitinib-VEGFR-2, and apo-VEGFR-2. In each
protein–ligand complex, the parameters of each ligand were
assigned through AutoSMILES [39] algorithms, where un-
known organic molecules are parameterized fully automati-
cally by the calculation of semi-empirical AM1 Mulliken
point charges [39] with the COSMO solvation model,
assigning of AM1BCC [40] atom and bond types, and also
assigning GAFF [41] (General AMBER Force Field) atom
types and the remaining force field parameters. Before simu-
lation, the hydrogen bonding network of the protein–ligand
complex was optimized and solvated by a TIP3P [42] water
model in a simulation cell. Periodic boundary conditions were
maintained with a solvent density of 0.997 gL−1. Titratable
amino acids in the protein complex were subjected to pKa
calculation during solvation. The initial energy minimization
process of each simulation system, consisting of 62,521 ± 10
atoms was performed by a simulated annealing method, using
the steepest gradient approach (5000 cycles). Each simulation
was run with a multiple time step algorithm [43], using a time-
step interval of 2.50 fs under physiological conditions (298 K,
pH 7.4, 0.9% NaCl) [44]. All bond lengths were constrained
using the linear constraint solver (LINCS) [45] algorithm, and
SETTLE [46] was used for water molecules. Long-range elec-
trostatic interactions were described by the PME [47]
methods, and, finally, 100 ns MD simulation was accom-
plished at Berendsen thermostat [48] and constant pressure.
For further analysis, the trajectories were saved every 250 ps,
and subsequent analysis was performed by default script of
YASARA [49] macro and VMD [50, 51] software.

All snapshots were further subjected to MM-PBSA (MM-
Poisson–Boltzmann surface area) binding free energy calcu-
lation by YASARA software using the following formula
[52],

Binding Energy ¼ EpotRecept þ EsolvRecept þ EpotLigand

þ EsolvLigand−EpotComplex−EsolvComplex

Here, YASARA built-in macroswas used to calculateMM-
PBSA binding energy, using AMBER 14 as a force field,
where more positive energies indicate better binding [53].

Results and discussion

Virtual screening

Overexpression of VEGF and its receptor VEGFR-2 is the
most common phenomenon in angiogenesis and plays a sig-
nificant role in cell survival and promoting tumorgenesis
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[54–56]. In current drug discovery processes, virtual screen-
ing is the most widely used approach to find novel hits for a
target by reducing time, cost and the massive compound li-
brary. Apparently, XP docking assists in filtering out false
positives from the compound database by using a strict scor-
ing function; hence, it was considered in this study [57].
However, prior to docking simulations, we first validated
docking accuracy through redocking of a known reference
ligand using XP docking methodology. Here, the reference
co-crystal ligand was first separated and re-docked using the
Glide XP algorithm. Conformation of the complex with the
highest negative docking score was selected from each run.
The RMSD of the docked conformation was then calculated,
where a lower RMSD value denotes a high level of the accu-
racy of docking protocol. Interestingly, Glide docking with
XP setting produced the docked complex with lowest
RMSD of 0.61 Å, which denoted that the position of docked
ligand was almost similar to that of the crystal, as shown in
Fig. S2 (see supplementary file 1). Therefore, the candidate
ligands including reference inhibitors, sunitinib and sorafenib
were docked into VEGFR-2, following the same docking
protocol.

Initially, the top 5% compounds were selected from Glide
XP docking based on high docking score. As a result, 35
compounds were considered, with docking score range from
−12.00 to −10.00 kcal mol−1, in which the highest docking
score was found to be −11.80 kcal mol−1 for ZINC95099443
and the lowest docking score was −10.04 kcal mol−1 for
ZINC95099251. On the contrary, the reference inhibitors, su-
nitinib and sorafenib resulted in docking scores of
−6.60 kcal mol−1, and − 7.65 kcal mol−1, respectively
(Table 1). However, bioavailability and toxicity are the prima-
ry concerns for drug development; therefore, we subjected
these compounds for ADME/T profiling, as discussed below.

