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Abstract
Nowadays, breast cancer is one of the most widespread malignancies in women, and the second leading cause of cancer death
among women. The progesterone receptor (PR) is one of the treatment targets in breast cancer, and can be blocked with selective
progesterone receptor modulators (SPRMs). Since administration of chemical drugs can cause serious side effects, and patients,
especially those undergoing long-term treatment, can suffer harmful consequences, there is an urgent need to discover novel
potent drugs. Large-scale structural diversity is a feature of natural compounds. Accordingly, in the present study, we selected a
library of 20,000 natural compounds from the ZINC database, and screened them against the PR for binding affinity and efficacy.
In addition, we evaluated the pharmacodynamics and ADMET properties of the compounds and performed molecular docking.
Moreover, molecular dynamics (MD) simulation was carried out in order to examine the stability of the protein. In addition,
principal component analysis (PCA) was performed to study the motions of the protein. Finally, the MMPBSA method was
applied in order to estimate the binding free energy. Our docking results reveal that compounds ZINC00936598, ZINC00869973
and ZINC01020370 have the highest binding energy into the PR binding site, comparable with that of Levonorgestrel (positive
control). Moreover, RMSD, RMSF, Rg and H-bond analysis demonstrate that the lead compounds preserve stability in complex
with PR during simulation. Our PCA analysis results were in accordance with MD results and the binding free energies support
the docking results. This study paves the way for discovery of novel drugs from natural sources and with optimal efficacy,
targeting the PR.
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Introduction

Breast cancer (BC) is a deadly malignancy that affects the
lives of millions women and their families worldwide, and is
the second leading cause of cancer-related deaths in women
[1]. BC has attracted growing scientific and clinical interest. A
remarkable point is that BC is a clinically heterogeneous dis-
ease, associated with a large number of gene mutations.
Detection of the mutated genes clarifies the genetic and mo-
lecular mechanisms of the disease; furthermore, it significant-
ly increases the chances of finding a successful treatment [2].
In other words, recent findings on the molecular mechanisms
of BC could lead to the discovery of new drug candidates [3].
The progesterone receptor (PR), also known as a member of
the steroid/nuclear receptor (NR) superfamily, handles a com-
posite network of distinct target genes. Ligand binding to PR
leads to a conformational change in the receptor, which acti-
vates PR to bind to DNA and regulate transcription [4]. Loss
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of PR expression is associated with worse overall prognosis
and survival among patients with BC.

Current studies have reported that the underlying PR mo-
lecular pathway is frequently dysregulated in BC; therefore, it
can serve as an efficient therapeutic target [5].

Normally, PR has two isoforms in humans, which differ by
structure and function [6]: PRA (~94 kDa) and PRB
(~110 kDa). PRA and PRB exert opposite regulatory roles in
gene transcription. Barring 164 amino acids at the N-terminus
of PRB, the structures of the two isoforms are similar. Both
isoforms contain one AF-1 domain with an important func-
tion, that of inhibiting the gene transcription. The AF-3 N-
terminal domain prevents the function of the AF-1 domain
in the PRB isoform [7]. Unlike PRA, PRB induces gene tran-
scription [8]. Actually, PRA plays a role as the inhibitor of
PRB and other members of the NR superfamily, such as es-
trogen receptor (ER) and androgen receptor (AR) [9]. In ad-
dition, two structural motifs have been found in PR isoforms:
a DNA binding domain (DBD) and a ligand-binding domain
(LBD). Tissue-specific expression of progesterone is induced
by the function of more than 300 co-regulators that interact
with PR.

The modulation of PR activity using a new class of syn-
thetic steroids—selective progesterone receptor modulators
(SPRMs)—has become an active area of research in BC treat-
ment. SPRMs exert their effect as PR antagonists or PR ago-
nists (progestins) [10]. Progestins, progesterone antagonists,
and SPRMs bind to the PR on the nucleus, allowing a confor-
mational change in the receptor structure. The shape of the
receptor changes, enabling DNA to bind to the receptor.
Agonists serve as co-activators of gene transcription and an-
tagonists serve as co-repressors, inhibiting gene transcription
[11]. Reported in 1981, Mifepristone (RU486) was the first
glucocorticoid receptor antagonist and agonist [12].
Subsequently, numerous PR modulators have been described
and synthesized [13]. Although considerable research has
been devoted to BC, rather less attention has been paid to
analysis of PR.

Since natural products have a large number of chiral cen-
ters, ring fusion and a higher density of functional groups,
allowing for higher ligand affinity and better specificity for
biological targets, they have therefore been considered for the
treatment of nuclear receptor-mediated diseases such as can-
cers [14].

Hence, we report an extensive in silico analytical study was
carried out in order to perform computational assessment of
PR modulation by a large number of diverse ligands derived
from natural compounds.

Materials and methods

The strategy of the workflow is shown in Fig. 1.

Receptor preparation

The amino acid sequence of PR (Uniprot ID: P06401) was
obtained from the UniProt Database (http://www.uniprot.org/)
in FASTA format, and was used in BLAST analysis [15].
Then, BLASTP against the protein data bank (PDB) database
was performed, in order to acquire a determined PDB struc-
ture with the best alignment scores. The X-ray crystal structure
of PR (PDB ID: 1SQN, resolution: 1.45 Å) was downloaded
from the RCSB website (http://www.rcsb.org). The PDB file
had some missing residues, including amino acids 673–681,
706–707, 861, 933 in chain A and amino acids, 674–682, 861
in chain B. Therefore, the MODELLER 9.15 program [16]
was utilized to fill these missing residues by treating the
original structure as a template. The new protein model was
then validated using the SAVES (https://services.mbi.ucla.
edu/SAVES/) and RAMPAGE (http://mordred.bioc.cam.ac.
uk/~rapper/rampage.php) servers. Subsequently, the protein
was simulated through the AMBER03 force field, using
GROMACS 5.1.3 software [17] for 100 ns.

