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Abstract
Reaction paths for [3 + 2] cycloaddition (32CA) between 2-methyl-1-nitroprop-1-ene and (Z)-C-aryl-N-phenylnitrones were
explored in detail at the B3LYP/6-31G(d) level of theory. All of the 32CA processes considered were found to be initiated by
the attack of the most nucleophilic oxygen atom in the nitrone molecule on the most electrophilic carbon atom (Cβ) in the
nitroethylene moiety. This type of interaction favors the formation of 4-nitro-substituted cycloadducts. Additionally, based on a
molecular electron density theory (MEDT) study, the 32CA processes of interest should be considered polar processes with
asynchronous transition states (TSs). However, the asynchronicity of the localized TSs is unexpectedly low and clearly insuffi-
cient to enforce a stepwise zwitterionic mechanism.
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Introduction

Conjugated nitroalkenes are valuable materials for organic
synthesis. This is a consequence of the wide range of potential
transformations of the NO2 group; for example, nitro com-
pounds can be converted into nitronates [1–4], hydroxyl-
amines [1, 5–7], amines [1, 5, 6, 8], oximes [1, 7, 9, 10],
carbonyl compounds [1, 11, 12], and many other types of
compounds. Considering their biological and pharmacologi-
cal activities, nitro compounds have a variety of important
applications [13–17]. Additionally, conjugating the NO2

group with a vinyl system can activate the alkene for cyclo-
addition reactions with nucleophilic three-atom components
(TACs [18]) or conjugated dienes, which yield various five-

membered [19] and six-membered [20] carbo- and heterocy-
cles that are difficult or impossible to regio- and
stereoselectively synthesize through an alternative approach.

There are many known [3 + 2] cycloaddition (32CA) reac-
tions of the parent nitroethene molecule with nitrones [21–25].
These reactions have been also explored in detail using vari-
ous theoretical approaches [21, 22, 26]. Additionally, similar
cycloadditions of 1-substituted nitroethenes (such as 2-
nitroprop-1-ene [27], 1-chloronitroethene [28, 29], and 1-
bromonitroethene [27]) and 2-substituted nitroethenes (e.g.,
(E)-2-arylnitroethenes [30, 31], (E)-1-nitroprop-1-ene [32],
(E)-3,3,3-trichloro-1-nitroprop-1-ene [27, 33, 34], (E)-3,3,3-
trifluor-1-nitroprop-1-ene [35], and (E)-3-nitroacrylate [27])
analogs have been explored. Recently, preliminary studies of
32CA processes between 1,2-disubstituted nitroethenes and
(Z)-(3,4,5-trimethoxyphenyl)-N-methylnitrone have also been
published [28, 36]. However, no examples of the 32CA of 2,2-
disubstituted nitroethene analogs and nitrones have been de-
scribed in the literature so far. Thus, the influence of bis sub-
stitution at the β position of the nitroethylene moiety on the
course of the 32CA is completely unknown. It should also be
noted that the participation of 2,2-disubstituted nitroethene
analogs in other types of cycloadditions has only rarely
attracted the attention of chemists. Therefore, we decided to
initiate comprehensive studies in this area. To this end, we
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analyzed the theoretically possible reaction paths (Scheme 1)
of 32CA reactions involving 2-methyl-1-nitroprop-1-ene (1)
as a model electrophilic component and a homogeneous group
of nitrones (2a–g) as model TACs, and we report the results of
that study in the present paper.

In particular, we decided to (i) analyze the nature of the
intermolecular interactions involved in the elementary reac-
tion steps in the framework of molecular electron density the-
ory (MEDT) [37], (ii) predict regio- and stereoselectivity, and
(iii) explore reaction profiles and examine all critical struc-
tures. It should be underlined at this point that the mechanistic
aspects of these types of reactions require detailed studies.
Due to the high global electrophilicity of the nitroethylene
moiety, a Bclassical^ one-step mechanism may compete with
a stepwise zwitterionic mechanism. Such a stepwise mecha-
nism has recently been assigned to several 32CA processes
involving nitroethene as well as those of its 1- or 2-substituted
analogs. For example, cycloadditions of (E)-3,3,3-trichloro-1-
nitroprop-1-ene to (Z)-C-anthryl-C-phenylnitrone [33], 1,1-
dinitroethene to (Z)-C,N-diphenylnitrone [38], nitroethene to
2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide, and

some other cycloadditions [39, 40] all proceed via zwitterionic
intermediates.

