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Abstract

While canonical molecular orbitals have been used in computational chemistry for almost a century, the use of localized
molecular orbitals is relatively new, and generating them has been difficult until recently. This has impeded their routine use
in modeling chemical systems and reactions so that, even though localized molecular orbitals can now be generated easily, their
usefulness in interpreting chemical phenomena has not been properly appreciated. Localized molecular orbitals can provide
useful insights into chemical phenomena such as two-electron bonds, 7t delocalization, and lone pairs. A potentially important
application would be interpreting the phenomena that occur in chemical reactions, in particular those reactions which can be
described using the Lewis curly-arrow electron pushing convention. This paper considers how canonical and localized molecular
orbitals are generated, their usefulness and limitations, and some issues that could be considered controversial regarding their
nature, and it presents examples of the usefulness of LMOs in describing six chemical systems and one reaction.
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Introduction

Quantum theoretical calculations have produced many kinds
of results that have been extremely useful for predicting the
properties of chemical systems. But while some calculables,
such as total energies and forces acting on atoms, have exper-
imental equivalents and are usually referred to as observables,
other calculables, in particular molecular orbitals, have no
possible experimental equivalent and are commonly referred
to as non-observables. Although there is currently no general-
ly accepted definition of observables and non-observables in
chemistry [1], from a theoretical perspective the defining char-
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acteristic of an observable calculable is that it is the result of an
operator acting on a system’s state wavefunction, ¥, in con-
trast to those quantities that involve only the wavefunction of
an individual electron or a pair of electrons, ¢;. Although these
latter quantities are calculable and have real expectation
values, they have no experimental equivalent, so comparison
with any observable property of a real system is impossible.
Nevertheless, in describing and interpreting chemical phe-
nomena, especially those involved in reactivity and reactions,
the use of calculated non-observables such as individual mo-
lecular orbitals has undoubtedly been of considerable value.
In quantum chemistry, there are two common ways of
representing the set of occupied molecular orbitals (MOs).
One consists of the eigenvectors of the self-consistent field
(SCF) Fock matrix; these are the canonical molecular orbitals
or CMOs. The other is composed of localized molecular or-
bitals or LMOs. LMOs are normally localized on one or two
atoms with only a small intensity on other nearby atoms, with
the important exception that, when delocalized 7t-systems are
present, a LMO might have significant intensity on three or
even more atoms. Both sets of MOs consist of orthonormal
functions, and each set can be converted into the other by a
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unitary transform [2], so both representations yield the same
electron density and are therefore physically equivalent.

CMOs and LMOs are generated in two very different ways.
Conventional quantum chemistry methods use matrix algebra,
and these methods produce CMOs when an exact diagonali-
zation of the SCF secular determinant matrix is performed.
Recently, Lewis structures have been used in an SCF method
[3] that avoids the use of matrix algebra; this method produces
LMOs by default. Although both the CMO and the LMO
approaches yield the same results for observables such as
charge distribution, dipole moment, heat of formation, geom-
etry, etc., they give very different results for non-observables,
such as the energies and shapes of the molecular orbitals.

The objectives of this report are to describe some properties
of LMOs and to show that they can be useful in describing
organic chemical systems and their reactions. To minimize the
need for caveats, qualifications, and other distractions that
would be necessary if a completely general description of
LMOs were to be given, the assumption that the systems in-
volved are normal organic compounds should be made when
reading the following discussion. Specifically, they should be
nontrivial (not isolated atoms, ions, etc.), devoid of high sym-
metry of the type that might cause symmetry-related phenom-
ena that would be irrelevant to this discussion, and they should
not involve unusual bonding of the type found in non-
innocent ligands [4] in organometallic chemistry.

The discussion applies to NDDO-type [5] semiempirical
methods only; while it might be applicable to other methods,
this should not be assumed. Molecular orbitals generated by
methods based on the NDDO approximations are normalized
so that the sum of the squares of atomic orbital coefficients is
unity. They also form an orthogonal set in that the sum of the
products of atomic orbital coefficients for two different MOs
is zero. Together, these two properties greatly simplify work-
ing with semiempirical molecular orbitals. Finally, all MOs in
the occupied set should be regarded as being doubly occupied;
that is, fractional occupancy, thermal population, radicals, and
other exotica are ignored.

Matrix algebra methods

The earliest quantum chemical methods used matrix algebra,
beginning in 1931 when Hiickel [6] published his 7t-electron
model for the electronic configuration of benzene. In this
model, a matrix of interaction energies between the 2p 7 or-
bitals is constructed; when the matrix is diagonalized, the re-
sult is a set of eigenvectors and eigenvalues: the CMOs. The
Hiickel framework, based on matrix algebra, was used as the
foundation of many subsequent theoretical chemistry
methods, from the w technique [7] to the Pariser—Parr—Pople
method [8, 9], the CNDO and NDDO methods [5], INDO
[10], MNDO (the first of the modern semiempirical methods)
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[11, 12] and its successors AM1 [13], PM3 [14, 15], PM6
[16], RM1 [17], AM1* [18-22], and PM7 [23], as well as a
plethora of Hartree—Fock ab initio methods for solving
Schrodinger’s equation for chemical systems. Matrix algebra
methods have thus proven to be both very successful and very
popular for many decades.

From a practical perspective, a severe drawback of using
matrix algebra in quantum chemistry methods is that some of
the mathematical operations necessarily scale as the cube of the
size of the system. This is particularly evident for semiempirical
methods when large systems such as biomacromolecules are
modeled, as the computational effort for all other operations
becomes insignificant compared to matrix operations such as
matrix inversion, multiplication, and diagonalization.

Localized molecular orbital methods

A simple and elegant way of describing the electronic
structure of a molecule, in particular organic compounds,
is to use Lewis structure [24] diagrams. Published in
1916, Lewis structures are one of the oldest ways of de-
scribing molecular electronic structures. These structures
have the advantages of being easy to generate and infor-
mative. They are very useful for predicting certain quali-
tative properties, such as the geometric environment of an
atom and the type of reactions a molecule might partici-
pate in. By their nature, Lewis structures are not quanti-
tative, and as such the development of Lewis structure
theory is limited. In 1996, the MOZYME [3] method
was published. This method uses Lewis structures as the
foundation for a LMO quantitative chemical modeling
method.

To lay the groundwork for a discussion of MOZYME, a
brief description of Lewis structures will now be given.

Lewis structures

Lewis structures are generated using only the topology of the
system and the number of valence electrons on each atom.
Structural elements consist of bonds between atoms, with
one line indicating a single bond, two lines a double bond,
and three lines a triple bond, and pairs of dots to indicate lone
pairs on an atom. Other common symbols used in Lewis struc-
tures are a plus sign on an atom to indicate a cationic site and a
minus sign to indicate an anionic site. Less common symbols
include a single dot on an atom to represent an unpaired elec-
tron, an arrow in place of a line to indicate that both electrons
in the bond came from the same atom, and a dotted line to
represent a fractional covalent bond.

A simple test of the correctness of a Lewis structure is to
verify that the expected number of valence electrons on each
atom can be worked out from the Lewis structure diagram.
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Lines represent two-electron covalent bonds, with each bond
contributing one valence electron to each of the two atoms it
connects. Lone pairs on an atom contribute two valence elec-
trons to that atom, and a negative sign on an atom represents
one extra valence electron.

In addition to providing a simple representation of molec-
ular electronic structure, Lewis structures have proven to be
very useful for describing reaction mechanisms, where curly
arrows [25] are used to show the movement of electrons when
chemical bonds are made or broken.

Although Lewis structure theory is only qualitative, it does
provide a simple and powerful tool for describing the elec-
tronic structures of compounds and for predicting and
explaining reaction mechanisms.

The MOZYME method

Because all Lewis structures involve only local (monatomic or
diatomic) interactions, a quantum chemistry model based on
Lewis structures should, in principle, be able to avoid the need
for matrix algebra, thus reducing the computational effort in-
volved in solving the SCF equations. This model would use
the simple Lewis structure as the starting point for construct-
ing a set of localized molecular orbitals for use in a SCF
calculation.