Ligands and library preparation

In this study, several PR inhibitors, gathered from the litera-
ture, were selected as controls, and their structures were ex-
tracted from the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/). On the other hand, to explore new anti-cancer
drugs, a massive collection of compounds was screened.
Before initiating a virtual screening (VS) process, a library
of potential ligands ought to be built, derived from the avail-
able compound databases. ZINC (http://zinc.docking.org/) is a
free database, containing over 35 million commercially
available structures. A library consisting of 20,000
compounds structures was selected randomly from the ZINC
natural products database. All structures were saved in a mol2
file format, and converted to pdbqt format. Afterwards, all the
ligands in pdbqt format were imported into openbabel
software [18], and minimized in terms of energy using the
MMFF94 force field.

Virtual screening

An integral component of the drug discovery process, VS
relies on computer-basedmethods to design and discover nov-
el drug-like compounds. In the present study, we used VS to
determine the affinity of ligands, and appropriate binding
mode, for the binding site of PR. All 20,000 selected com-
pounds were docked into the binding cavity of the target PR
molecule, through AutoDock Vina [19] in PyRx 0.8, in order
to attain optimal complementarity of stereo- and physio-
chemical properties. The configuration file was assigned to a
grid size of x = 30, y = 30 and z = 30, and a grid Centre of x =
10.83, y = 10.16 and z = 17.3. The number of runs was set at
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100 for each ligand. The Lamarckian genetic algorithm (LGA)
was applied, whereas the remaining parameters were set to
default. The 200 compounds with the best docking scores
were selected for further assessment.

ADMET analysis

ADMET (absorption, distribution, metabolism, excretion and
toxicological) properties, concomitant with determination of
efficacy and clinical safety, perform a crucial role in the early
steps of drug design and development. Forming a robust in-
teraction between a drug and its target is necessary for effec-
tiveness; however, the above-mentioned factors must be con-
sidered. A clinically effective drugmust pass through the body
in order to reach its target. ADMET factors identify the po-
tency of the drug to reach its target in the body. However,
determination of ADMET for all novel compounds using
in vivo methods is a very challenging, expensive and time-
consuming task. Hence, in order to forecast drug-like features
of designed ligands, we utilized the FAF-Drugs 3 (a free
ADME/tox filtering tool) web server [20], which can predict

whether the physicochemical properties of drugs are accept-
able by applying some filtering rules. The filtering rules for
suitable physicochemical properties were set up using the
well-known drug-like soft and Lipinski’s rule-of-five, with
default values, respectively. All 200 compounds resulting
from the previous VS step were subjected to this web server.

Molecular docking analysis

The output of ADMETanalysis led to 56 drug-like molecules.
In order to narrow down the number of lead compounds, all 56
ligands were subjected to the MTiOpenScreen web server
(http:/ /bioserv.rpbs.univ-paris-diderot.fr/services/
MTiOpenScreen/), using the same parameters as for PyRx.
This web service provides an automated platform, using
AutoDock Vina [19], to perform VS. Furthermore, it yields
detailed results of the docking between the target PRmolecule
and the most potent drug-like compounds. Hence, the top ten
ligands resulting from the MTiOpenScreen were selected, and
then subjected to the AutoDock 4.2 suite [21]. Moreover, the
three-dimensional (3D) structures of PR control inhibitors

Fig. 1 Schematic workflow for finding potential drug-like compounds specific to the progesterone receptor (PR)
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were docked through Autodock 4.2 [21]. AutoDock is an
automated docking software programmed for assessment of
interactions amongst small molecules, such as ligands or drug-
like compounds, and a receptor with known 3D structure. The
PR molecule was also prepared by adding polar hydrogens
and merging non-polar hydrogens. Kollman united atom
charge, and atom type parameters were added. The dimen-
sions of the grids were therefore 90 × 90 × 90 Å, with a spac-
ing of 0.475 Å between the grid points. A grid Centre with x =
10.83, y = 10.16 and z = 17.3 was applied. The parameters
were set as follows: a population size of 150, a maximum
number of generations of 27,000 and a maximum number of
25,000,000 energy evaluations. Lamarckian genetic search
algorithm was applied, and docking runs were set to 100 for
each ligand.

Molecular dynamic simulation studies

In this study, molecular dynamic (MD) simulation was per-
formed in two phases. In the first phase, the prepared confor-
mation of PR was used as the initiating structure for MD
simulation. The constituents of the simulation system were
protein and water. In the second phase, the acquired confor-
mation of PR from the first phase of MD, as well as the three
top docked ligands (ZINC00936598, ZINC01020370 and
ZINC00869973) and Levonorgestrel, were engaged in the
MD simulation process. All MD simulations were performed
by the GROMACS 5.1.3 software package, using the
AMBER03 force field [17]. Water, ions, proteins and ligands
were coupled to a temperature bath. Water molecules were
characterized using a simple point charge (SPC216) model.
Seven Cl− counter-ions were added, replacing water mole-
cules, in order to guarantee total charge neutrality of the sim-
ulated system. The system was located in a box with dimen-
sions 96 × 95 × 100 (all in Å). Periodic boundary conditions
(PBC) were exerted in all three directions of the system. The
force field parameters of the ligands were acquired from the
antechamber module [22] of the Amber program, using the
GAFF force field [23]. Partial charges of the ligands were
assigned using the AM1-BCC model [24]. Initially, an energy
minimization procedure was carried out. After energy mini-
mization, a position restraint process was accomplished in
association with NVTand NPTensembles. An NVTensemble
was implemented at constant temperature of 300 K, using a
coupling constant of 0.1 ps for 100 ps. After temperature
equilibration, an NPT ensemble was carried out. In this step,
a constant pressure of 1 bar was applied, with a coupling
constant of 5.0 ps for 1 ns. NPTensemble was performed after
pressure equilibration. In both NVT and NPT ensembles, the
coupling scheme of Berendsen was applied. The particle mesh
Ewald (PME) method interaction was utilized. The Lincs al-
gorithm for covalent and a 12 Å cutoff for long-range bond

constraints were applied. In both phases, MD simulation was
performed for 100 ns.