Computational details

The quantum-chemical calculations reported in this paper
were performed using the B3LYP functional along with the
6-31G(d) basis set included in the GAUSSIAN 09 package
[41]. All calculations were carried out at the same level of
theory that was used to study the 32CA reactions of different
type of nitrones and 2-substituted nitroethenes. It is important
to note that good correlations between the calculated parame-
ters of the critical structures [27, 32, 42], the results of a com-
prehensive kinetic study (Eyring parameters) [34, 42], the na-
ture of solvent effects [34, 42], and a quantitative description
of secondary isotope effects [43] were obtained when this
level of theory was applied. This suggests that the B3LYP/6-
31G(d) level can accurately illustrate the nature of the critical
structures in the cycloaddition process of interest in the pres-
ent work. However, in order to prove that this rather low level

Scheme 1 Theoretically possible paths of cycloadditions between 1a-g and 2
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of theory was adequate for our needs, we also performed ad-
ditional calculations for the model process at higher levels of
theory (that also take, for example, the dispersion correction
into account [44]).

Optimizations of the critical structures were performed
with the Berny algorithm, whereas the transition states
(TSs) were calculated using the QST2 procedure. TSs
along the considered reaction paths were localized through
an alternative methodology which involved gradually
changing the distance between the reaction centers (with
optimization performed after each step). This approach
yielded TSs identical to those obtained previously.

Localized critical points were successfully verified
via frequency calculations. All reactants and products
were found to be characterized by positive Hessian ma-
trices. All TSs showed only one negative eigenvalue in
their diagonalized Hessian matrices, and their associated
eigenvectors were confirmed to correspond to the mo-
tion along the reaction coordinate under consideration.
To further verify the TSs, IRC calculations were per-
formed. The effect of the solvent on the reaction paths
was included using the polarizable continuum model
(PCM) [45]. Global electron density transfer between
substructures (GEDT) [46] was calculated according to
the equation

GEDT ¼ ΣqA;

where qA is the net charge, and the sum is performed
over all the atoms of the nitroalkene.

New σ-bond development (l) was expressed based on the
following equation involving the distance between the reac-
tion centers in the transition structure (rTSX–Y) and the corre-
sponding distance in the product (rPX–Y) [29]:

lX−Y ¼ 1−
rTSX−Y−rPX−Y

rPX−Y
:

ELF studies were performed with the TopMod [47] pro-
gram, using the corresponding gas-phase B3LYP/6-31G(d)
monodeterminantal wavefuctions. ELF localization domains
were obtained for an ELF value of 0.75.

Electronic properties of the reactants were estimated via the
following previously reported recommended relations [37, 48,
49]:

ω ¼ μ2=2η
μ≈ EHOMO þ ELUMOð Þ=2

η≈ELUMO−EHOMO :

Global nucleophilicities (N) [50] were calculated using the
equation

Ν ¼ ΕΗΟΜΟ−ΕHOMO tetracyanoetheneð Þ:

The local electrophilicity (ωk) of atom k was calculated
using the index ω and the respective Parr function P+

k [51]:

ωk ¼ Pþ
k � ω:

The local nucleophilicity (Νk) of atom k was calculated
using the index N and the respective Parr function P−

k [51]:

Ν k ¼ P−
k � Ν :

Results and discussion

Investigating the intermolecular interactions
through a MEDT study

We first analyzed the nature of the interactions between the
reactants by probing the electronic properties of the reactants.
A topological analysis of the ELF of 2-methyl-1-nitroprop-1-
ene 1 and C,N-diphenylnitrone 2d was performed in order to
characterize electronic structure. The ELF attractors, together
with the basin populations and the ELF localization domains,
are shown in Fig. 1. ELF topological analysis of 2-methyl-1-
nitroprop-1-ene 1 shows the presence of two disynaptic basins
within the C4–C5 bonding region, V(C4–C5) and V′(C4–C5),
involving a total population of 3.64 e. This indicates that the
C4–C5 bond possesses strong double-bond character (Fig. 1).
ELF topological analysis of C,N-diphenylnitrone 2d shows
the presence of two monosynaptic basins, V(O1) and V′(O1),
involving a total population of 6.02 e; one single-bond
disynaptic basin V(O1,N2) involving 1.29 e; and one
disynaptic basin between the N2 and C3 centers, V(N2,C3).
Thus, based on a series of studies carried out by Domingo and
coworkers [26, 52, 53] and the topological analysis of the
ELF, the electronic structure of C,N-diphenylnitrone 2d (just
like that of C,N-dimethylnitrone) indicates that it is
zwitterionic, enabling its participation in zw-type 32CA
reactions.