Bioavailability of ligands

Pharmaceutically relevant attributes and physiochemical de-
scriptors of the identified hypothetical hits were calculated by
QikProp software. Each descriptor’s range satisfies 95% of

known drugs [58–60]. The pharmacokinetic properties of 35
ligands were assessed (see supplementary file 2), where cell
permeability, the number of rotatable bonds, number of me-
tabolites, solubility, logP, and oral absorption rate were pre-
dicted, from which the top six candidates were selected (Fig.
S3, see supplementary file 1).

As described in Table 2, all calculated attributes were in the
satisfactory range, with properties including, QPlogPo/w
(octanol/water partition coefficient), QPlogHERG (log IC50

value for blockage of K+ channels) [61, 62], SASA [59],
QPlogS (aqueous solubility) [59], molecular weight, and H
bond acceptor/donor [61]. Although the standard inhibitors
obtained highest oral absorption, they were also predicted to
fall outside the recommended range for QPlogHERG value.
The HERGK+ channel, which is encoded by the human ether-
a-go-go related gene (HERG), is one of the main reasons for
the cardiac toxicity produced by a wide range of therapeutic
drugs [63]. This channel promotes electrical activity of the
heart and also modulates various functions of the nervous
system [64]; thus, blockers of this channel cause potential
toxicity, which is a major consideration in drug discovery
processes [65]. All these findings indicating that the ligands
identified showing ideal behavior of drug molecules, and that
they are well tolerated and less toxic than standard inhibitors.

MM-GBSA binding affinity estimation

The top six identified ligands were re-ranked by their binding
aff ini ty calculated through MM-GBSA analysis :
ZINC14762520 obtained highest binding affinity
(ΔGBind = −78.09 kcal mol−1) with highest contribution from
covalent and liphophilic binding energies. In contrast,
ZINC95099475 showed the lowest binding affinity of
−58.29 kcal mol−1 (Table S1, see supplementary file 1). In
comparison to the identified ligands, the reference inhibitors
sunitinib and sorafenib showed binding affinities of
−45.26 kcal mol−1 and − 57.44 kcal mol−1 respectively. On
the basis of MM-GBSA result, we thus selected the top four
compounds and subjected them to detailed binding analysis.

Table 1 Top six candidates
generated from structure based
virtual screening on the basis of
extra precision (XP) Glide
docking against VEGFR-2

Compound
name

Docking score
(kcal mol−1)

Glide energy
(kcal mol−1)

Glide ligand
efficiency

Strain
penalty

Glide Emodel
(kcal mol−1)

Sunitinib −6.60 −51.69 −0.22 0 −72.91
Sorafenib −7.65 −53.60 −0.23 0 −88.69
ZINC13370550 −10.68 −55.73 −0.35 0 −88.02
ZINC02585769 −10.64 −44.22 −0.50 0 −70.24
ZINC95099475 −10.19 −42.89 −0.48 0 −65.61
ZINC36470466 −11.06 −48.05 −0.48 0 −66.98
ZINC38957372 −11.43 −43.63 −0.54 0 −69.10
ZINC14762520 −10.64 −34.85 −0.39 0 −70.95
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Ligand binding analysis

The docked complexes of the top four virtual hits from Glide
XP docking were further considered for protein–ligand inter-
action profiling. As shown in Table 3, and Fig. 1a,
ZINC02585769 showed four hydrogen bonds with C919,
D1046, E885 and G922 residues, while C919 formed double hy-
drogen bonds with the ligand, maintaining corresponding
bonding distances of 2.23 Å and 2.41 Å, respectively.
Although the ligand formed major hydrophobic interactions
with K868, V899, V848, L840, A866 and L1035 through pi-alkyl
bonding, C919 and K920 showed additional amide-pi stacking
interactions with the ligand.

On the other hand, ZINC13370550 (Fig. 1b) formed sev-
eral hydrogen bonds with the active site residues, where most
of the interactions were mediated by E868, C919 and N923 res-
idue. C919 was also involved in π-donor hydrogen bonding
with the ligand, while L840, L1035, V848, A866 and C1045 were
responsible for hydrophobic interactions via π-alkyl bonding.