Transitioning from Lewis structures to LMOs involves a
paradigm shift. Lewis structures involve bonds, lone pairs,
charges, etc. These quantities are observables (at least in prin-
ciple) that can be generated from a set of LMOs. Individual
LMOs are two-electron wavefunctions, i.e., non-observables,
and while it is both possible and useful to make a one-to-one
mapping of Lewis structural elements and LMOs, to equate
them would be incorrect or even dangerous as it could easily
lead to theoretically nonsensical territory, such as attempting
to find the best form of MO to produce a specific bond.

Using LMOs to solve the SCF equations is the principle
behind the MOZYME [3] method. A necessary and sufficient
condition for a SCF to exist is that all interaction energies
between occupied and virtual MOs must vanish. Solving the
self-consistent field equations therefore consists of calculating
and then annihilating all such interactions.

The MOZYME procedure begins by converting the con-
ventional s-p and s-p-d orbital basis set on an atom into an
equivalent number of hybrid atomic orbitals oriented towards
the nearby atoms. These hybrids are then used to construct
Lewis-type LMOs, i.e., occupied LMOs that are completely
localized on one or two atoms. At the same time, a second set
of empty LMOs is constructed. These represent cationic sites,
virtual lone pairs, and antibonding diatomic bonds. Together,
the two sets form a complete set of orthonormal MOs.
However, there are nonzero interactions between the occupied
and virtual LMOs, and therefore, when it is first generated, the
complete set does not satisfy the SCF conditions. The LMOs

are similar to the CMOs at this point in that, at the start of the
conventional SCF procedure, the CMOs also have nonzero
occupied—virtual interactions.

From this point on, the MOZYME procedure differs from
conventional SCF methods in that the secular equations, in-
stead of being constructed using atomic orbital basis func-
tions, are constructed using the LMOs. During the first few
iterations of the procedure to solve the SCF equations, the
LMO size increases rapidly as annihilation of the occupied—
virtual LMO interactions causes the LMOs to expand onto
nearby atoms. In subsequent iterations, this expansion slows
down and, for large systems, stops when each LMO contains
between 50 and 200 atoms. Even when the LMOs are this
large, most occupied and virtual LMOs for macromolecular
systems still have no atoms in common, and in such cases the
interaction is automatically zero. For large systems, this means
that the number of elements in the Hamiltonian that need to be
annihilated scales approximately linearly with the size of the
system. However, because of other factors such as the calcu-
lation of long-range electrostatics, in practice the computa-
tional effort required when using this approach scales roughly
as N'°, where N is the size of the system.

In addition to being faster than the equivalent matrix-
algebra technique, the MOZYME technique is computation-
ally more robust when solving the SCF equations. This is a
consequence of an increased HOMO-LUMO gap when
LMOs are used (see the next section); as a result, the individ-
ual LMOs are less polarizable than the individual CMOs and
are therefore less prone to charge oscillation and other
instabilities.

An unfortunate side effect of the reduced polarizability is
that sometimes the SCF field generated by MOZYME con-
verges to an excited electronic state instead of to the ground
state; this occurs most frequently in gas-phase systems that
might be assumed—incorrectly—to have highly charged
groups. For example, in structures involving multiple -NHj;
and —COOQ groups [26], the Lewis structure approach used to
start the SCF procedure in MOZYME always generates ion-
ized sites, giving rise to zwitterionic sites. If the lowest-energy
SCF electronic structure involved some or all of the charges
canceling out, so that the system contained -NH; and —-COO
instead of -NH;" and —COO", then, when the MOZYME
SCF is formed, the resulting electronic structure might not
be that of the ground state.

The origin of this fault can be understood in terms of the
properties of LMOs. At the start of the SCF procedure, the
charges on the various atoms would be those assigned by the
Lewis structure. If a pair of charges generated by the Lewis
structure should not be present in the SCF ground state, then,
during the SCF procedure, the LMOs representing these
charges would need to migrate from one atom to the next as
they moved towards each other under the influence of electro-
static attraction. This would obviously involve a high-energy
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intermediate if a migrating LMO moved onto a group that was
not easily ionized, e.g., a —CH,— group, and migration of the
LMOs would therefore be inhibited.

In the CMO methods in MOPAC, the starting density ma-
trix is constructed assuming that all atoms are neutral. Because
of this assumption, CMO methods would naturally result in
the SCF procedure converging to the neutral species if that
species has the lower heat of formation (AHy). Conversely, if
the zwitterionic form had the lower AH}, then, because the
CMOs are naturally delocalized over many atoms and are thus
more easily polarized, the SCF procedure would normally
converge to the ionized form.

Whenever this occurs, using an implicit solvent in a
MOZYME calculation results in a large decrease in the AH;
due to ion—solvent interactions. When CMO methods are
used, the energy change on solvation would be equal to that
for a MOZYME calculation reduced by the amount of energy
required to convert the system from the neutral to the ionized
form. Problems of this type are highly artificial in that they
only occur in unrealistic gas-phase systems. Indeed, such sys-
tems are so unrealistic that no conventional Lewis structure
can be written for them, and, if they were to be synthesized,
they would almost certainly be highly unstable. The simple
expedient of making the system more realistic by using im-
plicit solvation always results in both the LMO and the CMO
methods producing the correct ground state.

The other situation where the Lewis structure model fails
occurs in large graphitic structures, such as irregular graphene
flakes in which hydrogen atoms are attached to the edge
atoms. Any mistake made during the construction of the
Lewis structure could result in the formation of one or more
pairs of charges in a system that should have no formal
charges. If these faults were not corrected by using the appro-
priate keywords to modify the default Lewis structure, the
resulting SCF would likely be incorrect.

Localized molecular orbital energy levels

Because the CMO and LMO sets are related by a unitary
transform, the sum of the occupied-set energy levels is the
same in both cases, but the individual localized and canonical
molecular orbital energy levels are different, the most impor-
tant difference being that the LMO energy levels span a small-
er range than that spanned by the CMOs. This is a direct
consequence of the eigenvector nature of CMOs: all interac-
tion energies involving pairs of CMOs are zero. Any unitary
transform of the CMO set would introduce nonzero interac-
tion energies between pairs of MOs, and the presence of such
interactions would necessarily reduce the difference between
the MO energy levels. In the case of the CMO with the lowest
energy, any nonzero interaction energy introduced by a uni-
tary transform would cause its energy to increase. A similar
effect would take place with the HOMO, where any nonzero
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interactions introduced by a unitary transform would cause its
energy to decrease. When the LMOs and CMOs are similar,
the reduction in the range of energies in the LMOs would be
small. At the other extreme, exemplified by cubic nonmetallic
allotropes such as diamond and cubic binary compounds such
as boron nitride, the reduction would be complete. In those
systems, the LMOs would all have exactly the same energy,
and each LMO would represent a single covalent chemical
bond.

A similar set of conditions applies to the virtual or un-
occupied CMOs and LMOs in that the range of energies
spanned by the unoccupied LMOs is smaller than the cor-
responding range for the equivalent CMOs, and the LMO
LUMO energy would be more positive than that of the
CMO LUMO. A direct consequence of these changes is
that the LMO HOMO-LUMO energy gap is always larger
than the corresponding CMO gap. This increase is very
important in that it reduces the polarizability of the
LMOs, which, in turn, increases the stability of the SCF
procedure.

Localized molecular orbital sizes

Although localized molecular orbitals have some intensity (the
square of the wavefunction) on all the atoms, A, in a system,
within any specific LMO, v¢; = Y 4> \caCri®y, almost all of
the intensity is located on only a few atoms. A quantitative mea-
sure, C;, of how localized each LMO is can be constructed from

-1
. .. . e 2
these intensities using C; = (iilii) ' = (ZA (Yreacr?) )
This quantity is of course noninteger, so, in order to avoid refer-
ring to fractional atoms, the size of a LMO should be interpreted
as the number of centers involved. For lone pairs, where most of
the LMO is concentrated on one atom, C; is approximately 1.0;

for simple two-center single, double, and triple bonds, its value is
2.0; and for delocalized 7t bonds, C; has values of 2.5 or higher.