The respective global and local indices were then estimated
using equations defined on the basis of conceptual density
functional theory [37, 48, 49]. A similar approach was recent-
ly successfully used to explain the courses of a number of
different biomolecular processes involving unsaturated
nitrocompounds (see, for example, [32, 54–56]). In light of
the results of the MEDT study, 2-methyl-1-nitroprop-1-ene 1
was classified as a strong electrophile (ω > 2 eV) (Table 1).
For comparison, the value of N for 1 is only 1.53 eV. Thus, 2-
methyl-1-nitroprop-1-ene 1 should be considered an electro-
philic component in the 32CA processes of interest here.

On the other hand, the electronic properties of the C-aryl-
N-phenylnitrones 2a–g vary to a considerable extent (Table 1).
In part icular, the global electrophil ici ty of C ,N-
diphenylnitrone 2d is 1.67 eV, which classifies it as a rather
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strong electrophile. However, gradually increasing the
electron-donating properties of the substituent at the 4-
position in the phenyl ring conjugated with the carbon atom
of the NO moiety causes a change in electrophilicity. For
example, for the dimethylamino-substituted nitrone 2a, ω
drops below 1.3 eV, indicating that it will exhibit only mod-
erate electrophilic properties. Replacing the dimethylamino
group with a NO2 group again modifies the properties of the
nitrone. For instance, the nitro-substituted nitrone 2g is char-
acterized by very strong electrophilicity (ω > 2.8 eV). That
said, the values of the global N indices show, without any
doubt, that all of the considered nitrones are nucleophilic.
Therefore, the cycloadditions considered here should be
interpreted as polar processes [37]. This is a consequence of
the highly nucleophilic nature of the TACs and the notably

electrophilic nature of ethylene derivative 1. The courses of
the reactions of interest here are influenced by the nucleophilic
attack of the oxygen atom of the CNO moiety of nitrone
(NO > 1.2 eV; NC < 0.6 eV) on the most electrophilic (ωβ =
0.94 eV) carbon atom (Cβ) of the nitroalkene. If we assume
that this governs the course of the reaction, then the products
of the cycloaddition should be the stereoisomeric 4-
nitroisoxazolidines 3a–g and/or 4a–g.

Energy profiles

In this part of the study, we first carried out DFTsimulations of
theoretically possible reaction channels for the 32CA of 2-
methyl-1-nitroprop-1-ene 1 with the parent C ,N-
diphenylnitrone 2d. Next, in a similar manner, we analyzed

1 2d
Fig. 1 B3LYP/6-31G(d) ELF localization domains of 2-methyl-1-nitroprop-1-ene 1 and C,N-diphenylnitrone 2d at an isosurface value of ELF = 0.75,
ELF basin attractor positions, and the most representative valence basin populations

Table 1 Global and local electronic properties of 2-methyl-1-nitroprop-1-ene 1 and diarylnitrones 2a–g

R σR ω (eV) N (eV) P−C P−
O NC (eV) NO (eV) P+α P+β ωα (eV) ωβ (eV)

1 – – 2.20 1.52 0.03 0.43 0.07 0.94

2a NMe2 −0.83 1.27 4.46 0.06 0.36 0.25 1.59

2b OMe −0.27 1.48 3.98 0.04 0.41 0.16 1.62

2c Me −0.17 1.60 3.77 0.10 0.44 0.38 1.64

2d H 0.00 1.67 3.64 0.14 0.44 0.51 1.61

2e Cl 0.23 1.87 3.48 0.12 0.42 0.41 1.47

2f COOMe 0.45 2.11 3.39 0.147 0.434 0.50 1.47

2g NO2 0.78 2.88 2.98 0.200 0.426 0.59 1.27
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the 32CA processes involving the most nucleophilic nitrone
2a and the least nucleophilic nitrone 2g.