In the case of the ZINC14762520-VEGFR-2 complex,
ZINC14762520 showed hydrogen bonding to the active
site, where the interactions were maintained by C919,
D1046 and F1047 residues. Furthermore, ZINC14762520
also formed pi-alkyl bonds with K868, V899, A866, C919

and L1035 residues and were thus involved in hydrophobic
interactions (Fig. 1c).

ZINC36470466 (Fig. 1d) formed a stable complex with
VEGFR-2 by forming hydrogen bonds with T916, D1046 and
C919 side chains, where both D1046 and C919 showed two
hydrogen bonds individually. Here, V899, L840, V848, A866

and L1035 were involved in hydrophobic interactions by π-
alkyl interactions.

According to the detailed analysis of molecular interactions,
except ZINC14762520, all compounds formed hydrophobic
interactions with L840 and L848 residues of the glycine rich loop
(G-loop) that makes a hydrophobic interaction with ATP [66,
67], while ZINC14762520 showed interactions with several
residues from the hinge region and DFG motif, including
C919, D1046 and F1047. All ligands also made contacts with the
residues of the linker region, including C1045 and D1046, which
confirms their VEGFR-2 inhibition, as these residues are direct-
ly involved in polar interactions with ATP, assist the shifting of
γ-phosphate through coordinatingMg2+ ions [68]. Furthermore,
non-covalent interactions of the residues of the hinge region
(T917 to N923) with all four ligands revealed that these com-
pounds may act as ATP competitive inhibitors [69, 70].

MD simulations

To describe the binding mechanisms, flexibilities and structur-
al behaviors of the top virtual hits, we conducted MD simula-
tions for 100 ns for each complex, including the reference
inhibitor, sunitinib and also the ligand free protein. Different
energies such as coloumb, van der Waals and total energies
were calculated for each system (summarized in Table S2).
The atomic RMSDs of the Cα, C, and N atoms of protein in
all complexes were calculated from the simulation trajectories
and are plotted in Fig. 2. As shown in Fig. 2, the highest
RMSD values were observed for ZINC36470466, while
ZINC02585769 obtained the lowest RMSDs in the 100 ns
simulation. As can be seen from the plot, ZINC02585769
showed a more rigid conformation than the other proteins,
and also achieved equilibrium at 10 ns and remained stable
afterward.

Table 2 Pharmacokinetic and toxicological properties of the top six candidates and standard inhibitors, calculated from QikProp

Name MWa HB donorb HB acceptorc SASAd log HERGe Qlog Sf log Po/wg % Human oral
absorptionh

Sunitinib 398.47 2.00 6.00 751.53 −6.68 −5.32 3.84 89.98
Sorafenib 464.83 3.00 6.00 748.03 −5.64 −6.97 3.94 96.88
ZINC13370550 416.38 4 10.55 660.94 −5.006 −3.66 0.59 59.78
ZINC02585769 286.24 4 5.5 496.06 −4.097 −2.53 0.44 60.22
ZINC95099475 288.25 3 4.75 494.56 −4.676 −2.90 0.95 65.55
ZINC36470466 318.36 5 5.65 578.41 −5.003 −2.44 1.37 65.62
ZINC38957372 290.27 4 5.5 523.10 −5.047 −2.59 0.90 66.99
ZINC14762520 372.41 3 4.75 661.36 −5.000 −4.34 3.2 84.28

aMolecular weight (acceptable range: <500)
b Hydrogen bond donor (acceptable range: ≤5)
c Hydrogen bond acceptor (acceptable range: ≤10)
d Total solvent accessible surface area in using a probe with a 1.4 radius (acceptable range: 300–1000)
e Predicted IC50 value for blockage of HERG K+ channels (concern: below −5)
f Predicted aqueous solubility, S in mol dm−3 (acceptable range: −6.5 to 0.5)
g Predicted octanol/water partition coefficient (acceptable range: −2 to 6.5)
h Predicted human oral absorption on 0 to 100% scale (<25% is poor and > 80% is high)
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In contrast, ZINC36470466 showed a dramatic increase in
flexibility, with RMSD values rising gradually from 1.5 Å to
2.75 Å over time. ZINC14762520 was in equilibrium up to
70 ns, but showed fluctuations thereafter. On the other hand, the
apo form also reached at equilibrium after 10 ns andmaintained