Relationships between canonical molecular
orbitals and localized molecular orbitals

Converting CMOs into LMOs

Various methods of converting CMOs into LMOs have
been proposed, all of which involve performing a unitary
transformation. In the Boys technique [27, 28], the geo-
metric size of the LMO is minimized; in the Edmiston—
Ruedenberg [29] approach, the sum over all LMOs of the
electrostatic self-repulsion is maximized; and in von
Niessen’s method [30], the electrostatic repulsion between
pairs of LMOs is minimized. The Edmiston—Ruedenberg
approach is thus essentially similar to that of von Niessen.
This relationship can easily be understood in terms of
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electron repulsion integrals involving LMOs ; and 1), as
shown in Eq. 1, where r= |r;—r]|:

i) = Bt ()b anars. (1)

In the Edmiston—Ruedenberg localization method, the sum
of all self-repulsion integrals, Y ;(iilii), is maximized, and in
von Niessen’s localization method, the sum of all integrals
involving different LMOs, ¥, (iiljj), is minimized.
Because the sum Y ;(iiljj) is a constant, it follows that these
two localization methods are complementary.

A second, completely different, approach [31] involves a
Cholesky decomposition of the density matrix. This very re-
cent technique is particularly useful because it is efficient,
being noniterative, and versatile, in that it does not require
initial CMOs. These advantages might justify using this tech-
nique in semiempirical methods, but this possibility does not
appear to have been explored yet.

When ab initio methods are used, evaluating the two elec-
tron integrals is tedious [32]. An alternative approach, useful
in semiempirical methods, involves replacing the operator
(1/r) in Eq. 1 with unity and then calculating the overlap of
the two resulting charge clouds. One consequence of the zero
differential overlap approximation in NDDO semiempirical
methods is that atomic orbital overlap integrals are neglected
in the normalization of MOs, so integrals of the type (ii| j7) can
be expressed as simple sums of products of atom orbital coef-
ficients. This approximation greatly simplifies von Niessen’s
localization procedure and results in a very efficient method
for generating an optimized set of LMOs [33].

In some systems, the LMOs involved in constructing dou-
ble and triple bonds are not always uniquely defined. This can
occur when the atoms in a set of LMOs are the same and the
number of centers in the LMOs are the same (usually about
2.0). For convenience, a set of LMOs that satisfy these condi-
tions will be referred to here as a degenerate set. Within each
degenerate set, the sum of the energies of the LMOs is unique-
ly defined but the individual component LMO energies are
still ill-defined. A similar situation occurs in systems where
two or three lone pairs are present on an atom. In all such
cases, a simple unitary rotation of the two or three LMOs
involved can be used to generate uniquely defined LMOs.
For convenience, the following description will refer only to
bonds, but it should be understood as also being applicable to
lone pairs. A small (size 2 or 3) secular determinant is con-
structed using the LMO energies €;; and the cross-terms e,
representing the interaction energy of the LMOs ); and ;.
When this determinant is diagonalized, the result is a set of
eigenvectors which can then be used as the unitary matrix for
rotating the LMOs. Because the secular determinant is energy-
based, the resulting LMOs always involve one LMO that has
o character and one (in the case of a double bond) or two

(in the case of a triple bond) that have 7t character. When a
triple bond is present, the two LMOs may be degenerate in
energy, so their orientation would still be ill-defined.
However, this could only occur when there is rotational sym-
metry about the diatomic axis, so their energies, degrees of
localization, and atoms involved would all be the same, mean-
ing that the resulting LMOs would always be equivalent by
definition.

An alternative representation of these LMOs can be gener-
ated by performing another simple unitary transformation to
form a set of new LMOs, each of which has the same amount
of the original bond. The transform to convert a double bond
involving LMOs 1), and 1, into new LMOs 1, and v, is
shown in Eq. 2:

by = 272 (g + )ty = 272 (Wo—1p). (2)

No unique transform exists for a triple bond involving
LMOs 1, Yy, and 1, but, since the new LMOs are essen-
tially degenerate and, as just noted, the precise orientation of
the resulting three hybrid LMOs about the diatomic axis can
never be important, this lack of uniqueness is once again un-
important and any unitary transform that results in an equal
contribution of 1), to each of the hybrid LMOs can be used.
An example of a simple unitary transform that will generate
three equivalent bonds is shown in Eq. 3.

U= (3720, + 612 )
by = (372, + 62y + 272, ) 5)

B S E -1/2
1[13— 3 7% 2 wﬂx

When these sets of equivalent LMOs occur in double [34]
and triple bonds, they are commonly referred to as “banana
bonds” [35].

Similar transformations can be performed on LMOs that
represent lone pairs on an atom. When two lone pairs are
present, a transform of the type shown in Eq. 2 would be used,
and the resulting hybrid LMOs are commonly referred to as
“rabbit ears.” When three lone pairs are present, as in the
fluorine atom in CH;F, a transform of the type shown in Eq.
3 would be used. In the absence of any external perturbations,
the energies and shapes of the resulting set of two or three
LMOs would the same.

Converting LMOs into CMOs

Given that both LMOs and CMOs give rise to the same den-
sity matrix and therefore to the same Fock matrix, in practice
the simplest and most rapid way to convert LMOs into CMOs
is to construct the Fock matrix over atomic orbitals from the
LMOs. Diagonalization of that matrix then gives the CMOs.
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Examples of the use of LMOs to describe
chemical systems

Seven worked examples will be presented to illustrate the use
of LMOs to model chemical systems. All simulations were
modeled within MOPAC using the semiempirical method
PM7 [23]; PM7 is the default method in MOPAC2016 [36],
but similar results are obtained if any of the other modern
semiempirical methods are used. Charged species almost al-
ways exist in the condensed phase, so, in order to make the
model more realistic, the COSMO dielectric screening method
[37] was used to mimic solvation effects when these species
were modeled. Because the systems involved were all very
small, the SCF equations were solved using conventional ma-
trix algebra, and the resulting CMOs were then converted to
LMOs using the NDDO localization method [33].

Butadiene

1,3-Butadiene is frequently used as an example of a small linear
polyene whose 7-electron system is stabilized by delocalization.
One explanation for how delocalization gives rise to stabilization
is given by Hiickel theory [6]. When applied to butadiene,
Hiickel theory predicts that the delocalization energy, in units
of the interaction energy of a simple p-p 7t bond, 5, would
amount to (2\/5—4) ($=0.4723. Modern semiempirical
methods also reproduce this delocalization, as shown in the 7t-
CMO coefficients presented in Table 1, where, as expected, both
7t CMOs are delocalized almost equally over all four carbon
atoms. But, while this result suggests that it is the delocalization
that causes the extra stabilization, when the CMOs were
relocalized, the number of centers spanned decreased to 2.07,
essentially the same as that of a simple unconjugated 7t bond.
That delocalization stabilization is a real observable phenomenon
is incontrovertible, but equally the attribution of the stabilization
to simple delocalization of the 7t MOs over more atoms cannot
be correct, given that the CMOS can be relocalized to (almost)
ethylenic bonds without any loss of stabilization energy.

An alternative explanation might be that even a small de-
gree of 7t delocalization has a profound stabilizing effect.
When the secular determinant is diagonalized, the MO coef-
ficients are automatically optimized so that the energy is at a
minimum, a condition that exists in the LMO coefficients in
Table 1. An examination of the 7t-1 coefficients shows that the
coefficient on atom 3 has the same sign as those on atoms 1
and 2. Delocalization of this type, where the lobes of a T MO
expand onto a nearby atom, could be viewed from a quantum-
mechanical perspective as increasing the wavelength of the
wavefunction, and this would then be responsible for the de-
crease in its energy. This would be the chemical equivalent of
increasing the size of the box in the quantum physics exercise
of the “particle in a box,” causing the eigenvalues to decrease
in energy. Delocalization of this type manifests itself in other
theoretical methods ranging from the Hiickel model, also
shown in Table 1, to higher-level methods such as Hartree—
Fock and density functional theory ab initio methods. In all the
cases examined, the 1 LMOs were qualitatively the same as
those for PM7.