Quantum-chemical calculations showed that the reaction
1 + 2d in toluene solution leads to molecular complexes
(MCs) at the initial stage in all four of the reaction channels
considered (A–D; see Scheme 2, Figs. 2 and 3). The MCs are
formed without having to surmount an activation barrier. The
decrease in enthalpy caused by the occurrence of MCs along
the reaction path is not significant (it does not exceed
2 kcal mol−1). It should be noted that the MCs are enthalpic
at room temperature (Tables 2 and 3). Due to the value of the
entropic factor (ΤΔS), ΔG is > 0, which excludes the exis-
tence of MC structures that may be considered stable from a
thermodynamic point of view. A similar type of intermediate
was also localized in the analogous 32CAs involving nitrones
2a and 2g.

Further conversion of the 1 + 2d intermolecular system
along the reaction path, regardless of the 32CA channel,
leads to a transition complex (TS). The existence of a TS is
confirmed by the presence of one imaginary eigenvalue in
the Hessian. Based on the corresponding activation

enthalpies, the order of preference for the reaction channels
is B > A > D ≈ C. The ΔH values are relatively low (19.1
and 17.9 kcal mol−1 for channels A and B, respectively) for
the TSs of the reaction channels that yield isoxazolidines in
which the nitro group is at the C4 position in the heterocy-
clic ring. Significantly higher values (> 25 kcal mol−1) are
observed in the reaction channels (C and D) that yield
isoxazolidines with the nitro group at the C5 position. It
should be noted that the order of preference for the chan-
nels based on the kinetics (as gauged through the Gibbs
free energy of activation, ΔG) is similar to the order of
preference based on the ΔH values. It should therefore be
assumed that the reaction channels leading to 5-nitro-
substituted isoxazolidines are kinetically forbidden. This
suggests that only the 4-nitroisoxazolidines 3a and 4a are
formed during the reaction. This observation correlates
well with the analysis of two-center interactions discussed
above. It should be noted that all attempts to identify alter-
native TSs leading to adducts 3–6 were unsuccessful.

When the structure of 2a is modified by introducing
substituents onto the phenyl rings of nitrone 2d, the

Scheme 2 Reaction pathways

Fig. 2 Energy profiles for paths A
and B of the 32CA of 2-methyl-1-
nitroprop-1-ene 1 with (Z)-C,N-
diphenylnitrone 2d in toluene
solution, according to B3LYP/6-
31G(d) (PCM) calculations
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profiles of all the considered reaction channels do not
change qualitatively. However, some transformations do
change from a quantitative perspective (Tables 2 and 3).
In particular, the presence of the electron-donating (EDG)
dimethylamino group results in a lower activation barrier
in channels A and B. At the same time, the presence of
the electron-withdrawing (EWG) nitro group has the op-
posite effect. This conclusion correlates well with the pre-
vious analysis of the global nucleophilicities of the
nitrones. It is interesting that the influence of the nature
of the substituent on the kinetics of reaction channels C
and D is marginal. For example, the ΔG value for the
activation of the reaction involving the parent nitrone 2d

is only 0.1–0.3 kcal mol−1 higher than that for the same
transformation involving nitrone 2a.

When more polar solvents (Table 2) were included as
dielectric media in DFT calculations, the reaction profiles
did not change qualitatively, but they did change quanti-
tatively, albeit to a minor degree. In particular, the MCs in
all the profiles were shallower (Table 2), and all activation
barriers were slightly higher. However, even in the strong-
ly polar solvent nitromethane, the order of reaction chan-
nel preference based on the kinetics was the same as that
obtained in toluene solution. Additionally, in all of the
considered solvents, reaction channels C and D appeared
to be kinetically forbidden.

Fig. 3 Energy profiles for paths C
and D of the 32CA of 2-methyl-1-
nitroprop-1-ene 1 with (Z)-C,N-
diphenylnitrone 2d in toluene
solution, according to B3LYP/6-
31G(d) (PCM) calculations

Table 2 Kinetic and
thermodynamic parameters for
32CA of 2-methyl-1-nitroprop-1-
ene 1 with diphenylnitrone 2d in
different solvents, as obtained via
B3LYP/6-31G(d) calculations
(ΔH andΔG values are in kcal
mol−1; ΔS values are in cal
mol−1 K−1)

Path Transition Toluene (ε = 2.38) Acetone (ε = 20.70) Nitromethane (ε = 36.56)