Principal component analysis

In order to reduce the complexity and dimensionality of the
data and feature various forms of possible motions in the pro-
tein, principal component analysis (PCA) or essential dynam-
ics (ED) was performed [25]. In this method, a covariance
matrix is built, with a simple linear transformation in
Cartesian coordinate space, after exclusion of translational
and rotational movements. Thus, the backbone was selected
and least squares fitted to the average structure, using g_covar
and g_anaeig modules of GROMACS [26]. Diagonalization
of the covariance matrix produced a set of eigenvectors. For
every eigenvector, a specific eigenvalue defines the energetic
impact of the component on the motion [27]. Porcupine plots
were depicted using PyMol [28].

Free energy calculations

The molecular mechanics–Poisson Boltzmann surface area
(MM-PBSA) method is pivotal to computing the binding free
energy of protein–ligand complexes in the study of the mo-
lecular behavior of proteins [29]. In this study, the g_mmpbsa
module of GROMACS was applied to estimate the binding
free energy of selected complexes [30, 31]. Computation of
the binding free energy using this method comprises three
steps. In the first step, the potential energy in vacuum is cal-
culated. Subsequently, polar and non-polar solvation energies
were estimated, respectively. The non-polar solvation energy
was calculated via the solvent-accessible surface area (SASA)
model. For all calculations, the last 1000 frames of each tra-
jectory were selected to assess the binding free energy.

Results and discussion

Receptor preparation

As shown in Table 1, the BLAST results represent the highest
identity, query cover and score and the lowest E-value and
resolution, between PR amino acid sequence and PDB ID:
1SQN. Hence, the PR ligand binding domain with bound
norethindrone (PDB ID: 1SQN) was downloaded, from the
RCSB website (http://www.rcsb.org). On the basis of the
information in the PDB file, there are some missing
residues, including amino acids 673–681, 706–707, 861,
933 in chain A and amino acids 674–682, 861 in chain B.
Therefore, the missing residues were filled in using
MODELLER 9.15 software [16] and specific scripts
(Supplementary scripts). As the original structure of the
1SQN PDB file was changed, the prepared PDB file was
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validated using the SAVES (https://services.mbi.ucla.edu/
SAVES/) and RAMPAGE (http://mordred.bioc.cam.ac.uk/
~rapper/rampage.php) servers. The results show that the
repaired PDB file has an overall quality factor of 89.683, in
ERRAT test [32] (Fig. 2a), suggesting crystallographic
reliability. An averaged 3D-1D score > = 0.2 in Verify3D test
[33] was found for 89.42% of residues, confirming compati-
bility of the repaired model, and 99.6% of residues were in the
favored allowed regions in Ramachandran plot, suggesting
acceptable PHI–PSI angles (Fig. 2b), and 3D structure
reliability.

Library preparation and virtual screening

The two-dimensional (2D) structures of 12 PR inhibitors are
illustrated in Fig. 3. In the present study, as natural compounds
are known to exert preventive effects on nuclear receptor-
mediated disease, such as different type of cancers [34], we

selected a library of 20,000 natural compounds from the ZINC
natural products database.

A structure-based virtual screening (SBVS) was carried out
to investigate potential inhibitors amongst the selected library,
and to narrow down the number of the possible drug-like
candidates. SBVS was implemented over the set of natural
compounds by molecular docking using AutoDock Vina
[19], in PyRx 0.8. After screening, a set of 2500 compounds
was selected by the estimated binding energy; the top 200
ligands were selected for further analysis.

ADMET analysis

The chosen top 200 compounds were scanned for their phar-
macokinetics, pharmacodynamics descriptors, and toxicity,
through the FAF-Drugs 3 (a free ADME/tox filtering tool)
web server [20]. FAF-Drugs 3 predicts a set of descriptors,
which are the ADMETand drug-like properties of compounds

Table 1 Template identification
using BLASTagainst protein data
bank (PDB). PR Progesterone
receptor

Protein Method Template Identity
(%)

Query
cover
(%)

Score E-value Resolution
(Å)

Isoform A
of PR

BLASTP
(protein-protein
BLAST)

PDB ID Chain

1SQN A 100 33 543 0.0 1.45

3G8O A 100 33 543 0.0 1.90

1E3K A 100 33 536 0.0 2.80

1SR7 A 100 33 536 0.0 1.46

1A28 A 100 33 533 0.0 1.80

2W8Y A 100 33 533 0.0 1.80

4OAR A 100 33 533 0.0 2.41

3KBA A 100 32 526 0.0 2.00
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with probable medicinal properties (http://fafdrugs3.mti.univ-
paris-diderot.fr/descriptors.html). Furthermore, the server
employs some pre-defined filters, expressing the descriptors
reference range, for considering the potency of the drug. In
this study, we first applied the Drug-like soft filter to all the top
200 compounds. Among them, 92 compounds were able to
successfully pass the filter (Supplementary Table 1).
Subsequently, all 92 compounds were subjected to the

Lipinski-RO5 filter, and 56 compounds were filtered success-
fully and selected for further analysis (Table 2).

The descriptors and reference range supplied in this test are
explained in this link: http://fafdrugs3.mti.univ-paris-diderot.
fr/filters.html.

The ADMET properties for final compounds reveal that
these compounds meet drug-like criteria, and can be utilized
as robust PR inhibitors.

Fig. 3 Chemical two-dimensional (2D) structures of known PR blocker drugs
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Table 2 ADMET (absorption, distribution, metabolism, excretion and toxicological) properties of 56 compounds selected from previous screening
steps

Ligand ID MWa logPb logSwc HBAd HBDe tPSAf ratio
H/Cg

Lipinski
violation h

Solubility
(mg/l)

