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Abstract
In this work some possibilities for deriving a local electrophilicity are studied. First, we consider the original definition proposed
by Chattaraj, Maiti, and Sarkar (J Phys ChemA 107:4973, 2003), in which the local electrophilicity is given by the product of the
global electrophilicity, and the Fukui function for charge acceptance is derived by two different approaches, making use of the
chain rule for functional derivatives.We alsomodify the proposals based on the electron density so as to have a definitionwith the
same units of the original definition, which also introduces a dependence in the Fukui function for charge donation. Additionally,
we also explore other possibilities using the tools of information theory and the temperature dependent reactivity indices of the
density functional theory of chemical reactivity. The poor results obtained from the last two approaches lead us to conjecture that
this is due to the fact that the global electrophilicity is not a derivative, like most of the other reactivity indices. The conclusion is
that Chattaraj’s suggestion seems to be the simplest, but at the same time a very reliable approach to this important property.

Keywords Chemical reactivity . Global and local electrophilicities . Hardness . Chemical potential . Fukui functions

Introduction

Density functional theory has contributed very much to the
development of a theory of chemical reactivity [1–8].
Primordially, the works of Robert Parr have allowed quantifi-
cation of many intuitive chemical concepts, like electronega-
tivity [9] and hardness [10, 11]. It has also introduced new
quantities, like the Fukui function [12, 13] f(r), and the soft-
ness S [14]. Some rules of chemistry, like the principle of
maximum hardness [15] and the HSAB principle [16–18],
have also been theoretically justified [19–38]. Almost 20

years ago, Parr et al. derived a formula to evaluate the elec-
trophilicity [39–43],

ω ¼ μ2

2η
ð1Þ

where μ, the chemical potential, is given by the derivative of
the electronic energy, E, with respect to the number of elec-
trons, N, at constant external potential, v(r), that is,

μ ¼ ∂E
∂N

� �
v rð Þ

ð2Þ

and η is the hardness,

η ¼ ∂2E
∂N2

� �
v rð Þ

¼ ∂μ
∂N

� �
v rð Þ

ð3Þ

If one makes a smooth quadratic interpolation [10] between
the systems withN0 − 1,N0 andN0 + 1 electrons, whereN0, an
integer, is the number of electrons of the reference system, to
determine the first and second derivatives of the energy and
the electronic density with respect to N, one finds that,

μ ¼ −
IP þ EA

2
ð4Þ

η ¼ IP−EA ð5Þ
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and therefore,

ω ¼ IP þ EAð Þ2
8 IP−EAð Þ ð6Þ

where IP ¼ EN0−1−EN0 and EA ¼ EN0−EN0þ1 are the first
ionization potential and the electron affinity, respectively.

Note that in contrast to the global properties, μ and η, the
electrophilicity is not a derivative with respect to the number of
electrons. These three quantities are global indices describing a
characteristic of the molecule as a whole. However, almost all
the global indices of density functional theory have their local
counterpart, which is important because different atoms or
groups in a molecule may react in a different way (regioselec-
tivity). Hence, the number of electrons N has its counterpart in
the electron density ρ(r), the hardness η has its counterpart in
the local hardness η(r), and the softness S has its counterpart in
the local softness s(r). Therefore, it is logical to ask for the local
counterpart of the electrophilicity defined in Eq. (1). The sim-
plest way to do it, and the most used one, was proposed by
Chattaraj et al. [44], who established the condition that the local
electrophilicity integrated over the whole space should lead to
the global electrophilicity, that is:

ω ¼ ∫ω rð Þ dr ð7Þ

Thus, taking into account that the Fukui function,

f rð Þ ¼ ∂ρ rð Þ
∂N

� �
v rð Þ

ð8Þ

integrates over the whole space to one,

∫ f rð Þ dr ¼ 1 ð9Þ

Chattaraj et al. proposed that:

ω ¼ ω∫ f rð Þ dr ¼ ∫ω f rð Þ dr ¼ ∫ω rð Þ dr ð10Þ
where the local electrophilicity is defined as:

ω rð Þ ¼ ω f rð Þ ð11Þ

The fact that the electron density as a function of the num-
ber of electrons at zero-temperature is given by a series of
straight lines connecting the integer values of N [45–47] im-
plies that the derivative from the left will be different to the
derivative from the right, around an integer value of N. In
terms of electron density differences, the Fukui function, Eq.
(8), is given by:

f − rð Þ ¼ ρN0
rð Þ−ρN0−1 rð Þ ð12Þ

and

f þ rð Þ ¼ ρN0þ1 rð Þ−ρN0
rð Þ ð13Þ

where ρN0−1 rð Þ, ρN0
rð Þ and ρN0þ1 rð Þ are the electron densities

of the system withN0 − 1,N0 and N0 + 1 electrons, respective-
ly. The Fukui functions f −(r) and f +(r) are the left and right
directional derivatives, f −(r) characterizes the sites from
which the molecule will donate charge, while f +(r) character-
izes the sites where the molecule will accept charge. Thus,
since the electrophilicity concept is linked to charge accepted
by the system when it is immersed in an idealized electron
bath with zero chemical potential, the local electrophilicity
expressed in Eq. (11), should be written as:

ω rð Þ ¼ ω f þ rð Þ ð14Þ

It is important to mention that using the inverse relationship
at zero-temperature between hardness and softness [14, 48,
49], η S = 1, a condensed to atom [50–54] local electrophilic-
ity based on the Fukui function had already been proposed
[55, 56]. Also, using the minimization procedure discussed by
Ayers and Parr [57] together with the variational principle for
the Fukui function [58], the relationship given in Eq. (11) in
terms of directional derivatives was derived [59].

On the other hand, based on the maximum charge trans-
ferred from an idealized bath with zero chemical potential,
ΔNmax = − μ/η, which is the charge that leads to the global
electrophilicity expressed in Eq. (1), and making use of the
fact that the Fukui function is the one that minimizes the
energy change associated with a charge transfer [57], Cedillo
and Contreras [60] expressed the electronic density change
associated with the electrophilicity concept as:

ΔρElec−1 rð Þ ¼ ΔNmax f þ rð Þ ¼ −
μ
η

f þ rð Þ ð15Þ

and multiplying this expression by (−μ/2),

ω rð Þ ¼ −
μ
2
ΔρElec−1 rð Þ ¼ μ2

η
f þ rð Þ ¼ ω f þ rð Þ ð16Þ

they recovered Eq. (14).
In a similar context, Morell et al. [61] defined the local

electrophilicity just in terms of the electronic density term,
but considering up to the second order contribution of the
expansion of ρ(r) as a function of N, that is

ΔρElec−2 rð Þ ¼ ΔNmax f rð Þ þ 1

2
ΔNmaxð Þ2 Δ f rð Þ ð17Þ

leading to

ΔρElec−2 rð Þ ¼ ω −
2

μ
f rð Þ þ 1

η
Δ f rð Þ

� �
ð18Þ

where Δ f(r) is the dual descriptor [62, 63].

Δ f rð Þ ¼ ∂2ρ rð Þ
∂N2

� �
v rð Þ

¼ ∂ f rð Þ
∂N

� �
v rð Þ

ð19Þ
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In the work of Morell et al., Eq. (18) was finally written in
terms of the directional derivatives for the energy and for
electron density. In the case of the derivatives of the energy,
since E as a function N at zero temperature is also given by a
series of straight lines connecting the integer values of N
[45–47], one has that μ − = − IP and μ + = − EA. For the sec-
ond derivatives of the energy and the electron density with
respect to N one usually makes use of the smooth quadratic
interpolation between the N0 − 1, N0, and N0 + 1 that leads to
Eq. (5) for the hardness and to

Δ f rð Þ ¼ f þ rð Þ− f − rð Þ ð20Þ
for the dual descriptor. This way, the final expression derived
by Morell et al. was

Δρω−1 rð Þ ¼ EAð Þ2
2 IP−EAð Þ

2

EA
f þ rð Þ þ 1

IP−EA
f þ rð Þ− f − rð Þð Þ

� �

ð21Þ

Recently, it was proposed that the local response of
global descriptors may be obtained through the func-
tional derivative of the global property with respect to
the external potential at constant number of electrons
[64]. Through this approach one is led to Eq. (18),
which in the case of using the smooth quadratic inter-
polation for the energy, Eqs. (4) and (5) lead to the
chemical potential and the hardness, respectively, while
for the electron density the Fukui function is obtained
from

f rð Þ ¼ f − rð Þ þ f þ rð Þ
2

ð22Þ

and the dual descriptor is given by Eq. (20), so that in
this case Eq. (18) becomes equal to

Δρω−2 rð Þ ¼ IP þ EAð Þ2
8 IP−EAð Þ

2

IP þ EA
f − rð Þ þ f þ rð Þð Þ þ 1

IP−EA
f þ rð Þ− f − rð Þð Þ

� �
ð23Þ

Thus, one can see that the definition provided by
Chattaraj et al. has the appeal of its simplicity, al-
though it has been criticized [60, 64, 65] because with-
in a molecule it has no more local information than
the one provided by the Fukui function. On the other
hand, the proposals related with Eqs. (21) and (23) are
more complicated, but it is interesting to note that they
depend not only on f +(r) but also on f −(r). However,
it is important to note that these two proposals define
the local electrophilicity through the electronic density,
while the original proposal does it through the global
electrophilicity, which is a quantity with units of
energy.