An unacceptable consequence of both m-LMO
wavefunctions having a positive coefficient on three of the
atoms is that, if the coefficient of each wavefunction on the
fourth atom were to be zero, the 7t LMOs would have a small
positive overlap and the orthogonality of the MOs would be
destroyed. To avoid this, both wavefunctions are required to
have a small negative coefficient on the remaining atom.

The conventional explanation for the experimentally-
observed lowering of a compound’s heat of formation when
a conjugated 7t-system is present is that the wavefunctions for
the 7t electrons are delocalized, and these delocalized 7t elec-
trons generate the resonance stabilization that in turn lowers
the energy of the system. This description is rooted in the
concept of CMOs, and leads naturally and logically to mental
constructs such as resonance structures and aromatic stabili-
zation. An alternative explanation based on LMOs would be
that the available space for the 7t electrons is small in isolated
double bonds, but the space is increased when delocalization
resulting from conjugation is present. In but-2-ene, for

Table 1 7t Molecular orbitals for

1,3-butadiene PM7 PM7 Hiickel

Canonical MOs Localized MOs Localized MOs

lau 1bg -1 -2 -1 -2
Energy level —12.126 eV —9.613 eV —10.870 eV —10.870 eV 1.118p3 1.118p3
No. of centers 3.775 3.712 2.070 2.070 2.215 2.215
Atom Coefficients Coefficients Coefficients
1 0.4345 0.5653 0.7070 —0.0925 0.6887 —0.1626
2 0.5578 0.4248 0.6948 0.0941 0.6887 0.1626
3 0.5578 —0.4248 0.0941 0.6948 0.1626 0.6887
4 0.4345 —0.5653 —0.0925 0.7070 —0.1626 0.6887
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example, 99.76% of the t LMO is located in the C2—C3 bond,
whereas only 98.26% is located in the C1-C2 bond in but-1,3-
diene. The delocalization stabilization in but-1,2-diene would
then be attributed to this very small (1.5%) difference.

It is important at this point to reiterate that neither CMOs
nor LMOs actually exist. That is, although CMOs have been
used in theoretical chemistry for almost a century and have
been widely used to explain 7t-electron stabilization, they are
no more real than LMOs. At the same time, although LMOs
have a seductive appeal due to their simplicity (obviating as
they do entire CMO concepts such as resonance stabilization),
they, too, are no more real than CMOs.

Water

The water molecule provides a good example of a system that
has two lone pairs on a single atom. Each molecule has eight
valence electrons, represented in the Lewis structure by single
bonds between the oxygen atom and the hydrogen atoms and
by two lone pairs on the oxygen atom. All self-consistent field
methods can reproduce the bonds and lone pairs.

Water belongs to the symmetry point group C,,. In CMO
form, one of the lone pairs on the oxygen atom belongs to the
irreducible representation b, otherwise known as 7t symmetry,
in that it is antisymmetric to reflection through the plane of
symmetry. Only one MO of this symmetry is present, so it
represents a pure lone pair. The other lone pair MO is of repre-
sentation a;, but as this is the same as one of the O—H bonding
orbitals, the two MOs can—and do—mix. As a result of this
mixing, the second CMO lone pair MO, although recognizable
as a lone pair, cannot not be regarded as a pure lone pair.

When the CMO set is localized, the three 0 MOs, two of
representation a; and one of b,, resolve into two O—H bonding
LMOs and a pure o lone pair (Fig. 1, left). This is accompa-
nied by an expected decrease in the energy of the o lone pair,
as shown in Table 2. The starting 7t lone pair MO was already
completely localized, so it would remain unaffected by
localization.

6 LMO

n LMO

Fig. 1 Localized o and 7t lone-pair molecular orbitals on the oxygen atom
in water

The oxygen atom in water is unusual in that the CMOs for
most atoms with two lone pairs cannot be resolved into 100%
pure lone pairs. That the 7t lone pair is completely localized
can be understood given the fact that there is only one 7
atomic orbital and therefore any mixing of MOs is impossible.
The reason why the o lone pair should also be completely
localized is not so obvious. One explanation is that, by defi-
nition, the two O—H LMOs must be orthogonal, and also by
definition the o lone-pair LMO must be oriented along the C2
axis; therefore, in order for the o lone pair to be orthogonal to
both O—H MOs, it cannot have any intensity on either hydro-
gen atom, so it is constrained to be 100% localized on the
oxygen atom.

The pure lone pairs on water are a consequence of the
highly limited basis set used in semiempirical methods. If a
larger basis set had been used, the lone pairs would have had
some intensity on the hydrogen atoms.

Diamond

The electronic structure of diamond provides a dramatic ex-
ample of how the LMO and CMO descriptions differ. CMO
descriptions of crystalline solids such as diamond allow the
electronic band structure within the Brillouin zone to be gen-
erated. Brillouin zones contain a wealth of detail, such as k-
space coordinates, e.g., the symmetry points I', X, and K have
the coordinates (0.0, 0.0, 0.0), (0.5, 0.0, 0.0), and (0.25, 0.25,
0.25), respectively; the eigenfunctions at various points within
the Brillouin zone have specific Little group [38] symmetry
properties; and the energy band structure can provide infor-
mation on the electron and positron effective masses used to
predict electrical conductivity, and can be used to calculate the
electromagnetic properties of the solid. In short, Brillouin
zone descriptions of solids are extensive, well understood,
and are of great use for predicting physical properties.

By definition, each solid-state CMO extends over an infi-
nite number of atoms and has an infinitesimal intensity on any
one atom. This feature alone makes the CMO description of
the chemical structure of solids difficult to interpret. In con-
trast, the LMO description of diamond consists of a large
number of simple two-center molecular orbitals, one for each
carbon—carbon bond in the system being modeled, and, since
all these bonds are equivalent, all the LMOs have the same
energy but none of the elegant k-space band structure resulting
from using CMOs is present. In diamond, the most important
advantage of the LMOs over CMOs is that they provide a
measure of the simple covalent carbon—carbon bond energy.

Halite
In contrast to diamond, where all the bonds between atoms are

completely covalent and have no polarization, the interactions
between the atoms in a sodium chloride crystal are almost
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Table 2 Molecular orbital energy

levels for the lone pairs in water MO type Lone pair 1 Lone pair 2
Symmetry Energy (eV) Symmetry Energy (eV)
CMO a -0 —14.223 b, -1 -12.112
LMO using o and 7t orbitals —19.954 ud —12.112
LMO using rabbit ears Left rabbit ear —16.033 Right rabbit ear —16.033

entirely electrostatic, as a result of the atoms being highly
ionized. This ionization is reflected in the CMOs, where most
of the wavefunction is located on the chloride anion.

The LMOs are similar to the CMOs in that the intensity of
the wavefunctions is almost exclusively on the chloride an-
ions, but in contrast to the CMOs, where each MO has the
same intensity on every chloride, each LMO presents a high
intensity on precisely one chloride ion and a much smaller
intensity on the adjacent sodium cations. Localization of the
CMOs results in LMOs that have almost pure s or p character.
Hybridization of these LMOs to form four equivalent lone
pairs that correspond to the Lewis dot pattern for the chloride
ion would be possible, but, since the covalent contribution to
bonding is already very small, such an operation would not
produce MOs that would provide any more information than
could be obtained from unhybridized LMOs.