Oral bioavailability I

1 ZINC00726878 431.4406 2.17 −3.93535 8 0 91.89 0.333333 0 8429.835108 Good

2 ZINC00936596 371.4748 4.32 −4.95614 4 1 54.88 0.166667 0 2615.201218 Good

3 ZINC00344138 329.3951 4.61 −4.97409 4 2 57.78 0.190476 0 2277.692785 Good

4 ZINC00936598 399.4849 3.64 −4.62728 5 1 71.95 0.2 0 3907.496392 Good

5 ZINC01020377 387.4742 3.93 −4.7395 5 1 64.11 0.208333 0 3387.695737 Good

6 ZINC00155640 256.3013 4.31 −4.54087 2 0 25.78 0.111111 0 2733.234459 Good

7 ZINC01020370 387.4742 3.93 −4.7395 5 1 64.11 0.208333 0 3387.695737 Good

8 ZINC00057876 236.2653 3.92 −4.10311 2 0 30.21 0.125 0 3903.383882 Good

9 ZINC00130087 238.2381 3.62 −3.95453 3 1 53.27 0.2 0 4566.455174 Good

10 ZINC00057688 268.2641 3.59 −4.00294 4 1 62.5 0.25 0 4899.016999 Good

11 ZINC00671043 356.336 −0.57 −1.75647 10 3 134.01 0.625 0 61,522.62885 Good

12 ZINC00057677 238.2381 3.62 −3.95453 3 1 50.44 0.2 0 4566.455174 Good

13 ZINC00117321 344.3633 3.42 −4.3148 5 3 81.42 0.238095 0 4603.890725 Good

14 ZINC00125039 300.3242 4.01 −4.258 3 0 35.53 0.222222 0 4249.750428 Good

15 ZINC00377099 317.3446 2.61 −3.69932 6 1 72.7 0.333333 0 7851.185584 Good

16 ZINC00726877 431.4406 2.17 −3.93535 8 0 91.89 0.333333 0 8429.835108 Good

17 ZINC00852625 443.4513 2.16 −3.93286 8 0 91.89 0.32 0 8686.091801 Good

18 ZINC00852626 443.4513 2.16 −3.93286 8 0 91.89 0.32 0 8686.091801 Good

19 ZINC01020368 387.4742 3.93 −4.7395 5 1 64.11 0.208333 0 3387.695737 Good

20 ZINC00028457 266.2482 2.54 −3.32094 4 0 52.6 0.25 0 9616.593697 Good

21 ZINC00038943 236.2653 3.92 −4.10311 2 0 30.21 0.125 0 3903.383882 Good

22 ZINC00039314 252.2647 3.25 −3.70148 3 0 39.44 0.1875 0 6227.670547 Good

23 ZINC00057674 222.2387 3.56 −3.8332 2 0 30.21 0.133333 0 4809.309751 Good

24 ZINC00057689 252.2647 3.53 −3.87788 3 0 39.44 0.1875 0 5220.547878 Good

25 ZINC00057872 284.7369 4.65 −4.82766 2 0 30.21 0.176471 0 2279.392325 Good

26 ZINC00072412 336.3844 2.92 −3.83052 5 2 67.43 0.25 0 7299.004291 Good

27 ZINC00486924 302.3682 2.03 −3.02849 5 2 61.8 0.294118 0 14,631.16155 Good

28 ZINC00716875 454.4277 4.07 −5.30266 7 1 114.65 0.52381 0 2262.286111 Good

29 ZINC00969332 419.8636 4.36 −5.36195 7 0 66.23 0.363636 0 1969.88566 Good

30 ZINC00057672 282.2907 3.5 −3.93549 4 0 48.67 0.235294 0 5514.877515 Good

31 ZINC00394228 288.4244 3.6 −3.89623 2 0 34.14 0.105263 0 5860.305128 Good

32 ZINC00468904 336.4275 3.08 −3.88527 4 1 59.06 0.190476 0 6910.983058 Good

33 ZINC00490459 339.342 3.34 −3.99555 6 1 81.7 0.315789 0 6242.991921 Good

34 ZINC00618633 312.7503 2.64 −3.69339 4 2 56.33 0.294118 0 7783.532869 Good

35 ZINC00693405 454.8631 3.51 −4.78016 9 0 97.35 0.454545 0 3818.430798 Good

36 ZINC00715489 356.3989 3.34 −4.1967 7 2 106.73 0.470588 0 5362.058903 Good

37 ZINC00869973 370.4437 3.9 −4.66215 4 1 49.41 0.166667 0 3499.256812 Good

38 ZINC01038918 258.3139 4.81 −4.66561 1 0 17.07 0.052632 0 2431.637064 Good

39 ZINC00125042 300.3242 4.01 −4.258 3 0 35.53 0.222222 0 4249.750428 Good

40 ZINC00308515 323.3856 3.91 −4.34074 4 1 55.4 0.2 0 4212.726785 Good

41 ZINC00486923 302.3682 2.03 −3.02849 5 2 61.8 0.294118 0 14,631.16155 Good

42 ZINC00490904 320.3419 2.12 −3.30722 5 1 62.54 0.263158 0 11,730.22636 Good

43 ZINC00565273 278.3053 2.19 −3.19634 4 3 65.12 0.235294 0 11,385.98371 Good

44 ZINC00627172 367.4448 2.93 −3.91352 7 1 75.92 0.35 0 7337.908121 Good

45 ZINC00779093 363.3667 2.34 −3.63816 7 3 100.43 0.35 0 9556.754071 Good

46 ZINC00818841 353.3686 3.16 −3.88902 6 1 81.7 0.3 0 7231.837739 Good

47 ZINC00848806 389.3661 5.63 −6.0195 2 0 45.61 0.35 1 946.507928 Good
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Molecular docking analysis

Molecular docking analysis was conducted to investigate the
drug candidates’ binding mode inside the PR structure. These
analyses confirmed predictions suggested to date. In the first
step, to narrow down the number of 56 compounds found in
the previous stage, all 56 structures were subjected to
MTiOpenScreen web server (http://bioserv.rpbs.univ-paris-
diderot.fr/services/MTiOpenScreen/) using the same
parameters as for PyRx. This web server is capable of
performing docking analysis using both AutoDock and
AutoDock Vina programs. The top ten compounds with
highest estimated binding energy were chosen, and then
subjected to AutoDock 4.2 software [21]. Moreover,
structures of 12 PR control inhibitors were docked using the
Autodock 4.2 program [21]. All 100 runs for each ligand were
explored, and the best conformation, regarding binding
energy and cluster rank, was considered. The interactions
between ligand and PR structure were analyzed and
visual ized using the MOE (molecular operat ing
environment) software package, version 2013.08 (Chemical
Computing Group, Montreal, Canada).