RMSD up to 1.9 Å for 50 ns, after which the RMSD was seen
to increase gradually. Similarly, sunitinib displayed stable
RMSD up to 50 ns; however, after that it decreased to 1.5 Å
and remained steady thereafter. Overall, the results of RMSD
analysis clearly depicted that the conformation of the protein
was changed upon ligand binding, as the apo structure repre-
sented the lowest RMSD fluctuations over the course of the
simulation. In order to investigate local fluctuations in protein
structure induced by the ligands, the root mean square fluctua-
tion (RMSF) of each protein backbone was calculated. As
shown in Fig. 3a, five flexible regions were involved in the
ATP binding site, including G-loop L836 to I849, hyd-1 A866

to K868, hinge T916 to N923, catalytic subunit H1026 to L1035

and DFG motif C1045 to G1048. Among these compounds,
ZINC36470466 produced the highest fluctuations in G-loop
regions, while ZINC14762520 showed low RMSF compared
to the apo form. Again in all cases, amino acids ranging from
114 to 128 fluctuated more in apo form; however, fluctuations
were seen to reduce after ligand binding. In the case of the
standard inhibitor, sunitinib increased flexibility in the hinge
region, up to 1.9 Å, while no significant changes in RMSF
were observed for ZINC14762520. It is also noteworthy that
binding of all ligands except ZINC14762520 increased local
fluctuations of the catalytic subunit region in comparison to the
apo protein. This was due to their strong interactions with res-
idues and rotation of the particular pharmacophore involved in
intermolecular interactions. In the DFGmotif,ZINC13370550
produced the highest RMSF, which denotes increased flexibil-
ity in this region. Overall, RMSF analysis suggested that all
compounds formed favorable interactions with ligand binding
regions. Although dynamic changes occurred upon binding to
these ligands, protein stability was increased, which is similar
to the reference ligand.

To further clarify the structural deviation derived by the
ligands, flexibilities of the protein in terms of SASA, radius
of gyration and number of hydrogen bond were calculated.
Figure 4 depicts the total SASA of each protein, i.e., the bio-
molecular surface area that is assessable to solvent molecules.
Here, decreased values of SASA denotes the shrunken nature
[71]. The results of SASA analysis suggest that
ZINC02585769 increased the SASA of protein with several
large fluctuations in 100 ns simulation. Conversely,
ZINC13370550 showed a pattern similar to that of the stan-
dard inhibitor sunitinib, indicates that ZINC13370550 was
dynamic ove r t h e s imu l a t i on . Compa r a t i v e l y,
ZINC36470466 showed lower SASA values over time,
allowing us to conclude that the ligand caused tight packing
of the protein. Interestingly, ZINC14762520 maintained a
steady SASA profile over time; however, some large fluctua-
tions were seen in 100 ns of simulation. On the other hand, the
radius of gyration of the proteins, shown in Fig. 5a, revealed
that ZINC14762520 produced a higher radius of gyration at
the beginning, which was then maintained over the entire

Table 3 Detailed molecular interactions analysis for best hits obtained
from Glide XP docking

Compound Conventional
hydrogen
bonds

π-Donor
hydrogen
bond

Hydrophobic

π-Alkyl Amide-
π-
stacked

ZINC02585769 C919 (2.23 Å),
C919

(2.41 Å),
D1046

(1.88 Å),
E885

(2.15 Å)

K868 (5.15 Å),
V899

(4.88 Å),
V848

(4.73 Å),
A866

(3.76 Å),
L1035

(4.46 Å),
L840

(5.02 Å),
V848

(5.31 Å),
A866

(4.94 Å),
L1035

(4.41 Å)

C919

(4.18
Å),
K920

(4.18
Å)

ZINC13370550 E868 (2.83 Å),
E868

(2.90 Å),
C919

(2.05 Å),
N923

(2.26 Å),
N923

(2.52 Å),
N923

(2.23 Å),
N923

(2.62 Å),
C919

(1.83 Å),
L840

(2.15 Å),
L840

(1.87 Å)