Graphite

Graphite presents another extreme type of bonding: the extreme
delocalization of its 7t electrons. To investigate the properties of
LMOs in graphite, a solid-state calculation using Born—von
Karman [39] periodic boundary conditions was performed on a
system of 128 carbon atoms. This produced a set of 192 carbon—
carbon 0 LMOs and 64 7t LMOs. All the 0 LMOs were identical
in shape and involved 2.03 centers; that is, they were all two-
center MOs. As expected, these MOs all had the same energy of
—21.25 eV. All the T LMOs were identical and involved 3.22
centers, i.c., they were three-center MOs, and had an energy of
—12.55 eV. Each 1 LMO had threefold symmetry with 50% of
the LMO intensity on one atom, 14% on each of three atoms
attached to the center atom, and 1.9% on each of three atoms
para to the central atom. The remaining 2.3% of the LMO was
distributed over more distant atoms. An example is shown in
Fig. 2, where the green and blue regions indicate positive and
negative lobes in the LMO, respectively. A nodal plane exists at
each atom meta to the central atom. This divides the LMO into a
set of four atoms consisting of a central atom and the three atoms
that are attached to it, and a set of three atoms that are para to the
central atom. Each 7t LMO is centered at the meta position of the
adjacent 7t LMOs.

An idealized LMO involving only the atoms mentioned
would have 50% of its intensity on the central atom, 13%3%
on each of the adjacent atoms, and 3%% on each of the
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atoms para to the central atom. These values would allow the
LMO to be orthogonal to the adjacent LMOs, but in this form
they would not be orthogonal to more distant LMOs.
Extended tails are necessary to achieve orthogonality between
all the 7t LMOs, and it is these tails that account for the dif-
ferences between the calculated and idealized LMOs.

That pairs of adjacent idealized LMOs are orthogonal can
readily be demonstrated by selecting one LMO and a second
LMO centered on any atom in the mefa position relative to the
central atom of the first LMO and then calculating the overlap
given that, at the NDDO level of approximation [5], the integrals
for two different atomic orbitals ¢, and ¢, are [rpy=1 and
Jox6,=0.

All t LMOs in graphite have the same triangular symme-
try, in contrast to the 7t LMOs in discrete molecules where the
7t LMOs are centered on two atoms. To investigate why the
LMOs have different shapes, the 1 LMOs for a hexagonal
fragment of graphene were calculated. This fragment
consisted of 216 carbon atoms with hydrogen atoms attached
to the edge atoms to satisfy valence requirements. Even
though the system was large enough that the atoms in the
middle would be expected to have an almost graphene-like
environment, when the LMOs were examined they all had
the same general shape as those in aromatic systems; that is,
they had a significant intensity on two atoms and a much
smaller intensity on the four adjacent atoms.

Further examination of the individual LMOs revealed a
possible reason for the difference between the LMOs in mol-
ecules and in graphene. All the 7t LMOs at the edge of the
graphene flake were clearly similar to those for simple aro-
matic compounds and had an energy of —11.3 eV. On moving
towards the center of the flake, the LMO energies dropped to
—11.8 €V, and the number of centers increased from ~2.1 to
~3.1, but the qualitative shape of the T LMOs remained

Fig. 2 Localized 7t molecular orbital in graphite
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unchanged. All the 7t LMOs in solid graphite had threefold
symmetry, the same energy (—12.5 eV), and spanned 3.2 cen-
ters. These results can be interpreted as implying that the most
stable geometry for LMOs in an extended 7-system would
have threefold symmetry, and that the shapes of 7t LMOs in
discrete compounds are a result of the strong influence of the
atoms at the edges.

Aromatic systems

Delocalized 7-systems in aromatic compounds give rise to a
special type of stabilization. A good description of this impor-
tant phenomenon, together with various aspects of the exper-
imental and theoretical issues involved, is provided in a recent
review [40], and no further elaboration need be given here.
These 7t-systems form an important exception to the normal
Lewis structure convention, and to indicate their presence and
to emphasize the fact that these bonds are unconventional,
aromatic rings are usually written with either a dotted or a
solid line instead of the Lewis alternating single and double
lines. Addressing the question of how these extended 7-
systems could be represented using LMOs is therefore of
interest.

Coronene, a hydrocarbon with an extended delocalized 7-
system, provides a good test case. Its numbering system and
one of the possible Lewis structures is shown in Fig. 3, and a
description of its LMOs is given in Table 3. Because of its
high symmetry, only seven different types of LMOs are pres-
ent: five o bonds and two 7t bonds. As expected, the 30 C—C
o bonds are the most stable, followed by the 12 C—H o bonds,

H 10a 12a’ 2a H
\10/ 10a’ - 2a1% 3/
9 8a' 4a’
H / \Ba \Ga1 / \a 4 \ H

Fig. 3 Coronene, C,4H;,, showing the numbering system and a Lewis
structure

Table 3  Localized molecular orbitals in coronene

LMO energy level Description Type No. of centers Degeneracy
-11.13 Cl1-C2 7 243

-11.35 C2aC2a' 2.99

—17.64 C-H o 1.97 12

-19.78 Cl-Cl2a o 2.02 12

-19.93 C2a'-C4a' o 2.03 6

-20.31 C2a-C2' o 2.02

—20.60 Cl1-C2 o 2.01

See Fig. 3 for numbering system

and then the 12 7t bonds. Also as expected, all of the o bonds
are two-center LMOs; that is, normal Lewis single bonds. On
the other hand, the 7t bonds form two distinct groups. LMOs
in the set with an energy level of — 11.13 eV were somewhat
localized, spanning 2.4 atoms, and gave rise to strong bond
alternation, the bond order for the 1-2 bond being 0.46 greater
than that of the 1-12a bond, as shown in Table 4. The other
set, at —11.35 eV, consisted of more delocalized LMOs, and
gave rise to smaller bond alternation. These LMOs present
high intensity on bonds of type 2a—2a', and a lower but still
significant intensity on the four adjacent atoms.

All 12 7t bonds are delocalized as expected, but because the
degree of delocalization is small they could still be easily
mapped onto the equivalent Lewis double bonds.

When all the C—C bond lengths were set to be equal, no
significant change was found in either the LMOs or the bond
orders. This excludes the possibility that the change in bond
order was caused by the differing C—C bond lengths, and gives
rise to the inescapable conclusion that the differing C—C bond
orders in coronene, and therefore the differing C—C bond
lengths (see Table 4), are a direct result of the nature of the
two sets of 7t bonds.

The Sy2 reaction

A particularly useful application of LMOs is to assist in de-
scribing the processes that occur in simple chemical reactions
such as the SN2 reaction. In a typical organic Sy2 reaction, an
incoming nucleophile reacts with an aliphatic carbon atom

Table 4 Bond orders and bond lengths in coronene

Atom Bond Bond length from Bond length from
pair order PM7 (A) [59] (A)

1-2 1.67 1.367 1.366

2a-2a' 1.40 1.403 1.419

1-12a 1.21 1.426 1.416

2a'4a' 1.20 1.427 1.422

1-H 0.96 1.089 1.082
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that is bonded to an ionizable ligand to form a transient
pentacoordinate transition state, which then decomposes when
the original ligand is expelled and the attacking nucleophile
completes the formation of a normal covalent bond. When the
carbon atom is chiral and inversion of the configuration oc-
curs, reactions of this type are described as involving a
Walden inversion [41, 42].

The various changes that occur in a Sy2 reaction can be
illustrated using the reaction shown in Fig. 4. In this reaction,
an isolated bromide anion reacts with chloroethane to give
bromoethane and an isolated chloride anion. The starting ge-
ometry for modeling the S\2 reaction was the transition-state
geometry generated using the SADDLE [43] method and op-
timized using Baker’s EigenFollowing technique [44].
Perturbations were then made to this geometry, displacing it
a small distance along the reaction coordinate normal mode in
the directions of the reactants and products to generate two
systems, one on each side of the transition state. These dis-
placements resulted in small forces being generated on all the
atoms in the system and allowed the intrinsic reaction coordi-
nate (IRC) [45] to be mapped out. The IRC was calculated
using mass-weighted Cartesian coordinates, and expressed in
Cartesian (i.e., non-mass-weighted) coordinates relative to the
transition-state geometry. This choice of units allowed the
reaction coordinate axis to be represented simply in
angstroms.

At the start of the IRC, the small magnitude of the forces
involved produced some computational artifacts in the trajec-
tory. These were eliminated by replacing the calculated points
with a low-order polynomial trend line.