The object of the present work is first to propose
new approximations to the local electrophilicity and
then to analyze the results obtained from the different
expressions. Consequently, we derive first an expression
for the local electrophilicity using tools of information
theory. Then, we analyze two alternative approaches to
derive Chattaraj’s relationship, Eqs. (11) and (14), and a
new proposal that considers Eq. (18) as the starting
point. Next, motivated by one of the derivations ana-
lyzed, we also derive an equation based on the temper-
ature dependent formulation, developed by Franco et al.
[49, 66–68], of the density functional theory of chemi-
cal reactivity. Finally, we perform a comparison between
the different formulations.

New proposals for a local electrophilicity

Local counterpart of a global property
through functional derivatives

Recently, some of us developed a methodology to find the
local and nonlocal counterparts of a global response function,
namely a derivative of the zero temperature state function with
respect to one of the global independent variables [69, 70,
Franco-Pérez et al. to be publshed], basically making use of
the chain rule for functional derivatives. Here we will only
consider the local counterpart to derive the equation proposed
by Chattaraj et al., Eqs. (11) and (14), for the local electrophi-
licity through two approaches.

In both, the starting point is to establish the condition that
the local property P(r) integrated over the whole space should
lead to the corresponding global property P, that is:

P ¼ ∫P rð Þdr ð24Þ

In the first approach one may consider that the maximum
amount of charge transferred may be rewritten in the form

ΔNmax ¼ −
μ
η
¼ −μ S ¼ −

∂E
∂N

� �
v rð Þ

∂N
∂μ

� �
v rð Þ

¼ −
∂E
∂μ

� �
v rð Þ

ð25Þ
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where we have used the inverse relationship at zero-
temperature between the hardness and the softness, Eqs.
(2) and (3), and the chain rule for derivatives. Now we
make use of the chain rule for functional derivatives to
write that

∂E
∂μ

� �
v rð Þ

¼ ∫
∂E

∂ρ rð Þ
� �

v rð Þ

∂ρ rð Þ
∂μ

� �
v rð Þ

d r ð26Þ

The first derivative in the integrand is, from the variational
principle of density functional theory [1, 9], equal to

μ ¼ ∂E
∂ρ rð Þ

� �
v rð Þ

ð27Þ

while the second derivative in the integrand may be identified
with the definition of local softness [14, 48], so that

s rð Þ ¼ ∂ρ rð Þ
∂μ

� �
v rð Þ

¼ ∂N
∂μ

� �
v rð Þ

∂ρ rð Þ
∂N

� �
v rð Þ

¼ S f rð Þ ¼ 1

η
f rð Þ ð28Þ

Multiplying Eq. (26) by μ/2 and using Eqs. (27) and (28),
one finds that

μ
2

∂E
∂μ

� �
v rð Þ

¼ ∫
μ2

2 η
f rð Þ d r ð29Þ

Now, using Eqs. (25) and (1), one can see that Eq. (29) is
identical to Eq. (7), which implies that the local electrophilic-
ity obtained through this procedure is identical with the one
proposed by Chattaraj et al., Eq. (11) or Eq. (14) when the
directional derivative is considered. However, the present der-
ivation has been mathematically motivated by the chain rule
for functional derivatives.

A second approach is based on the definition of a local
chemical potential through the following chain rule [67, 69].

μ ¼ ∂E
∂N

� �
v rð Þ

¼ ∫
∂E

∂ρ rð Þ
� �

v rð Þ

∂ρ rð Þ
∂N

� �
v rð Þ

d r

¼ ∫μ f rð Þ d r ¼ ∫μL rð Þ d r ð30Þ

which implies that

μL rð Þ ¼ μ f rð Þ ð31Þ
together with the definition of a local hardness through the
chain rule [Franco-Pérez et al. to be publshed].

η ¼ ∂μ
∂N

� �
v rð Þ

¼ ∫
∂μ

∂ρ rð Þ
� �

v rð Þ

∂ρ rð Þ
∂N

� �
v rð Þ

d r

¼ ∫η f rð Þ d r ¼ ∫ηL rð Þ d r ð32Þ

which implies that

ηL rð Þ ¼ η f rð Þ ð33Þ

It is important to note that in order to derive this expression
we have considered that

η ¼ ∂μ
∂ρ rð Þ

� �
v rð Þ

ð34Þ

because due to the Hohenberg-Kohn theorem [1, 71], the only
possible variations of the electronic density at constant exter-
nal potential are those arising from variations in the number of
electrons. In fact, the relationships given by Eqs. (27) and (34)
are manifestations of the chemical potential and the hardness
equalizations [72–74].