C919

(3.13
Å)

L840 (4.36 Å),
L1035

(5.12 Å),
L840

(5.33 Å),
V848

(4.92 Å),
A866

(4.16 Å),
L1035

(4. 52 Å),
V848

(4.65 Å),
A866

(5.29 Å),
C1045

(4.60 Å)

ZINC14762520 C919 (1.98 Å),
D1046

(2.10 Å),
C919

(1.82 Å),
F1047

(1.64 Å)

K868 (4.60 Å),
V899

(5.35 Å),
A866

(3.86 Å),
C919

(4.94 Å),
L1035

(4.51 Å)
ZINC36470466 C919 (1.91 Å),

D1046

(2.09 Å),
T916

(2.12 Å),
C919

(1.98 Å),
D1046

(1.96 Å)

V899 (5.19 Å),
L840

(5.07 Å),
V848

(5.15 Å),
A866

(4.43 Å),
L1035

(4.52 Å),
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simulation time. In comparison to the other ligands,
ZINC36470466 showed lower values; these results therefore
suggest flexibility of ZINC14762520 as well as tight packing
ofZINC36470466, as higher radius of gyration value denotes

loose packing of the protein structure, which clearly supports
the results calculated from SASA analysis. In addition, suni-
tinib maintained a radius of gyration profile similar to that of
the apo state after 17 ns; no significant changes were seen

Fig. 1a–d Binding modes of
compoundswith VEGFR-2.
Molecular interactions are
displayed in hydrophobic surface
view. Green dotted line Hydrogen
bonds, pink dotted lines π-alkyl
interactions. The hydrophobic
intensities of the binding site
ranged from −3.00 (least
hydrophobic area—shaded blue)
to 3.00 (highly hydrophobic
area—shaded brown). a
ZINC02585769, b
ZINC13370550, c
ZINC14762520, d
ZINC36470466
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thereafter. Figure 5b represents the total intra-residue hydro-
gen bonds formed during the simulations, in which maximum
highes t p icks were obse rved for apo form and
ZINC14762520. On average, there was insignificant variation
of hydrogen bonding among the proteins, ranging from 50 to
100 (Table S2, see supplementary file 1). Nevertheless, it is
concluded that binding of ligands, including standard inhibi-
tors, reduced intra-residue hydrogen bonds in the protein,
therefore increasing flexibility. The degree of flexibility in-
creased by binding of ZINC13370550 and thus the overall
dimension of the structure was enhanced, while it was reduced
by the binding of ZINC36470466. The total number of H-
bonds between the ligand and residues of the ATP binding site
of protein for each complex are represented in Fig. 6, where
maximum hydrogen bond ing was obse rved fo r
ZINC36470466 (Fig. 6e) during the simulation, while
ZINC13370550 (Fig. 6c) showed minimum interaction
(Table 2). For a detailed understanding, H-bond occupancy
was calculated and represented in Fig. 6f. Here Fig. 6f shows
the percentage of H-bond occupancy, where each residue ei-
ther acted as a donor or as an acceptor.

As shown in Fig. 6f, ZINC14762520 formed several
H-bonds with the residues of DFG motif and hinge re-
gion, including C919, E885, F1047 and D1046 residues dur-
ing the simulation, with total occupancy of more than
15%. The major interaction with C919 was mediated by
the hydroxyl group present in the 4-hydroxyphenyl part of
ZINC14762520, where the oxygen atom acted as accep-
tor. ZINC36470466 formed H-bonds with D1046 and E885

residues as H-bond donor, occupying more than 50% of
the simulation, while less than 20% of H-bonds were oc-
cupied as acceptor with C919 residue. Here, hydroxyl
groups present at the 3-hydroxybenzyl part of the com-
pound act as donors in the interactions with D1046 resi-
dues of DFG mot i f . The main cont r ibu t ion of
ZINC02585769 in the hydrogen bonding interaction was
with residue E885, with 121.04% H-bond occupancy. The
hydroxyl groups present at the 3,4-dihydroxyphenyl part
are major contributors in H-bond formation, acting as do-
nors. In contrast, ZINC13370550 showed maximum H-
bond occupancy with T926 and C919 residues as both H-
bond donor and acceptor, with interaction maintained by