Both the CMO and the LMO descriptions of the processes
that occur during the reaction are identical for those calcula-
bles for which there were equivalent experimental observ-
ables. The energy profile along the reaction coordinate for this
Sn2 reaction is shown in Fig. 5. During the reaction, the partial
atomic charge on the bromine atom became less negative
monotonically as the C—Br covalent bond formed, and the
charge on chlorine became more negative monotonically as
the C—Cl bond broke, as shown in Fig. 6. Although partial
atomic charges are sometimes regarded [46] as being non-
observables, the magnitude of the partial atomic charge on
an atom could in principle be determined experimentally by
applying an electric field to it and measuring the force acting
on the atom’s nucleus. Of course, carrying out such an exper-
iment would be extremely difficult, but, since there is no a

H
S

Br S gH
—p Y+ ClI

CH3

-142.0
S -144.0
<)
£
E
2-146.0
3
[Br]-+ CH;CH,CI CH,CH,Br + [CI]"
-148.0 side side
-150.0
04 03 -02 -01 00 01 02 03 04
Reaction Coordinate [A]

Fig. 5 Intrinsic reaction coordinate for the Sy2 reaction Br +
CH;CH,Cl — CH;3CH,Br+ Cl'. The origin of the reaction coordinate
is the geometry at the top of the reaction barrier. Negative coordinates
indicate the reactant side of the barrier and positive coordinates indicate
the product side

priori reason that such measurements cannot be made, partial
atomic charges should be regarded as observables. In addition,
since partial atomic charges result from an integration of the
state function followed by a partitioning onto atomic nuclei,
they are also physically meaningful observables in a quantum
theoretical sense.

The utility of LMOs can be illustrated by examining the
changes in the Br-C and C--Cl interactions as the reaction
proceeds. At the start of the reaction, the Br—C bond would be
nonexistent and the LMO representing the Br—C bond would
be located entirely on the bromide anion. This corresponds to
one of the four conventional Lewis lone pairs on a halide

-0.4

0.5 \

0.6 \

-0.7 \

== == Chlorine

Partial atomic charges

0.8 \

\ e Bromine

-0.9 N

-1.0
-04 -03 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Reaction Coordinate [A]

Fig. 4 S\2 reaction of Br + CH;CH,Cl — CH;CH,Br+CI™
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Fig. 6 Partial atomic charges on bromine and chlorine
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anion. As the reaction proceeds, the percentage of the LMO on
the bromine atom decreases (Fig. 7) as the Br—C covalent
bond forms, while simultaneously the percentage of the
LMO representing the C—Cl bond that is located on the chlo-
rine atom increases as the covalent bond breaks, and a lone
pair forms on the chlorine atom.

Also, at the start of the reaction, the number of atoms par-
ticipating in the Br—C LMO is 1.0, reflecting the fact that the
LMO corresponds to a lone pair on bromine. As the reaction
proceeds (Fig. 8), the number of atoms participating steadily
increases due to the formation of a normal Lewis two-center
bond. At the same time, the number of atoms participating in
the C—C1LMO decreases as the bond breaks, and the character
of the LMO changes to that of a lone pair on chlorine.

This behavior is also reflected in the changing LMO energy
levels, as shown in Fig. 9. Each of the two LMOs retains its own
halide character across the entire reaction. This can be contrasted
with the behavior when CMOs are used. In the region where the
energy difference between the two CMOs representing the
carbon—halogen bonding MOs is small, the character of the
CMOs changes smoothly from being mainly carbon and one
halogen to being mainly carbon and the other halogen, and,
instead of the energy levels crossing as the reaction proceeds, a
gap exists between them at all points, in accordance with the
requirements of the non-crossing rule [47].

The most interesting point in the reaction profile is the
stationary point corresponding to the top of the reaction bar-
rier. There, the carbon atom is pentacoordinate and forms

100.0

-
-
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e Br-C LMO

90.0 === Cl-CLMO
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Percent LMO on halogen

75.0

65.0
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Reaction Coordinate [A]

Fig. 7 Percentage of the localized molecular orbital on the halogen in
halogen—carbon bonds
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Fig. 8 Number of atoms involved in localized molecular orbital bonds

partial covalent bonds with both halogen atoms. Each of these
bonds is represented by a LMO: for bromine, this is shown in
Fig. 10, and for chlorine in Fig. 11. Thus, from a chemical
perspective, the LMOs provide a clear and simple quantitative
description of all the changes that occur during the reaction.
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Fig. 9 Localized molecular orbital energy levels (eV)
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Fig. 10 Localized molecular orbital for a Br—C bond at the transition
state. Bromine (red) forms a o bond with carbon (gray)

Discussion

Comparison of canonical and localized molecular
orbitals

Lewis structures [24] have been used in chemistry for over a
century, and have proven extremely useful for describing
chemical bonding in a wide range of chemical systems. In
addition, by using curly arrows, Lewis structural elements
have been extended to show the movement of electrons and
changes in bonding that occur during a chemical reaction. The
Lewis structure model of chemistry has thus been a valuable
tool for interpreting chemical phenomena.

With the rise of computational chemistry methods, partic-
ularly in the past few decades, highly detailed descriptions of
electronic phenomena that occur in chemistry have been de-
veloped. Most of these descriptions use canonical molecular
orbitals, but, while these can provide a quantitative description
of electron distributions, the elegance and simplicity of Lewis
structures cannot be reproduced easily because most CMOs
are delocalized over many atoms.

Both LMOs and CMOs have their own specific advan-
tages, and these will now be described.

Advantage of LMOs over CMOs

LMOs can be mapped one-to-one with the various Lewis struc-
tural elements of a chemical system, and to that degree they can

Fig. 11 Localized molecular orbital for a C—Cl bond at the transition
state. Chlorine, hidden between the green and blue lobes of the C—Cl
LMO, forms a bond with carbon (gray)
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be said to encapsulate many of the ideas of chemical structure.
This mapping is fundamentally different to that used in the con-
ventional computational chemistry representation of chemical
structures in terms of bond orders in that a LMO is a two-
electron wavefunction that represents a specific Lewis element.
Furthermore, because they are derived from a quantum-chemical
calculation, each LMO has an associated energy level that can
also be associated with a specific Lewis structural element. Prior
to the development of LMOs, the concept of assigning an energy
to a Lewis bond, a lone pair, or any other structural element did
not exist. LMOs thus provide a unique quantity that can be used
to describe a chemical structure.

One possible limitation of Lewis structures involves the
representation of extended conjugated 7t-systems. Normal co-
valent bonds are drawn in Lewis structures using one, two, or
three straight lines. This works well for most compounds, but
not for aromatic and other compounds that contain an extend-
ed conjugated 7t-system. In such systems, the Lewis structure
would consist of an alternating pattern of single and double
bonds. This does not capture the nature of delocalized 7r-sys-
tems, and has contributed to a decrease in the use of Lewis
structures to describe the molecular orbital structures of sys-
tems that have delocalized electrons.

However, an analysis of the structure of LMOs reveals that
the degree of delocalization in conjugated 7t-systems is con-
siderably less than is commonly believed. For example, in
coronene, a system containing seven unsaturated hexagonal
rings, the most delocalized LMO was found to span only three
centers. Even in graphite, a system with an essentially infinite
delocalized 7t-system (one so large that the CMO HOMO-
LUMO gap is exactly zero), each LMO spans only 3.22 cen-
ters. This small degree of delocalization should not be con-
strued as diminishing the importance and significance of an
extended conjugated system. Rather, it should be re-
interpreted as an indication that even a small degree of delo-
calization has a profound influence on chemical behavior.

The influence of the degree of delocalization can be seen in
the energies of various LMOs. Thus, in coronene, the more
localized 7t LMOs (Table 3) all had an energy of —11.13 eV.
This dropped to —11.35 eV in the more delocalized LMOs,
and in graphite the 7t LMOs all had an energy of —12.55 eV.
Given that the difference in delocalization in going from the
more delocalized 1 LMO in coronene (2.99) to the =t LMO
(3.22) in graphite was only 0.23, the difference in energy,
1.20 €V, could be construed as a dramatic testament to the
importance of delocalization.