Now, given that the global electrophilicity, according to Eq.
(1), is given by the square of the global chemical potential
divided by two times the global hardness, one could consider
a local electrophilicity given by the square of a local chemical
potential divided by two times a local hardness, that is:

ωL rð Þ ¼ μL rð Þð Þ2
2 ηL rð Þ ð35Þ

If one replaces μL(r) and ηL(r) by the expressions given in
Eqs. (31) and (33), respectively, one obtains the expression
proposed by Chattaraj et al., Eq. (11) or Eq. (14) when the
directional derivative is considered. However, this derivation
has been motivated through the definition of local counter-
parts for the chemical potential and the hardness.

Local electrophilicity from the changes in the electron
density

It has already been mentioned that there have been proposals
for the local electrophilicity based directly on the changes in
the electronic density that arise from the acceptance of the
fractional charge ΔNmax = − μ/η > 0. The two approaches re-
ported in the literature [61, 64] lead to the same result, Eq.
(18), when in the case of Morell et al. the series expansion of
the density with respect to the number of electrons is truncated
at second order. The differences between Eqs. (21) and (23)
are due to the different approximations used to calculate the
derivatives of the energy and of the electronic density with
respect to N that appear in Eq. (18).

Now, recall that the approach developed by Cedillo and
Contreras [60] was based first on approximating the change
in the electron density through Eq. (15), and then multiplying
it by (−μ/2) to obtain Eq. (16), that defines the local electro-
philicity in terms of the appropriate units of energy per vol-
ume, so that when one integrates it over the whole space one
obtains the global electrophilicity in energy units. Thus, one
can proceed in a similar way in the approach developed by
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Morell et al., in which the electronic density difference is
determined through a Taylor series inΔN, but instead of trun-
cating it at first order that corresponds to what Cedillo and
Contreras did, one may consider also the second order term,
and multiply the expression, Eq. (18), by (−μ/2) finding that:

ωElec−2 rð Þ ¼ −
μ
2
ΔρElec−2 rð Þ ¼ ω f rð Þ− μ

2η
Δ f rð Þ

� �
ð36Þ

Since the integral of the Fukui function over the whole
space is equal to one, while that of the dual descriptor is equal
to zero, one can see that local electrophilicity defined in Eq.
(36) leads to the global electrophilicity when integrated over
the whole space.

When one makes use of the smooth quadratic interpolation,
to determine the first and second derivatives of the energy and
the electronic density with respect toN, Eqs. (4), (5), (22), and
(20) one finds that Eq. (36) becomes

ωElec−2 rð Þ ¼ IP þ EAð Þ2

4 IP−EA
�� � f − rð Þ þ f þ rð Þ þ IP þ EAð Þ

2 IP−EA
�� � f þ rð Þ− f − rð Þð Þ

2
4

3
5: ð37Þ

One may note that as in the case of Eqs. (21) and (23), this
relationship depends on f +(r), but also on f −(r). However, the
contribution to the local electrophilicity from f +(r) is greater
in this expression than in the other two. Another important
aspect is that it may be directly compared with Eq. (14) be-
cause both quantities have the same units.

The presence of f −(r) may be an important aspect because
if one considers the original global electrophilicity proposed
by Parr and collaborators, Eqs. (1) and (6), one can see that it
depends on the electron affinity, which is a property certainly
related with the acceptance of charge, but it also depends on
the ionization potential, which is a property related with the
donation of charge. Thus, in a certain way one may consider
that the acceptance process may be influenced by properties
related with the donation process, that is, the presence of f −(r)
may be incorporating aspects related with the donation pro-
cess at the local level.

Local counterpart of a global property
through information theory

It is worth mentioning that recently some of us published a
general procedure to get the local version of any global index
using information theory [75], and it was applied, in particular,
to obtain a local hardness. The procedure is inspired in the
pioneer works of Nalewajski and Parr to derive the Hirshfeld
atomic population analysis [76, 77].

In information theory if you have two distributions p(r) and
q(r), the Kullback-Leibler divergence is defined as [78, 79].

D p; qð Þ ¼ ∫p rð Þln p rð Þ
q rð Þ dr ð38Þ

and using very simplistic interoperation, it measures the
amount of information lost when one uses the distribution
p(r) instead of the expected distribution q(r). In the context
of density functional theory it was first successfully used by

Nalewaski and Parr to derive the atom in molecule methodol-
ogy proposed by Hirshfeld [80]. More recently, besides the
local hardness [75], Farnaz et al. [81–84] exhaustively inves-
tigated the properties and extensions of this definition.