Fig. 2 Time evolution of root-
mean-square deviations (RMSDs)
of backbone atoms (C, Cα, and
N) for protein of each docked
complex. Complexes: Blue apo,
orange sunitinib, red
ZINC02585769, olive green
ZINC13370550, black
ZINC14762520, pink
ZINC36470466
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the d-glucopyranose ring and ketone group present in the
flavones part, respectively. Sunitinib interacted with resi-
due E917 more than 35% as a donor with an additional H-

bond with L840 having a percentage occupancy of around
10%. As an acceptor, sunitinib maintained H-bonds with
C919 residues about 34% of total simulation time.

Fig. 3 a Structural representation of VEGFR-2 kinase highlighting the
different motifs involved in ATP binding. bRoot mean square fluctuation
(RMSF) plots of protein–ligand complexes: Blue apo, orange sunitinib,
red ZINC02585769 , ol ive green ZINC13370550 , black

ZINC14762520, pink ZINC36470466. c Comparative RMSF plot
between protein-ligand complexes and apo structure. Residues
involved: light green G-loop, orange hyd-1, blue hinge, brick red
catalytic subunit, cyan DFG motif
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In computer-aided drug design approaches, Poisson-
Boltzmann surface area (PBSA) is one of most attractive sol-
vation systems that is applied widely to calculate binding en-
ergy of protein–ligand complexes [51, 72]. Hence, we subject-
ed each protein-ligand complex to a MM-PBSA binding en-
ergy calculation to see how structural changes influence li-
gand binding. With this aim, we calculated the binding energy
of every snapshot produced fromMD simulations. The results
are plotted in Fig. 7a, where more positive energies indicated
better binding, according to the theory of nuclear physics [73].
According to the laws of physics, the energy required to dis-
assemble a whole into separate parts is usually positive [74].
On average, ZINC14762520 obtained maximum energy of
binding of 166.12 ± 6.5 kJ mol−1, while ZINC02585769
showed the least energy of 19.45 ± 1.4 kJ mol−1. The refer-
ence inhibitor exhibited a binding energy of 115.43 ±
1.2 kJ mol−1 By contrast, the ZINC13370550 and

Fig. 4 Ligand-induced
thermodynamic behavior of
protein during simulations. The
plots describe structural changes
of protein by means of solvent
accessible surface area (SASA).
Complexes: Blue apo, orange
sunitinib, red ZINC02585769,
olive green ZINC13370550,
black ZINC14762520, pink
ZINC36470466

Fig. 5 Time evolution of a radius of gyration, and b total number of
hydrogen bonds formed within the protein during 100 ns of MD
simulations. Complexes: Blue apo, orange sunit inib, red
ZINC02585769, olive green ZINC13370550, black ZINC14762520,
pink ZINC36470466

98 Page 10 of 15 J Mol Model (2019) 25: 98



ZINC36470466 complexes showed positive binding energy
values of 49.52 ± 5.2 kJ mol−1and 60.92 ± 4.7 kJ mol−1,
respectively.

Although ZINC02585769 produced higher binding energy
at initial stages of simulation, the binding energy was seen to
decrease afterward. ZINC36470466 and ZINC14762520
showed similar patterns of binding energy profiles; however,
ZINC36470466 obtained lower binding energy after 50 ns of
simulation. As ligand flexibility is involved in the formation
and breakdown of new bonds in the active site, we analyzed
ligand RMSD to gain more detailed understanding. As shown
Fig. 7b, the conformation of the sunitinib fluctuated up to
2.4 Å, and several large decreases in fluctuation were observed
one by one over time. Despite several fluctuations, sunitinib
maintained binding energy above 40 kJ mol−1 in total time of