The estimated binding energy, inhibitory constant (Ki) and
the key residues involved in diverse interactions discussed
below are listed in Tables 3 and 4. The estimated binding
energy of these compounds varies between −5.82 and
−9.03 kcal mol−1. Moreover, the 2D structures of the ten
docked ligands are illustrated in Fig. 4. According to the

results of molecular docking, the ZINC00936598 compound
has the highest binding energy and the lowest Ki, with
Z INC01020370 in s e cond p l a c e , f o l l owed by
ZINC00869973 (Table 4). The results suggest that these com-
pounds have the greatest binding affinity to key PR binding
site residues.

Compound ZINC00936598 has the highest negative bind-
ing energy (−9.03 kcal mol−1) in the PR binding cavity. The
2D and 3D interaction diagrams of this drug-like compound
are illustrated in Fig. 5. As shown in Fig. 5a, the side chain
guanidinium moiety of Arg 94 interacts with formamide oxy-
gen through hydrogen binding interaction [35]. In addition,
Pro24, Val26, and Phe146 residues have established hydro-
phobic interactions with an acetonaphthone group of the li-
gand (Fig. 5a).

The ZINC01020370 interaction study shows formation of
hydrogen binding and hydrophobic interactions with the PR
binding cleft residues (Fig. 6). The binding energy of this
compound is −8.50 kcal mol−1. The side chain guanidinium
moiety of Arg94 forms a hydrogen bond with the formamide
oxygen of the ligand [36]. Moreover, Pro24, Val26, and
Phe146 residues interact with the anisole group of the docked
ligand through hydrophobic interactions (Fig. 6a).

As shown in Fig. 7a, the benzene ring of the
ZINC00869973 compound was able to establish a Pi-cation
(arene-cation) interaction, with the Lys150 side chain amine
group, and, concurrently, another benzene ring of the ligand
interacts with Trp93 through hydrophobic interaction [37].

Table 2 (continued)

Ligand ID MWa logPb logSwc HBAd HBDe tPSAf ratio
H/Cg

Lipinski
violation h

Solubility
(mg/l)

Oral bioavailability I

48 ZINC00852673 350.4374 3.21 −4.12957 5 0 76.32 0.315789 0 5638.465771 Good

49 ZINC00057966 254.2806 3.11 −3.51293 3 0 35.53 0.1875 0 7579.959399 Good

50 ZINC00107125 332.4188 4.7 −4.997 3 1 57.64 0.2 0 2246.557247 Good

51 ZINC00128775 265.2667 1.55 −2.74761 5 3 70.23 0.333333 0 16,998.59145 Good

52 ZINC00217137 265.3098 3.51 −3.97108 4 0 47.26 0.25 0 5001.912288 Good

53 ZINC00490844 334.3685 2.45 −3.51672 5 0 51.54 0.25 0 9929.591896 Good

54 ZINC00518188 279.29 4.52 −4.5252 4 0 52.33 0.235294 0 3025.428142 Good

55 ZINC00565202 343.1747 2.52 −3.83616 4 3 65.12 0.3125 0 7404.451516 Good

56 ZINC00565261 335.3566 1.36 −2.9083 6 4 99.42 0.315789 0 18,299.94169 Good

aMolecular weight
b Logarithm of the partition coefficient between n-octanol and water, characterizing lipophilicity
c logSw represents the logarithm of compounds, water solubility
d Hydrogen bond acceptors: sum of all O and N [according to the Lipinski rule of five (RO5) definition]
e Hydrogen bond donors: sum of all OHs and NHs (according to the Lipinski RO5 definition)
f Topological polar surface area: summation of tabulated surface contributions of polar fragments (i.e., atoms regarding also their bonding pattern)
g Ratio between the number of non-carbon atoms and the number of carbon atoms
hNumber of RO5 violations: Rule of thumb, according to Lipinski, where four properties are listed: MW ≤ 500; H-bond donors ≤5; H-bond acceptors
≤10; logP ≤5If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
I Veber rule: bad or good oral bioavailability rule, according to Veber: tPSA ≤140 Å or H-bond donors + H-bond acceptors ≤12.
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Table 3 Docking results of control PR inhibitors docked into the PR binding site. RMSD Root mean square deviation

Ligand Best binding
energy
(kcal mol−1)

Ki
(μM)

Interacting
residues

Key residues RMSD (Å)

Levonorgestrel −8.35 0.758 – His31, Asn33, Thr34, Lys35, Pro36, Asp37, Thr38, Ser39, Ser41,
Leu42, Asp109, Leu110, Ile111, Leu112, Arg116

0.00

ORG-33628 −8.02 1.32 Gln225 Phe223, Ile224, Gln225, Ser226, Arg227, Phe484, Ile485, Ser487,
Glu493, Phe494, Glu496, Ser499, Glu500

0.00

Asoprisnil −7.25 4.85 Phe494 Phe223, Ile224, Gln225, Ser226, Arg227, Phe484, Ile485, Ser487,
Val492, Glu493, Phe494, Glu496, Ser499

0.00

Ulipristalacetate −6.96 7.88 Gln225,
Glu493,
Phe494,
Glu496

Phe223, Ile224, Gln225, Ser226, Arg227, Ala228, Phe484, Arg488,
Glu493, Phe494, Glu496, Ser499, Glu500, Ala503

0.00

Promegestone −6.91 8.60 – His31, Asn33, Thr34, Lys35, Pro36, Asp37, Thr38, Leu42, Met103,
Pro108, Asp109, Leu110, Ile111, Leu112, Arg116

0.00

Onapristone −6.72 11.91 Asp37, Thr38 His31, Asn33, Lys35, Pro36, Asp37, The38, Ser39, Ser41, Leu42,
Gln115, Arg116, Lys118, Glu119

0.00

Mifepristone −6.64 13.49 Glu493, Glu496 Phe223, Ser226, Arg227, Ala228, Phe484, Ile485, Ser487, Arg488,
Arg493, Phe494, Glu496, Ser499

0.00

Telapristoneacetate −6.51 16.88 Gln225,
Glu493,
Phe494,
Glu496

Phe223, Ile224, Gln225, Ser226, Arg227, Ala228, Phe484, Arg488,
Glu493, Phe494, Glu496, Ser499, Glu500, Ala503