In our case, to find an equation for a local electrophilicity,
ω(r), we can use the initial distribution, q(r), for the moment,
as an arbitrary known local electrophilicity, ω0(r). We have
then to look for the distribution p(r) that minimizes D(p, q)
under the restriction that

∫p rð Þdr ¼ ω ð39Þ

Then, one has to find the distribution p(r) that is most
similar to the distribution ω0(r) in the sense of the Kullbach-
Leibler divergence. Therefore, one has to minimize the fol-
lowing functional

Ω ¼ ∫p rð Þln p rð Þ
ω0 rð Þ dr−λ ∫p rð Þdr−ω� 	 ð40Þ

where λ is the Lagrange multiplier associated with the restric-
tion of Eq. (39). By doing the minimization one finds that

p rð Þ ¼ ωω0 rð Þ
∫ω0 rð Þdr ð41Þ

Now, one has to choose, in an arbitrary way, the function
p(r). One simple choice, inspired by Eq. (39) is to say that
p(r) = ω(r). However, in this case the formula for the local
electrophilicity (Eq. (41) with ω(r) instead of p(r)), has no
local information about the real molecule. Therefore, it seems
better to choose p(r) = ω(r)f(r). This way, one has for the local
electrophilicity that

ω rð Þ ¼ ω ω0 rð Þ
f rð Þ∫ω0 rð Þdr ð42Þ
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This equation is very similar in structure to the one some of
us proposed for the local hardness [75].

Now, one has to choose a model distribution where one
knows the functionω0(r). Ifω0(r) is based on an approximated
model forω, then the resulting localω(r) will be chosen so that
ω(r) f(r) in the true system is as close as possible to ω(r) f(r)
in the model. The simplest choice is the noninteracting homo-
geneous electron gas,

ω0
HEG ¼¼

1
2 3π2ð Þ23ρ2

3

� �
2
3 3π2ð Þ23ρ−1

3

2

¼ Cρ
5
3 ð43Þ

with the resulting

ω0 rð Þ ¼ Cρ rð Þ53 ð44Þ

The final expression for the local electrophilicity is then

ω rð Þ ¼ ω CF

TTF C
ρ rð Þ53 ð45Þ

where TTF is the Thomas-Fermi kinetic energy and CF is
the Thomas-Fermi kinetic energy constant. As a result,
this local electrophilicity is proportional to a power of
the density and will have maxima at the position of the
nuclei. Therefore, it does not seem to be a good candidate
to measure the electrophilicity power of chemically sig-
nificant regions of a molecule. A similar conclusion is
obtained when a similar procedure is used to obtain a
local hardness based on the noninteracting homogeneous
electron gas [75].

To go further we will now use the same procedure to
get a condensed version of the local electrophilicity.
Now, the distribution to be minimized will be
pk = ωkfk, where fk is the condensed Fukui function
[50–54]. The restriction is now ω ¼ ∑

k
ωk f k and the

function to minimize is

Ω ¼ ∑pk ln
pk
p0k
−λ ∑

k
pk−ω

� �
ð46Þ

The simplest choice for the reference distribution
seems to be the atomic electrophilicity, p0k ¼ ω0

k . In this
way, one obtains for the local condensed electrophilicity
that

ωk ¼ ω

f þ
k

ω0
k

∑
l
ω0
l

ð47Þ

so that the regional information about the reactivity is
captured by the condensed Fukui function f þk , where
the subindex k indicates the kth atom in the molecule.

Local electrophilicity within the finite-temperature
grand-canonical formalism

We have already seen that an alternative to define a local
electrophilicity is to use available expressions for local chem-
ical potential and for local hardness. In addition to the ones
described previously, one may consider expressions that have
been recently developed by Franco et al. [67] within a finite
temperature framework of the density functional theory of
chemical reactivity [49, 66–68].

In order to develop the temperature dependent expressions
for the chemical reactivity descriptors one makes use of the
grand canonical formalism, in which the molecule under con-
sideration is considered to be very diluted in the solvent (the
electrons reservoir). In this context, one may consider the
molecule as an open system that may exchange electrons with
the solvent, and the independent variables are the chemical
potential of the bath, μBath, the temperature, T, and the external
potential.

Thus, by making use of an ensemble formed by the
ground states of the systems with N0 − 1, N0, and N0 +
1, where N0, an integer, is the number of electrons of
the molecule of interest, it has been established that the
local electronic chemical potential, μeT(r), when inte-
grated over the whole space leads to the global elec-
tronic chemical potential, μe, given by [67].