So, while the Lewis structure for an extended conjugated
m-system is incorrect to the degree that it oversimplifies the
description of the bonding by completely failing to indicate
the presence of delocalized electrons, the corresponding LMO
picture represents a large improvement in that it gives rise to
molecular orbitals that reproduce the delocalization and the
stabilization energy caused by that delocalization.
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Advantage of CMOs over LMOs

Certain chemical phenomena, particularly those that involve
compounds that have conjugated 7t-electron systems, are more
easily understood in terms of CMOs than in terms of LMOs.
For example, the likelihood of a Diels—Alder reaction [48]
occurring can be predicted using the Hoffman—Woodward
rules [49, 50], which depend on frontier molecular orbital
(FMO) theory [51], which in turn depend on CMOs.
Although in principle these phenomena can be interpreted
using LMOs, in practice the CMO description is both simpler
and more sound theoretically, and, because there is a vast body
of knowledge relating to FMO theory dating back to the orig-
inal Fukui theory of reactivity [52], there is no obvious reason
to advocate developing a new alternative explanation for the
mechanism of Diels—Alder reactions based on LMOs.

CMOs provide a simpler description of some physical
properties such as the ionization potential, electrical conduc-
tivity, and UV-visible spectra. The prediction of these proper-
ties depends on the eigenfunction nature of CMOs. For exam-
ple, Koopmans’ theorem [53] states that the value of the first
ionization potential can be predicted as the negative of the
energy of the highest occupied CMO. In the case of electrical
conductivity, the second derivative of the energy bands with
respect to reciprocal space vector k can be used to calculate the
electron and hole effective masses, and, when predicting UV-
visible spectra, it is much easier to work with state functions
using CMOs.

Finally, because CMOs are eigenvectors of the Hamiltonian,
they are ideally suited for modeling phenomena that depend on
the state of the system. A good example of an experimental
quantity that can be expressed in terms of quantum state func-
tions is the photoexcitation spectrum, where a chemical system
absorbs a photon and transitions from one state, typically the
ground state, to another state. State energies are readily calcu-
lable using configuration interaction (CI) methods when CMOs
are used. For example, in the construction of the CI matrix for
the interaction energies of microstates, if two microstates differ
by exactly one MO (i.e., except for MO v; in microstate ¥, and
MO %) in microstate ¥,, ¥,=W¥,), the secular determinant
matrix element (V,| H] U,) is given as a simple function that
includes the integral €;= ()| H|{;)= | Y H;d,. In general,
this integral is difficult to calculate, but when a self-consistent
field exists and the molecular orbitals are eigenfunctions of the
Hamiltonian, all integrals of this type are, by definition, zero.
All other terms in the function consist only of phase factors and
individual two-electron integrals over CMOs.

In contrast, when LMOs are used and a self-consistent field
exists, nonzero integrals of the type €; are present, and con-
struction of the CI matrix using LMOs becomes very
difficult—so much so that it is computationally more efficient
to convert the LMOs into CMOs and then perform the CI
calculation using the CMOs.

Validity of different molecular orbitals

It is important to reiterate that none of the various molecular
orbitals used in quantum chemistry are experimental observables.
There is a strong temptation to regard certain forms of MOs as
having some physical reality, but that is merely wishful thinking.
From a quantum theoretical perspective, MOs are not observ-
ables, and from an experimental perspective, although certain
reactions—particularly those involving delocalized 7t-sys-
tems—can be interpreted in terms of CMOs, these interpretations
cannot, and should not, be used as evidence of the CMOs having
any real physical existence. Some types of MOs such as Wannier
functions [54, 55]—complex eigenfunctions that allow band
structures for crystalline solids to be generated—can be related
to experimental observables such as band gaps, excitation ener-
gies, and electrical conductivity. But all these experimental prop-
erties are system properties, and, in all such cases, the properties
of the one-electron wavefunctions provide a good approximation
to the behavior of the state function; that is, to an observable.
However, this relationship does not hold for finite chemical sys-
tems, even very large ones. Because of that, the choice of which
form of MO to use in chemical systems should depend only on
the purpose for which the MOs will be used. Modeling system
properties and those chemical properties that depend on specific
electronic phenomena such as extended delocalized 7-systems is
best done using CMOs, whereas LMOs are likely to be more
useful for representing purely chemical phenomena, especially
those that occur during chemical reactions.

Localized molecular orbitals from MOZYME
calculations

Given that the primary objective of the MOZYME procedure
is to solve the self-consistent field equations for chemical sys-
tems by using localized molecular orbitals derived from Lewis
structures, the resulting SCF LMOs are axiomatically not fully
localized. They can, however, be localized by performing a
molecular orbital localization procedure. As the starting de-
fault SCF LMOs would already be partially localized, this
post-SCF re-localization operation is very rapid when com-
pared to localizing a set of SCF CMOs. Thus, for a modified
chymotrypsin system based on the PDB entry 8GCH (a
medium-sized protein of 3968 atoms and 243 residues), local-
izing the CMOs from a conventional calculation required
48,768 s, whereas re-localizing the LMOs from a
MOZYME calculation required only 350 s. These times can
be compared with those for a single MOZYME SCF calcula-
tion, 297 s, and that needed to convert the SCF LMOs to
CMOs, 1203 s. During this test, the set of LMOs resulting
from re-localization of the MOZYME MOs and the set
resulting from localization of canonical MOs from a conven-
tional SCF calculation were compared and were confirmed to
be equivalent.
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How useful are hybridized localized molecular
orbitals?

The case has been made by Clauss et al. [56] (hereafter referred
to as P1) that the use of rabbit ear hybrid-based localized mo-
lecular orbitals is anachronistic. Some objections to this were
raised by Hiberty et al. [57] (hereafter referred to as P2), who
defended the idea that no one set of molecular orbitals was
intrinsically superior to any other provided they both produce
the same electron distribution. In a rebuttal, Clauss et al. [58]
(hereafter referred to as P3) agreed with P2 on many points, but
reiterated the opinion that concepts such as rabbit ears and
valence shell electron pair repulsion (VSEPR) were not useful
and that the teaching of them should be discouraged.

Much of the controversy appeared to center on definitions,
such as which type of molecular orbital could be defined in the
best (in this context the most unambiguous or unique) way.
Other issues mentioned in P1, such as fractional molecular
orbital occupancy and which sets of MOs best describe delo-
calization phenomena, are not relevant here. What are relevant
are the arguments, assertions, and conclusions regarding the
properties of different types of MO models.

Regarding the validity of the different MO models, the
following points are assumed to be uncontroversial:

*  When any set of occupied MOs is rotated using a unitary
transform, the resulting MOs produce the same electron
density distribution as that of the unrotated set. That is,
from a quantum chemistry perspective, both sets of MOs
are equivalent and, because they are non-observables, nei-
ther set has any physical meaning.

* In conventional (that is, matrix algebra) SCF methods,
when the secular determinant is diagonalized, the resulting
MOs are eigenfunctions of the Hamiltonian. These are the
CMOs discussed here.

* In systems that have Abelian symmetry (point groups C,
to Dyy,), all CMOs are uniquely defined as a consequence
of all the eigenvalues being unique. CMOs for systems
that belong to non-Abelian point groups can have degen-
erate eigenvalues, and within each degenerate set the
resulting CMOs are not uniquely defined; however, with
the exception of point groups I and I;, there is always a
unitary transform that can convert a degenerate set of
CMOs into a set of CMOs that would be uniquely defined.

*  When a double or triple bond exists, the associated CMOs
are usually split into a o bond and one or two 7t bonds.
When there are two or three lone pairs on an atom, the
associated CMOs usually split into one CMO that has high
s atomic orbital character and one or two that have mainly
p atomic orbital character.