0.00

ZK112993 −6.48 17.70 Arg227, Ile485 Phe223, Ile224, Ser226, Arg227, Ala228, Phe484, Ile485, Ser487,
Glu493, Phe494, Pro495, Glu496

0.00

Lilopristone −6.47 18.12 Ser487, Arg488,
Glu493,
Glu496

Phe223, Ile224, Gln225, Ser226, Arg227, Ala228, Phe484, Ile485,
Gln486, Ser487, Arg488, Glu493, Phe494, Glu496, Ser499,
Glu500, Ala503

0.00

Lonaprisan −5.87 50.21 Ile283 Ile283, Pro285, Val287, Ile288, Arg313, Leu316, Ser317, Lys320,
Trp321

0.00

Mometasonefuroate −5.82 54.10 Ile224, Gln225,
Glu493,
Glu500

Ile224, Gln225, Arg227, Phe484, Ser487, Val492, Glu493, Phe494,
Glu496, Ser499, Glu500, Ala503

0.00

Table 4 Docking results of natural compounds docked into the PR binding site

Ligand Best binding
energy
(kcal mol−1)

Ki
(uM)

Interacting
residues

Key residues RMSD (Å)

ZINC00936598 −9.03 0.241 Arg94 Glu23, Pro24, Asp25, Val26, Ile27, Gln53, Ser56, Val57, Trp60, Leu86,
Gly90, Leu91, Trp93, Arg94, Gln143, Phe146, Lys150

0.00

ZINC01020370 −8.50 0.586 Arg94 Glu23, Pro24, Asp25, Val26, Ile27, Gln53, Ser56, Val57, Trp60, Leu86,
Gly90, Leu91, Trp93, Arg94, Gln143, Phe146, Lys150

0.00

ZINC00869973 −8.48 0.603 Lys150 Glu23, Pro24, Asp25, Gln53, Ser56, Val57, Trp60, Leu86, Met87,
Gly90, Leu91, Trp93, Arg94, Lys95, Gln143, Phe146, Lys150

0.00

ZINC00057872 −8.41 0.685 Thr418 Tyr342, Ser343, Ser346, Leu414, Asn417, Thr418, Leu469, His470,
Val473, Lys474, Ile509, Gly512, Val514

0.00

ZINC00117321 −8.20 0.983 Pro24, Arg94 Glu23, Pro24, Asp25, Val26, Ile27, Gln53, Ser56, Val57, Trp60, Leu86,
Met87, Gly90, Leu91, Arg94, Phe146, Lys150

0.00

ZINC00468904 −7.62 2.59 Ile224 Phe223, Ile224, Gln225, Ser226, Arg227, Phe484, Ile485, Ser487,
Arg488, Ser499, Glu500, Ala503

0.00

ZINC00936596 −7.52 3.06 – Phe223, Ile224, Gln225, Arg227, Ala228, Phe484, Ile485, Ser487,
Glu493, Phe494, Glu496, Ser499, Glu500, Ala503

0.00

ZINC00130087 −7.34 4.14 Val473 Tyr342, Ser343, Ser346, Leu414, Asn417, Thr418, Leu469, His470,
Val473, Lys474, Ile509, Val514, Pro516

0.00

ZINC00852626 −7.13 5.93 Ile224, Ser487,
Phe494,
Ser499

Phe223, Ile224, Gln225, Arg227, Ala228, Phe484, Ile485, Ser487,
Val492, Glu493, Phe494, Glu496, Ser499

0.00

ZINC00057677 −7.81 1.90 Tyr342, Leu414,
val473

Tyr342, Ser343, Ser346, Leu414, Asn417, Thr418, Leu469, His470,
Val473, Lys474, Ile509, Val514, Pro516

0.00
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Fig. 4 Chemical 2D structures of top ten natural compounds, docked with progesterone receptor
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The estimated binding energy of the ZINC00869973 com-
pound equals to −8.48 kcal mol−1.

As listed in Table 3, the highest binding energy among the
docked control drugs belongs to Levonorgestrel, with a value
of −8.35 kcal mol−1. The 2D and 3D interaction diagrams of
this drug, with PR binding sites are shown in Fig. 8. As illus-
trated in Fig. 8, the drug has not succeeded in establishing a
hydrogen-binding interaction with any residues of the PR
binding cavity. However, Leu110, Ile111, and Leu112 resi-
dues interact with Levonorgestrel through hydrophobic inter-
actions (Fig. 8a).

Based on the results presented in Figs. 5–7, and Tables 3
and 4, the ZINC00936598, ZINC01020370, and
ZINC00869973 compounds have the strongest affinity toward
key PR binding site residues in comparison with the other
natural compounds and the best-docked control drug
(Levonorgestrel).

Furthermore, studies of the interactions of these natural
compounds reveal not only that these compounds have the
highest binding energy with key PR binding site residues,
but also that the key residues interacting with these ligands
were the same in all three cases. These data reflect the signif-
icant role of Glu23, Pro24, Asp25, Val26, Ile27, Gln53, Ser56,
Val57, Trp60, Leu86, Gly90, Leu91, Trp93, Arg94, Gln143,
Phe146 and Lys150 residues in PR inhibition.

Investigation of the interactions of the compound
ZINC00057872 (binding energy of −8.41 kcal mol−1;
Fig. 9a), reveals that the pyran ring oxygen of the ligand can
interact with the side chain of Thr418 through hydrogen
bonds. Simultaneously, hydrophobic interactions can be seen
between Val473 and the ligand.

As shown in Fig. 10a, the aminobenzamide nitrogen of the
ZINC00117321 compound interacts with the backbone of
Pro24 through hydrogen bonds, and the aminobenzamide
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Fig. 6 Schematic representations (2D and 3D) of the binding interactions between the PR active site and ZINC01020370

Fig. 5 Schematic representations (2D and 3D) of the binding interactions, between the PR active site and ZINC00936598



oxygen of the ligand interacts with the side chain of Arg94 via
hydrogen bonds [35]. The binding energy of the ligand to the
binding site of the PR is −8.20 kcal mol−1.