μeT rð Þ ¼ −
1

2
IP f − rð Þ þ EA f þ rð Þð Þ

þ IP f − rð Þ−EA f þ rð Þð Þ Nh i−N0ð Þ
2 α

− f þ rð Þ− f − rð Þð Þ IP−EAð Þγ−1

ð48Þ

where the subscripts e and T stand for electronic and
temperature, respectively, 〈N〉 is the average number of
electrons, so that (〈N〉 − N0) represents the fractional
charge,

Nh i−N 0 ¼ exp β EAþ μBathð Þ½ �−exp −β IP þ μBathð Þ½ �
1þ exp β EAþ μBathð Þ½ � þ exp −β IP þ μBathð Þ½ �

ð49Þ

α ¼ Nh i−N0ð Þ2 þ 4 1− Nh i−N0ð Þ2
� �

exp −β IP−EAð Þ½ �
� �1=2

ð50Þ
and

γ ¼ 4þ eβ IPþμBathð Þ þ e−β EAþμBathð Þ ð51Þ

β = 1/kBT, kB is Boltzmann’s constant, and the Fukui func-
tions are given by Eqs. (12) and (13).

Associated with this local chemical potential, a local hard-
ness has been defined [67] through the expression

245 Page 6 of 12 J Mol Model (2018) 24: 245



ηeT rð Þ ¼ IP f − rð Þ−EA f þ rð Þ

þ Nh i−N0ð Þ
2

IP−EAð Þ f þ rð Þ− f − rð Þð Þ ð52Þ

When this local hardness is integrated over the whole
space, it leads to a global hardness ηeT = IP − EA, which, as
mentioned before, Parr and Pearson have shown [10] corre-
sponds to the value of the second derivative of the energy with
respect to the number of electrons obtained when one makes
use of a smooth quadratic interpolation of the energy between
the systems with N0 − 1, N0, and N0 + 1 electrons.

By analogy with the definition of a local electrophilicity in
terms of a local chemical potential and a local hardness, Eq.
(35), one can define the temperature-dependent electrophilic-
ity as:

ωeT rð Þ ¼ μeT rð Þð Þ2
2ηeT rð Þ ð53Þ

which depends on the variables μBath and T that are indepen-
dent of the system, (〈N〉 −N0), which appears explicitly in the
expressions for the chemical potential, and the hardness de-
pends on μBath and T, according to Eq. (49). Thus, to make the
local electrophilicity independent of μBath and T, it is conve-
nient to take the limit when T→ 0 and to consider, as in the
original definition of electrophilicity, an idealized electron
reservoir with zero chemical potential (μBath = 0) such that
the fractional charge (〈N〉 −N0) is positive (the system gains
electrons). However, the relation between μBath and (〈N〉 −N0)
in the limit T→ 0 is not a smooth function but a sequence of
step functions (see Fig. 1) with (〈N〉 − N0) restricted to the
interval (−1,1). In the limit T→ 0 (β→∞), (〈N〉 − N0) is
positive and equal to 1 whenever μBath > − A. In other words,
setting μBath = 0 or μBath ¼ lim

x→−Aþ
x yield in both cases that

(〈N〉 −N0) = 1. Nevertheless, the final expression for the local
electrophilicity will depend on the value chosen for μBath.

Here, we choose μBath = 0 and take the limit of Eq. (53) when
T→ 0 (β→∞) and (〈N〉 −N0)→ 1, which results in the fol-
lowing expression for the local electrophilicity,

ωμB¼0
T−>0 rð Þ ¼ EAð Þ2 f þ rð Þ2

EAþ IPð Þ f − rð Þ þ IP−3EAð Þ f þ rð Þ ð54Þ

Equation (54) seems appealing as a definition of local elec-
trophilicity because as in the case of Eqs. (21) and (23), it
carries information of both Fukui functions. In this case it
may be interpreted as a consequence of the grand canonical
ensemble: although overall a system gains electrons, there is
always a fluctuation in N and information on how the system
losses electrons should be present, which is the case of the
f−(r) in the denominator. Nevertheless, this brings several in-
conveniences into the definition of the local electrophilicity: i)

ωμB¼0
T−>0 rð Þ does not integrate to the global electrophilicity or to

a unique function of I and A [85]. ii) ωμB¼0
T−>0 rð Þ could diverge

because the denominator is not exempt to cancel out. We
foresee two ways in which this could happen. In the case of
neutral planar molecules it is common that f−(r) is negative

around the nodal plane of π orbitals, which makes ωμB¼0
T−>0 rð Þ

indeterminate in the places where (A + I)f−(r) = (3A − I)f+(r).
In the case of cations, which is the case of most electrophiles,
an extra reason for indetermination is the fact that (I − 3A) can
easily be negative because the electron affinity of a cation is of
the same order of magnitude as the ionization potential [11].

iii) As a consequence of the reasons given in ii), ωμB¼0
T−>0 rð Þ

could be negative; although this is also possible for
ω(r) = ωf+(r) because f+(r) can be negative, though very
rarely.

Results

In order to make a comparison of the different expressions for
the local electrophilicity presented in previous sections, we
will consider first, for simplicity, the cases when the Fukui
functions may be condensed to atoms [50–54]. These include
the expressions given by Eqs. (14), (37), and (47). Equation
(47) is already expressed in terms of the condensed Fukui
function, while in all the rest one has to replace f +(r) by
f þ
k , and f −(r) by f −

k , where appropriate. We do not recom-
mend condensing Eq. (54) due to the presence of the Fukui
functions in the denominator, and the fact that it does not
integrate to the global quantity.