ΔH ΔG ΔS ΔH ΔG ΔS ΔH ΔG ΔS

A 1 + 2d→ MCA −1.4 7.2 −28.7 −0.6 7.6 −27.7 −0.6 7.7 −27.7
1 + 2d→ TSA 19.1 35.1 −53.7 19.9 35.9 −53.6 19.9 35.8 −53.3
1 + 2d→ 3d −7.0 8.8 −53.0 −5.2 10.8 −53.7 −5.1 10.9 −53.7

B 1 + 2d→ MCB −1.9 8.5 −35.1 −0.5 7.4 −26.7 −0.5 7.5 −26.5
1 + 2d→ TSB 17.9 32.9 −50.3 19.1 34.2 −50.5 19.2 34.2 −50.5
1 + 2d→ 4d −13.3 2.4 −52.6 −10.7 4.5 −51.1 −10.5 4.7 −51.1

C 1 + 2d→ MCC −0.7 9.3 −33.5 −0.4 10.0 −35.1 −0.5 9.8 −34.6
1 + 2d→TSC 25.5 41.0 −52.0 26.4 41.9 −52.1 26.4 42.0 −52.2
1 + 2d→ 5d −9.1 6.8 −53.4 −7.2 8.6 −52.6 −7.1 8.6 −52.5

D 1 + 2d→ MCD −1.7 8.5 −34.1 −1.0 9.0 −33.6 −1.0 9.0 −33.4
1 + 2d→TSD 25.3 40.9 −52.2 26.3 42.0 −52.7 26.3 42.0 −52.7
1 + 2d→ 6d −8.1 8.4 −55.3 −6.0 10.5 −55.3 −5.8 10.6 −55.2
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Critical structures

As noted in previous paragraphs, the first stage in each of
the 32CA processes considered is always the formation of
a molecular complex (MC). Analysis of the structural as-
pects of each MC showed that the lengths of the O1–N2,
N2–C3, and C4–C5 bonds were practically identical to
their lengths in the individual reactants. However, in the
transition state (TS) structures, the interatomic distances
C3–C4 and C5–O1 (Tables 4 and 5) are outside of the
typical bond length ranges for carbon–carbon and car-
bon–oxygen bonds. Also, in the MCs, the orientations of
the reaction centers with respect to each other are not the
same as they are in the final products (Fig. 4).
Additionally, based on the GEDT [46] values (0.0 e),
none of the MCs are charge-transfer complexes. Similar
molecular complexes were observed in the 32CA reac-
tions between allenyl-type TACs and nitroacetylene [57],
benzonitrile N-oxides and nitroethene [55], as well as be-
tween diazocompounds and hexafluoroacetone [58].

Conversion of the MC into the respective adduct was al-
ways found to occur via a single TS (Figs. 2 and 3, Tables 2
and 3). The nature of the TS depends to some extent on the
relative orientations of its substructures. In particular, in the

Table 3 Kinetic and thermodynamic parameters for the 32CA
processes of 2-methyl-1-nitroprop-1-ene 1 with diarylnitrones 2a and
2g in toluene solution, as derived using B3LYP/6-31G(d) (PCM) calcu-
lations (ΔH and ΔG values are in kcal mol−1; ΔS values are in cal
mol−1 K−1)

Path Transition ΔH ΔG ΔS

2a A 1 + 2a→ MCA −3.1 6.8 −33.4
1 + 2a→ TSA 18.4 32.9 −48.7
1 + 2a→ 3a −5.1 9.2 −47.9

B 1 + 2a→ MCB −1.4 6.5 −26.5
1 + 2a→ TSB 18.0 32.1 −47.5
1 + 2a→ 4a −11.3 3.2 −48.4

C 1 + 2a→ MCC −1.4 4.5 −20.0
1 + 2a→ TSC 26.4 40.7 −48.0
1 + 2a→ 5a −7.0 7.8 −49.6

D 1 + 2a→ MCD −0.8 8.7 −31.8
1 + 2a→ TSD 26.4 41.0 −49.2
1 + 2a→ 6a −6.1 9.2 −51.0

2g A 1 + 2g→ MCA −4.2 4.3 −28.6
1 + 2g→ TSA 20.3 36.1 −52.8
1 + 2g→ 3g −6.4 9.3 −52.4

B 1 + 2g→ MCB −4.6 4.6 −31.0
1 + 2g→ TSB 19.2 34.5 −51.3
1 + 2g→ 4g −12.3 3.1 −51.9