The 2D and 3D interaction diagrams of the other natural
compounds and control drugs with PR binding site residues
are depicted in Supplementary Figs. 1–16. As listed in
Table 4, compounds ZINC00468904, ZINC00936596,
ZINC00130087, ZINC00852626 and ZINC00057677 all
have a binding energy less than −8 kcal mol−1. Moreover,
the binding regions of these compounds are very far from
those with a binding energy of more than −8 kcal mol−1.

Based on the results presented so far, it seems the amino
acids Glu23, Pro24, Asp25, Val26, Ile27, Gln53, Ser56,
Val57, Trp60, Leu86, Gly90, Leu91, Trp93, Gln143,
Phe146, Lys150, and especially Arg94, play a key role in

binding of inhibitors to the PR binding site. Our docking re-
sults are not consistent with those of previous studies [38, 39],
and indicate that the PR structure has a potential ligand-
binding site that could serve as an inhibitory pocket. In total,
according to the molecular docking results, three top ranked
natural compounds (ZINC00936598, ZINC01020370, and
ZINC00869973) gave promising results as potential PR inhib-
itors and are likely to have a noteworthy role in the treatment
of BC.

MD simulation studies

The simulation in this study was carried out in two phases. In
the first phase, the goal was relaxation of the structure, and to
study PR behavior, over a period of 100 ns. The first stage is
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Fig. 8 Schematic representations (2D and 3D) of the binding interactions between the PR active site and Levonorgestrel

Fig. 7 Schematic representations (2D and 3D) of the binding interactions between the PR active site and ZINC00869973



necessary since, before docking and other stages of the study,
the structure has to be energetically optimal and corrected in
terms of internal clashes. Subsequently, screening and
docking were performed on the output structure of the first
phase. In the second phase, MD simulation was performed on
the three complexes acquired from docking that had the most
negative energy levels, i.e., PR-ZINC00936598, PR-
ZINC01020370, PR-ZINC00869973, and the PR-
Levonorgestrel complex as a control. The aim was to study
the stability and other molecular behaviors of these complexes
for 100 ns.

In order to study the stability and conformational changes
of the free PR and above-mentioned complexes during MD
simulation, root mean square deviation (RMSD) was calculat-
ed [35] for backbone atoms of both structures (Fig. 11) and
each ligand separately (Fig. 12). As shown in Fig. 11, it can be
said that all systems enjoy a level of RMSD between 0.100–

0.415 nm during 100 ns of MD simulation. It is obvious that
the RMSD of the free PR rises gradually in the first 3 ns;
thereafter, no tangible rise in the RMSD rate of the free PR
is seen until the end of the simulation, and the structure
reaches stability. In the same way, the RMSD of the PR-
ZINC00869973 complex enjoys a rise in first 1 ns, thereafter
becoming stable until the end of the simulation. Moreover, the
RMSD of the other complexes’ elevates for the first 2 ns, and
continues almost similarly to the end of the simulation.
Therefore, it is seen that all the systems equilibrate along the
MD simulation, reflecting the notion that the presence of the
ligand and various interactions with PR binding site residues
cause no eminent deviation in complex structure during the
MD simulation [40]. Moreover, Zheng et al. [41] reported that
the PR structure preserves its stability during MD simulation,
which is in accordance with our findings. Furthermore, as
shown in Fig. 12, the RMSD values of the ligands in each

Fig. 10 Schematic representations (2D and 3D) of the binding interactions between the PR active site and ZINC00117321
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Fig. 9 Schematic representations (2D and 3D) of the binding interactions between the PR active site and ZINC00057872



complex are clearly stable from the beginning to the end of the
simulation. From these results, it can be concluded that the
protein–ligand complexes preserve stability throughout the
100 ns of MD simulation.

Also, in order to study the flexibility of the residues of
these structures throughout the simulation, root mean square
fluctuation (RMSF) of the apo and complex forms of PR
backbone atoms was computed over the entire trajectory
[42]. Residues with high RMSF values divulge more flexibil-
ity, whereas low RMSF values reflect restrictions on the
movement of residues in 100 ns of MD simulation, and thus

less flexibility. The rate of RMSF differences is shown in
Fig. 13, showing that the great majority of free PR residues
have RMSF values <0.25 nm. It can be seen that almost all
systems have the same fluctuations in each residue. However,
PR-Levonorgestrel and PR-ZINC00869973 complexes fluc-
tuate more than the other complexes in some cases.
Furthermore, again it seems that amino acids Glu23, Pro24,
Asp25, Val26, Ile27, Gln53, Ser56, Val57, Trp60, Leu86,
Gly90, Arg94, Leu91, Trp93, Gln143, Phe146 and Lys150
play roles in binding of ligands to the PR and enjoy less
flexibility, suggesting stability of the active site. Our data also

Fig. 12 RMSD values of PR-
ZINC00936598 (red), PR-
ZINC00869973 (green), PR-
ZINC01020370 (black) and PR-
Levonorgestrel (blue) complexes

Fig. 11 Root mean square
deviation (RMSD) values of free
PR (blue), and PR-
ZINC00936598 (red), PR-
ZINC00869973 (green), PR-
ZINC01020370 (black) and PR-
Levonorgestrel (yellow)
complexes
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suggest that ligand binding to PR, and the bound formation,
results in no major changes in flexibility of protein structure
residues, confirming the RMSD results. This result supports
the findings of a previous study [43].

The level of compactness or folding rate of the backbone
atoms during the MD simulation was also evaluated using the
radius of gyration (Rg) analysis [44]; Rg studies concentrate
on protein structure compactness. As shown in Fig. 14, the

free PR and PR-Levonorgestrel complex Rg values declined
over the 100 ns MD simulation, whereas in the other com-
plexes the Rg rate remains almost intact. Our data suggest that,
while the inhibitor did not remarkably affect the flexibility and
the deviation of the PR residues (Figs. 11 and 13), it was not
able to induce a noticeable movement in PR structure, and
hence protein compactness remains unchanged during MD
simulation [45].