Now, according to the relationship found by information
theory, Eq. (47), an atom in a molecule will be a good elec-
trophilic site when the free atom electrophilicity is high and
the condensed Fukui function at this site is low. We are aware
that sites with a small condensed Fukui function could be

Fig. 1 Fractional charge of a molecule as a function of the chemical
potential of the bath for high finite temperature
β ¼ 10E−1

0 ; T≈30000 K
� 	

and for close to room temperature
β ¼ 1000E−1

0 ; T≈300 K
� 	
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problematic because generally the hydrogen atoms in a mole-
cule are the ones with lowest value of the condensed Fukui
function, and they are certainly not the most reactive. Here, we
summed the condensed value of the Fukui function of hydro-
gen atoms to the heavy atom they are bonded to, and elimi-

nated the hydrogen atoms in the summation ∑
l
ω0
l in Eq. (47).

Thus, we applied Eqs. (14), (37), and (47) to a set of eth-
ylene derivatives that act as dienophiles showing an electro-
phile character in Diels Alder cycloaddition reactions with
dienes that show a nucleophile character [55]. In the cases
presented, the most electrophilic site corresponds to the car-
bon atom bonded to only hydrogen atoms, which is identified
in this study as C2, the other carbon atom in the double bond
identified as C1, is the one to which the different substituents
considered in this study are bonded.

The electronic structure of the molecules considered was
calculated with the program Gaussian09 [86], with the Kohn-
sham method [1, 87] using the functional B3LYP for the ex-
change correlation energy approximation [88–92], and the
basis set 6–311++G(d,p). The ionization potential and the
electron affinity were determined through energy differences,
IP ¼ EN0−1−EN0 and EA ¼ EN0−EN0þ1, and from these the
chemical potential, the hardness and the global electrophilicity
were determined from Eqs. (4), (5), and (6), respectively. The
condensed Fukui functions were calculated by the response-
of-molecular-fragment approach [54] using finite differences

between the atomic charges of the systems of interest (N0) and

its Banion^ (N0 + 1) for f þ
k ¼ qN0

k −qN0þ1
k or its cation (N0 −

1) for f −
k ¼ qN0−1

k −qN0
k , as previously mentioned the subin-

dex k indicates the kth atom in the molecule. The charges were
calculated fitting the electrostatic potential [93], CHelpG, or
using the natural population analysi [94], NPA.

The results are shown in Table 1. One can see that the
expression established by Chattaraj et al., Eq. (14), leads to
the correct description in all the cases considered because the
condensed electrophilicity at C2 is always greater than the one
at C1. The same situation applies to Eq. (37); however, in this
formulation, the differences between the values for C2 and C1
are smaller in some cases and larger in others. On the other
hand, the description provided by Eq. (47), which comes from
information theory, leads to the opposite values in most cases,
since C1 shows a greater condensed electrophilicity than C2.

In the case of Eq. (54) we chose two examples to show how

the spatial distribution of ωμB¼0
T−>0 rð Þ looks. The first one is the

diphenylmethyl cation. In Fig. 2 one can see that ωμB¼0
T−>0 rð Þ

wrongly predicts that the carbon bearing the formal positive
charge (C+) has a negative electrophilicity (blue in Fig. 2a).
However, this molecule is a textbook example of a
carbocation that prefers to react with nucleophiles through
the C+ despite the delocalization of charge by resonance with

the aromatic fragments. Besides, ωμB¼0
T−>0 rð Þ is positive (red in

Fig. 2a) only close to one of the three carbon atoms of the

Table 1 Condensed local
electrophilicity for a selected set
of dienophiles involved in Diels-
Alder reactions in eV

Molecule Site Eq. (14) Eq. (37) Eq. (47)