MD simulation. Likewise, over the course of simulation,
ZINC14762520 supported stable conformations with RMSD
up to 0.7 Å, although several oscillations were observed, which
therefore caused variations in binding energy. With regard to
ZINC13370550, the ligand showed conformational shifting at
19 ns, which thus produced higher binding energy at that time;
however, several large shifting occurred afterward which indi-
cates greater fluctuation in binding energy profile. As a result,
these conformational shifts causedweaker binding of the ligand
with the active site residues of the protein, therefore resulting in
lowMM-PBSA binding free energy, as can be observed in Fig.
7a. On the other hand, ZINC02585769 showed a rigid confor-
mation over time, thus showing that flexibility of the ligand
plays an important role in the formation of a stable protein–
ligand complex.

Fig. 6a–f Total number of
hydrogen bonds formed between
protein and ligand in complex
state during the simulation. a
Sunitinib, b ZINC02585769, c
ZINC13370550, d
ZINC14762520, e
ZINC36470466. f Percentage
occupancy of hydrogen bond
formed between the ligands and
active site residues, showing the
time evolution of the occupancy
of the listed hydrogen bonds,
where each residue either acted as
donor or acceptor in hydrogen
bonding with ligand
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Overall, MD trajectory analysis infers thatZINC14762520
and ZINC36470466 are the most potent candidates among
the herbal secondary in vivo metabolites to inhibit VEGFR-
2 kinase. Both these compounds achieved highest average
binding free energies in MM-PBSA analysis among the top
virtual hits, and the binding energy of ZINC14762520 was
greater than the reference inhibitor sunitinib. They also main-
tained maximum non-covalent interactions in 100 ns with
residues of the three most important ligand binding regions
in VEGFR-2 kinase, including G-loop, DFG motif and hinge
regions [75]. In all kinase domains, G-loop and hinge regions
serve as important components for ligand binding, where the
G-loop interacted with the purine ring of adenine, and the
hinge region acts as the ribose binding pocket [76].
Interestingly, both compounds ZINC14762520 and
ZINC36470466 interacted with the residues involved in the
hinge region and the DGF motif. Comparatively,
ZINC36470466 sustained maximum interactions with hinge
regions by its benzyl rings, althoughZINC14762520 contains
a hydroxyl pharmacophore in the 4-hydroxyphenyl portion
that stabilized hinge binding by hydrogen bonding more than
35% in total simulation (Fig. 3f). Furthermore, docking anal-
ysis showed that ZINC36470466 formed hydrophobic inter-
actions through its aromatic ring with L840 and V848 residues
of the G-loop region. Hence, we calculated the atomic dis-
tances between the interacting ring of the ligands and the beta
carbon of L840 and V848 residues, respectively. As shown in
Fig. S4 (see supplementary file 1), ZINC36470466 main-
tained distances less than 5.5 Å in 100 ns simulation with
these hydrophobic residues, despite exhibiting some fluctua-
tion. Furthermore, L840 maintained maximum intermolecular
distance with the ligand from 4 to 5.5 Å in the total simulation,
which indicates that L840 of the G-loop contributed stronger

hydrophobic interaction than V848. Taken together, the above
analysis suggests strong stability and VEGFR-2 kinase
inhibiton with both ZINC14762520 and ZINC36470466.

Conclusion

In this in silico experiment, we tried to identify potent inhib-
itors of VEGFR-2 from a database of in vivo metabolites of
herbal ingredients, using Glide XP docking and ADME/T
analysis to identify the six best candidates. Among them, the
top four virtual hits were specified by MM-GBSA calcula-
tions. And finally, ZINC14762520 and ZINC36470466 have
been selected as the best virtual hits by MM-PBSA and MD
simulations. Molecular docking analysis revealed the detailed
binding mode of the selected virtual hits with VEGFR-2.
According to MD simulation analysis, these compounds en-
ergetically formed stable complexes with VEGFR-2 kinase
owing to different conformational changes. In addition, all
identified compounds were predicted to be orally active and
satisfied a drug likeness profile. Compared to standard inhib-
itors, they are also predicted to be less susceptible to cardiac
toxicity. The results of this study therefore offer a suitable
starting point for further development as well as detailed
in vitro and in vivo analyses.
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