Intermolecular interactions of lead compounds with PR
were evaluated during the simulation using g_hbond [46].
As depicted in Fig. 15, analysis of PR-Levonorgestrel

Fig. 13 Root mean square
fluctuation (RMSF) values of free
PR (blue), and the PR-
ZINC00936598 (red), PR-
ZINC00869973 (green), PR-
ZINC01020370 (black) and PR-
Levonorgestrel (yellow)
complexes

Fig. 14 Radius of gyration (Rg) values of free PR (blue), and the PR-
ZINC00936598 (red), PR-ZINC00869973 (green), PR- ZINC01020370
(black) and PR-Levonorgestrel (yellow) complexes

Fig. 15 H-bond values of PR-ZINC00936598 (red), PR-ZINC00869973
(green), PR- ZINC01020370 (black) and PR-Levonorgestrel (blue)
complexes
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complex revealed one hydrogen bond during the course of
100 ns simulation and a maximum of two hydrogen bonds.
Similarly, in the case of the PR-ZINC01020370 and PR-
ZINC00869973 complexes, the results revealed one hydrogen
bond and a maximum of three hydrogen bonds during the
100 ns simulation. However, in the case of the PR-
ZINC00936598 complex, the results showed at least one hy-
drogen bond and a maximum of four hydrogen bonds
throughout 100 ns simulation. Comparison of H-bond analy-
sis from MD simulations confirmed that the lead compound

ZINC00936598 was more po t en t compa r ed to
ZINC01020370 and ZINC00869973.

Principal component analysis

In the present study, in order to better understand the conforma-
tional changes, the effect of ligand binding to the overall PR
structure motion was investigated using PCA methods. The 2D
projection of the first two major principal components (PC1 and
PC2) was performed using ED, dividing conformational sub-
space to essential subspaces [47], for all lead compound-bound
PR structures (Fig. 16). As illustrated in Fig. 16, it is obvious that
the eigenvectors calculated from the MD trajectory for all sys-
tems are quite diverse, clearly demonstrating the difference in
structural motion between the systems. It can be concluded that
ligand binding to the PR structure resulted in conformational
change. Therefore, the less occupied the conformational space
in PCA analysis, the greater the inhibitory power of the bound
ligand toward the protein structure. Our data are consistent with
data reported by Singh et al. [48].

On the other hand, the first and the second principal modes
of the lead compound-PR complexes were illustrated using
porcupine plots [49]. As shown in Fig. 17, the protein loops
and directions of domain motion have been plotted using
spines. In the case of the PR-ZINC00936598 complex, it is
obvious that chains A and B move downward-right and up-
ward-left, respectively, and these movements in reverse direc-
tion were able to strike out the active site of the protein, and to
establish more interactions between the ligand and active site

Fig. 17a–d Porcupine plots based
on principal component analysis
(PCA) of the protein backbone
from the simulation. Complexes:
a PR-ZINC01020370, b PR-
ZINC00936598, c PR-
ZINC00869973, d PR-
Levonorgestrel

Fig. 16 First two eigenvectors describing the projection of proteinmotion
in phase space for PR-ZINC00936598 (red), PR-ZINC00869973 (green),
PR- ZINC01020370 (black) and PR-Levonorgestrel (orange) complexes
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residues. Similarly, in the case of PR-ZINC00869973, such
motions, the same as PR-ZINC00936598, are more visible
and with a sharper angle. Concerning the PR-ZINC01020370
complex, with a slight difference, chain A and chain B move
downward and upward, respectively. However, in the case of
PR-Levonorgestrel complex, chain A and chain B move
counter-clockwise and clockwise, respectively, showing a dif-
ferent pattern of movement than the other complexes. All these
motions demonstrate the conformational changes induced by
ligand binding to the PR structure [50].

Free energy calculations

In order to investigate the stability and binding of lead com-
pounds after MD simulation, binding free energy of the com-
pounds was estimated by the MM-PBSAmethod. MM-PBSA
is a powerful tool used to study the binding free energy of
protein– l igand complexes. As l is ted in Table 5,
Levonorgestrel (−163.041 kJ mol−1) and ZINC00869973
(−105.943 kJ mol−1) compounds, enjoy less binding energy
than ZINC01020370 (−62.175 kJ mol−1) and ZINC00936598
(−59.002 kJ mol−1). Similarly, calculated van der Waal ener-
gies for Levonorgestrel (−215.132 kJ mol−1) and
ZINC00869973 (−201.224 kJ mol−1) compounds were less
than those of the other hits, whereas, electrostatic energy
values in ZINC00869973 (−60.966 kJ mol−1) and
ZINC00936598 (−59.195 kJ mol−1) were lower than the
others. In the case of SASA energy, all four compounds have
almost the same value. However, in contrast to the other en-
ergies, polar solvation energy contributes positively to the
total binding free energy value. The strong computed binding
energies support our docking results [51].

Conclusions

In this study, we used a wide range of computational methods
to examine the effect of plant-derived drug compounds on the
structure of PR. VS, ADMET study, molecular docking, MD
simulation, PCA and MMPBSA analyses led us to findings
that could explain the important effects of these compounds
on the structure of PR. Among the 20,000 compounds studied
after VS, ADMET and docking, three compounds

(ZINC00936598, ZINC01020370 and ZINC00869973) were
selected based on docking energies.

The MD simulation for 100 ns of the complex of each of
these three compounds with the PR structure showed that, in
the RMSD analysis, each of the three complexes was equili-
brated and stable. RMSF analysis showed less flexibility in
the residues during simulation, and confirmed the stability of
common amino acids in the interactions (Glu23, Pro24,
Asp25, Val26, Ile27, Gln53, Ser56, Val57, Trp60, Leu86,
Gly90, Arg94, Leu91, Trp93, Gln143, Phe146 and Lys150).
However, the Rg analysis of all complexes remained intact,
indicating the stability of PR compactness during simulation.
Additionally, H-bond analysis revealed the greater power of
ZINC00936598 in PR inhibition. Furthermore, PCA analysis
confirmed that ligand binding to PR structure resulted in con-
formational changes, and also changes in the direction of dif-
ferent domain movements, in each structure. Finally, the
MMPBSA analysis indicated strong ligand binding energies
with PR after simulation, confirming the docking results.
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