*  When a set of CMOs is converted into a set of LMOs, no
double or triple bonds are present, and no atoms have more
than one lone pair, the resulting LMOs are uniquely defined.
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*  LMOs are sometimes not uniquely defined when double
or triple bonds are present. This occurs when the degree of
localization is the same for two or three LMOs that par-
ticipate in a multiple bond: about 2.0. However, degener-
ate LMOs resulting from the localization of CMOs do tend
to retain the character of the CMOs, and so LMOs
representing double or triple bonds normally split into
MOs that have mainly o or mainly 7t character.

* Sometimes LMOs are not uniquely defined when there are
two or three lone pairs on an atom. In these cases, the
degenerate LMOs resulting from the localization of
CMOs tend to split into one LMO that has mainly s char-
acter and one or two that have mainly p character.

* In both previous cases, a simple unitary transform of a
degenerate set of LMOs can convert them into a set of
well-defined LMOs.

* Degenerate but well-defined sets of LMOs can be convert-
ed into a set of hybrid LMOs that have the same, or almost
the same, energies. These are the “rabbit ears” and
“banana bonds” hybrid molecular orbitals.

»  Within any degenerate set of hybrid LMOs, the amount of
s character in each LMO is roughly the same.

Most of P1 and P3 focus on the pedagogic aspects of dif-
ferent representations of molecular orbital sets. As the author
has only a limited understanding of the issues involved, any
objections to the points made would be to merely cavil.
Equally, and for the same reason, no support or objections
can be assigned to the comments in P2 arguing against various
pedagogic points in P1.

However, to the degree that molecular orbital theoretical
issues are addressed, the author—being familiar with compu-
tational chemistry issues—feels qualified to offer an opinion
for consideration.

The topic of whether the lone pairs in water can be repre-
sented by two “equivalent” rabbit ears was discussed in P1.
The authors assert that “Whether one can find some unitary
mixture of lone-pair MOs that gives resulting equal-energy
orbitals is essentially irrelevant.” The validity of this assertion
was questioned in P2, and a rebuttal was given in P3.

Within the program MOPAC, the keyword “RABBIT” can
be used to convert a CMO set into a LMO set that differenti-
ates sets of lone pairs on an atom first into o and 7t lone pairs
and then uses Eq. 2 to re-hybridize these lone pairs into rabbit
ears. This operation is straightforward and uncontroversial, as
noted in Egs. 1a and 1b in P2 for atoms that have two lone
pairs, such as the oxygen atom in water. When RABBIT was
applied to water, the resulting rabbit ears were unambiguously
symmetric (Fig. 12) and degenerate in energy (Table 2). When
three lone pairs are present, RABBIT would use Eq. 3 to re-
hybridize them into three sp hybrids.

For more complicated systems, such as enzymes (systems
in which hydrogen bonds, and therefore rabbit ear LMOs, are
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Fig. 12 Localized rabbit ear lone-pair molecular orbitals on the oxygen
atom in water

of paramount importance), a cursory inspection of a graphical
representation of any rabbit ears structure shows that they are
equivalent. As expected, an analysis of the numerical repre-
sentation of the rabbit ears did reveal small, insignificant dif-
ferences, but in all cases the energies of the rabbit ears on all
atoms were essentially the same.

In P3, the assertion is made that “Whether eigen-orbitals of
the 1st-order reduced density operator (Lowdin, 1955) are
considered “real” is open to philosophical discussion, but
the fact that this operator provides quantitative criteria to de-
termine which of several possible hybrid forms is “best” in
describing the actual electron density is indisputable.” This
statement was a rebuttal to the assertion in P2 that “one must
give up the belief that there exists a unique set of supposedly
“real”, or “best”, orbitals.”

Asserting that the reality of eigen-orbitals is a philosophical
issue would require reopening the topic of observable versus
non-observable. There is no need to do this: as stated repeat-
edly above, by their nature wavefunctions for electrons are not
observables, so they have no physical reality. They are, how-
ever, useful for understanding chemical phenomena, and in
that sense they are real, but only to the degree that they have
pedagogic or interpretive value. Unless some new aspect of
this issue arises, this particular point should not be regarded as
being in contention.

The assertion that the actual electron density is “best” de-
scribed by CMOs is clearly incorrect. The correct relationship
was given in P1: “... the choice of “MOs” can be rather arbi-
trary, insofar as any unitary transformation of MOs leads to the
same single-determinant wavefunction with no effect on the
energy or other observable properties of the system. MOs
therefore provide no criterion for which unitarily equivalent
set is considered “best,” because all satisfy the full double-
occupancy condition.”

On the other hand, it is valid to assert that, depending on the
use to which they are ultimately put, one set of MOs is better
than another set. Until recently, most quantum chemistry pro-
grams generated CMOs, so CMOs became very popular—so

popular that there was a tendency to regard them as having a
certain reality. This misconception would be an understand-
able consequence of conflating the profound usefulness of
CMOs in interpreting chemical phenomena with the actual
phenomena involved. If, instead of being based on CMOs,
quantum chemistry programs had evolved from an original
method that had been based on LMOs, then it is conceivable
that the opposite misconception might have arisen: that, be-
cause LMOs are useful for interpreting chemical phenomena,
particularly hydrogen bonding and reaction mechanisms, they
were in some way the cause of that phenomena.

The fact is, quantum chemistry programs did evolve using
CMOs, so whether LMOs would have been better for describ-
ing chemical phenomena is now moot. As P1 notes, compu-
tational chemistry methods have rendered certain types of
LMOs—specifically rabbit ears—an “orbital anachronism.”
However, recent developments in quantum chemistry pro-
grams have greatly simplified the generation of LMOs, mean-
ing they are now much more accessible for use in modeling.

Concepts such as rabbit ears are of enormous value in
chemistry, particularly for understanding biochemical phe-
nomena, but access to them has hitherto been limited by tech-
nical constraints. Now that these constraints have been lifted,
LMOs are readily available for use in computational chemis-
try modeling. Hopefully rabbit ears and banana bonds will
once again become popular and cease to be an “anachronism.”

Conclusions

For many decades, little attention has been paid to the proper-
ties and uses of localized molecular orbitals; attention has
focused instead on canonical molecular orbitals. But LMOs
have many useful properties that make them valuable for de-
scribing chemical phenomena, in particular:

* All sets of CMOs can be converted into LMOs. This in-
cludes systems as different as diamond (purely covalent)
and halite (almost completely ionic) and extended 7-
systems (butadiene and graphite).

* Each LMO in a chemical system can be related to a spe-
cific element in a Lewis structure diagram.

* Each LMO has an energy that can be used to describe
phenomena that occur in chemical structures. For exam-
ple, energies can be associated with specific double bonds,
in both o and 7t form and as banana bonds, and with lone
pairs, in both s and p form and as rabbit ears. Both banana
bonds and rabbit ears can be generated by using keywords
“BANANA” and “RABBIT” in the program MOPAC.

+ Some quantities, in particular the degree of delocalization
of a LMO, are of great importance for interpreting chem-
ical phenomena, but these quantities cannot be modeled
when CMOs are used.

@ Springer
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* Changes in individual components in a chemical reaction
can be modeled. In the case of the S\2 reaction described
here, the changes that occurred in the character and energy
of the two pairs of electrons that participated in bond
breaking and bond making could be monitored throughout
the reaction process.

* Because of their extreme simplicity, LMOs can be used
instead of atomic orbitals as the primitive wavefunctions
in the construction of secular determinants. This results in
a significant reduction in computational effort for large
systems and allows much larger systems to be modeled.

The program MOPAC was developed with the objective of
it being a useful tool for investigating processes that occur in
chemical systems, especially enzyme-catalyzed reaction
mechanisms. However, the use of canonical molecular orbitals
has for decades limited the usefulness of MOs in describing
various chemical phenomena. Now, using keyword requests, a
simple and rapid procedure for replacing canonical molecular
orbitals with localized molecular orbitals can be performed.
The character and energies of specific LMOs can then be used
to obtain insight into the processes that occur in enzyme
mechanisms.

Disclaimer This work is solely the responsibility of the
author.
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