C 1 + 2g→ MCC −0.5 8.1 −28.7
1 + 2g→ TSC 26.2 41.6 −51.7
1 + 2g→ 5g −8.1 7.6 −52.6

D 1 + 2g→ MCD −2.0 7.4 −31.5
1 + 2g→ TSD 26.6 42.6 −53.5
1 + 2g→ 6g −7.1 9.2 −54.9

Table 4 Key parameters of the
critical structures in the 32CA of
2-methyl-1-nitroprop-1-ene 1
with diphenylnitrone 2d in
different solvents, as determined
using B3LYP/6-31G(d) (PCM)
calculations

Solvent Path Structure C3–C4 C5–O1 Δl GEDT
(e)

Imaginary
frequency
(cm−1)r (Å) l r (Å) l

Toluene (ε = 2.38) A MCA 4.899 4.324
TSA 2.319 0.523 1.913 0.703 0.18 −0.075 −386.46
3a 1.570 1.475

B MCB 5.587 4.216
TSB 2.276 0.524 1.926 0.667 0.14 −0.073 −400.72
4a 1.542 1.445

C MCC 4.260 3.294
TSC 2.088 0.685 2.108 0.464 0.22 −0.063 −431.79
5a 1.588 1.372

D MCD 4.798 3.523
TSD 2.042 0.704 2.136 0.469 0.24 −0.078 −411.56
6a 1.576 1.395

Acetone (ε = 20.70) A MCA 5.412 4.335
TSA 2.367 0.493 1.851 0.743 0.25 −0.113 −365.02
3a 1.571 1.473

B MCB 5.952 4.261
TSB 2.326 0.492 1.866 0.710 0.22 −0.111 −381.80
4a 1.542 1.447

C MCC 4.316 3.343
TSC 2.038 0.716 2.151 0.432 0.28 −0.094 −420.97
5a 1.587 1.372

D MCD 4.893 3.638
TSD 1.998 0.732 2.181 0.438 0.29 −0.113 −394.19
6a 1.576 1.396

Nitromethane
(ε = 36.56)

A MCA 4.336 5.410
TSA 2.372 0.490 1.845 0.747 0.26 −0.117 −362.33
3a 1.571 1.473

B MCB 5.955 4.266
TSB 2.331 0.488 1.860 0.715 0.23 −0.114 −379.39
4a 1.542 1.447

C MCC 4.319 3.357
TSC 2.034 0.718 2.155 0.429 0.29 −0.097 −419.68
5a 1.587 1.372

D MCD 4.899 3.642
TSD 1.994 0.735 2.185 0.435 0.30 −0.116 −392.25
6a 1.576 1.396
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TSs obtained in the channels that ultimately yield 4-
nitroisoxazolidines (A and B), the C5–O1 sigma bond is
formed earlier than the sigma bond between C3 and C4.
However, in the TSC and TSD structures, the C3–C4 sigma
bond is formed faster than the C5–O1 sigma bond. In all cases,
the synchronicity of the localized TS is controlled by the for-
mation of the new bond at the reaction center associated with
the β carbon atom from the nitroethylene moiety. This con-
clusion correlates well with the earlier discussion of the local
reactivities of the reactants. Regardless of the synchronicity of
the new sigma bond, all of the considered TSs were observed
to exhibit a significantly polar nature. This was confirmed by
the results of the GEDT analysis (Tables 4 and 5).

Our study shows that the synchronicity of the TS may
be controlled to some degree by the particular substituents
present in the nitrone molecule or/and the polarity of the
reaction environment. This substituent effect is readily
apparent in the kinetically favored reaction channels A
and B. In particular, for the TSs TSA and TSB in the
32CA involving the EDG-substituted nitrone 2a, the dif-
ference between the values of the new bond development
index for the two bonds C3–C4 and C5–O1 (see the Δl
values in Table 5) is 0.29 and 0.23, respectively. The

analogous index-value differences for the 32CA involving
the EWG-substituted nitrone 2g are 0.15 and 0.11,
respectively.

On the other hand, the solvent polarity was observed to
influence the synchronicity of the TS in all of the consid-
ered reaction channels. For example, for the 32CA of 1 +
2d, the asynchronicity of the TS is higher in nitromethane
than in toluene by 44%, 64%, 31%, and 25% for channels
A, B, C, and D, respectively (see the Δl values in
Table 4). It is important to note, however, that not even
this asynchronicity of the TS is sufficient to enforce a
stepwise zwitterionic mechanism.

Lastly, we performed full calculations of the reaction
paths for the 32CA of 1 + 2d at more advanced levels of
theory (that accounted for dispersion functions). The re-
sults obtained (i.e., the order of preference of the reaction
channels based on the kinetics, as well as the key geomet-
ric parameters of the TSs) were very close to those given
by the B3LYP/6-31G(d) computational study (Tables 6
and 7). In other words, there was no need to apply a high
level of theory to obtain accurate results for the systems
of interest. It should also be noted that a B97D study
underestimated the enthalpies of activation. According to

Table 5 Key parameters of
critical structures in the 32CA
processes of 2-methyl-1-
nitroprop-1-ene 1 with
diarylnitrones 2a and 2g in
toluene solution, as obtained
using B3LYP/6-31G(d) (PCM)
calculations

Reaction Path Structure C3–C4 C5–O1 Δl GEDT (e) Imaginary
frequency (cm−1)

r (Å) l r (Å) l

1 + 2a A MCA 5.340 3.862

TSA 2.392 0.478 1.826 0.764 0.29 −0.143 −354.17
3a 1.572 1.477

B MCB 4.216 4.067

TSB 2.330 0.489 1.855 0.716 0.23 −0.130 −382.07
4a 1.542 1.445

C MCC 5.618 4.751

TSC 2.076 0.693 2.085 0.480 0.21 −0.081 −438.05
5a 1.588 1.372

D MCD 4.796 3.441

TSD 2.038 0.708 2.109 0.488 0.22 −0.094 −415.16
6a 1.577 1.395

1 + 2g A MCA 9.080 5.717

TSA 2.296 0.534 1.934 0.686 0.15 −0.032 −397.46
3g 1.566 1.472

B MCB 5.420 8.480

TSB 2.254 0.539 1.950 0.651 0.11 −0.031 −406.06
4g 1.543 1.446

C MCC 4.451 3.352

TSC 2.095 0.680 2.102 0.468 0.21 −0.030 −434.85
5g 1.587 1.372

D MCD 5.306 3.711

TSD 2.049 0.700 2.123 0.479 0.22 −0.044 −414.62
6g 1.576 1.396
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TSB 4d
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TSC 5d

MCD
TSD 6d

Fig. 4 Critical structures in the 32CA of 2-methyl-1-nitroprop-1-ene 1 with (Z)-C,N-diphenylnitrone 2d in toluene solution, according to B3LYP/6-
31G(d) (PCM) calculations
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those calculations, the ΔH≠ values for the preferred reac-
tion paths were about 5–6 kcal mol−1, whereas the exper-
imentally estimated values for the preferred channels of
the 32CA between 1-nitroprop-1-ene 1 (which is not very
sterically crowded) and the same nitrone 2d are 9.5 and
11.3 kcal mol−1, respectively [43]. These values imply
that including dispersion functions [44] in a DFT study
of the cycloadditions of interest here is not a good
approach.

Conclusions

Our B3LYP/6-31G(d) computational study utilizing mo-
lecular electron density theory (MEDT) undoubtedly
showed that 32CA processes between 2-methyl-1-
nitropro-1-ene and (Z)-C-aryl-N-phenylnitrones should
be treated as polar reactions. This was confirmed by our
analysis of global electron density transfer for the local-
ized TSs. However, in contrast to the analogous process
involving 1,1-dinitroethene, the cycloadditions of interest
here involved only one TS. Each of the localized TSs was
found to be asynchronous, but this asynchronicity was not
sufficient to enforce a stepwise zwitterionic mechanism.
Every attempt to find zwitterionic intermediates during
the reaction paths considered here was unsuccessful.

A detailed analysis of the reaction paths indicated that all of
the considered 32CA processes are initiated by two-center
interactions between the most nucleophilic oxygen atom in
the nitrone molecule and the most electrophilic carbon atom
(the βC) in the nitroethylene moiety. This type of interaction
favors the formation of 4-nitro-substituted cycloadducts, in
good agreement with the results of the detailed exploration
of theoretically possible reaction channels. It appears that
competitive channels leading to 5-nitroisoxazolidines are ki-
netically forbidden.
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