CHelpG NPA CHelpG NPA CHelpG NPA

1,1dicyanoethylene C1 0.326 0.329 0.327 0.320 1.839 1.826

C2 0.589 0.681 0.598 0.647 0.702 0.731

nitroethylene C1 −0.113 0.074 −0.106 0.048 40.683 3.637

C2 0.602 0.517 0.552 0.466 0.728 0.884

acrolein C1 −0.023 0.109 −0.020 0.081 2.049 1.237

C2 0.335 0.460 0.320 0.405 0.371 0.379

acrylonitrile C1 0.191 0.288 0.227 0.286 1.415 1.331

C2 0.394 0.549 0.424 0.520 0.683 0.458

methyl vinyl ketone C1 −0.031 0.116 −0.019 0.088 8.688 1.606

C2 0.394 0.400 0.343 0.345 0.491 0.586

methyl acrylate C1 0.123 0.185 0.121 0.184 1.893 1.114

C2 0.359 0.451 0.369 0.406 0.451 0.488

ethylene C1 −0.924 0.106 −0.535 0.219 1.324 1.324

C2 −0.924 0.106 −0.535 0.219 1.324 1.324

acetylene C1 −0.674 0.144 −0.348 0.266 1.425 1.425

C2 −0.674 0.144 −0.348 0.266 1.425 1.425

methyl vinyl ether C1 −0.393 0.002 −0.264 0.030 −12.039 1.945

C2 −0.373 0.049 −0.141 0.141 1.019 2.308

dimethylvinyl amine C1 −0.457 −0.007 −0.344 −0.006 −0.737 −25.825
C2 −0.065 0.031 0.060 0.107 0.765 5.653
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Fig. 3 a) Isosurfaces of the denominator of the ensemble local

e l e c t r o p h i l i c i t y ωμB¼0
T−>0 rð Þ, Aþ Ið Þ f − rð Þ þ I−3Að Þ f þ rð Þ ¼ 5�

10−6eV=a30. Small values of the denominator of ωμB¼0
T−>0 rð Þ are

indicatives of regions where ωμB¼0
T−>0 rð Þ tends to diverge. b) negative-

valued isosurface of the denominator of ωμB¼0
T−>0 rð Þ, Aþ Ið Þ f − rð Þþ

I−3Að Þ f þ rð Þ ¼ −5� 10−3eV=a30. c) Chattaraj’s local electrophilicity
ω f þ rð Þ ¼ 1:5� 10−2eV=a30. d) Isosurface of the numerator of

ωμB¼0
T−>0 rð Þ, A2 f þ rð Þ2 ¼ 5� 10−5eV2=a60 colored according to the values

of the denominator of ωμB¼0
T−>0 rð Þ. The color code is such that dark blue

corresponds to −5� 10−3eV=a30 and dark red to 5� 10−3eV=a30

Fig. 2 a) Isosurfaces of the local electrophilicity ωμB¼0
T−>0 rð Þ ¼ �1

�10−2eV=a30, Eq. (54), Red corresponds to positive values and
blue to negative ones. The surfaces in gray are the separatrixes
of negative and positive values. b) Chattaraj local electrophilicity

ω f þ rð Þ ¼ 1� 10−2eV=a30, Eq. (14). The separatrixes of a) are
also shown. Fukui functions where computed using the frozen
core approximation, and IP and EA where evaluated using the
Koopmans’ approximation
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aromatic rings that could bear a positive charge in the Lewis
resonant structures. Also, note that the negative isosurfaces
(blue) are abruptly cut by separatrixes. This is indicative of

regions where ωμB¼0
T−>0 rð Þ diverges, for instance, at the carbon

next to the C+. Contrarily, Chattaraj’s local electrophilicity
ωf+(r) (Fig. 2b) nicely recovers the correct regioselectivity of
the diphenylmethyl cation because it takes its maximum value
close to the C+, and it is also large in the three carbons of the
aromatic rings that could bear a positive charge.

The second example is the neutral electrophile 1,3,5-
trinitrobenzene (see Fig. 3). Despite being a neutral molecule,
the electron affinity of this electrophile is still a large fraction
of the ionization potential (3A = 1.3 I). Hence, the inconve-
niences ii) and iii) still apply to this case. Namely, the denom-
inator takes very small values in chemically significant re-

gions of the molecule (Fig. 3a), which makes ωμB¼0
T−>0 rð Þ di-

verge or extremely difficult to evaluate in a finite grid. Also,
note that the denominator takes negative values (Fig. 3b)
where it holds, approximately, that f+(r) > 7.6f−(r). That is,

when ωμB¼0
T−>0 rð Þ < 0 it becomes proportional to the negative

of f+(r), and the molecule is predicted to be less electronega-
tive where ωf+(r) predicts the opposite (Fig. 3c). This time the

divergence of ωμB¼0
T−>0 rð Þ made it impossible to compute accu-

rate isosurfaces of it. However, to illustrate the structure of

ωμB¼0
T−>0 rð Þ, in Fig. 3d we plotted an isosurface of the numerator

of ωμB¼0
T−>0 rð Þ (A2 f þ rð Þ2 ¼ 5� 10−5eV2=a60 ) colored accord-

ing to the values that take the denominator of ωμB¼0
T−>0 rð Þ in a

range from −5� 10−3eV=a30 (dark blue) to 5� 10−3eV=a30
(dark red). The pale blue color (which is exactly zero) indi-

cates that in those regions ωμB¼0
T−>0 rð Þ tends to diverge from

below. However, those regions include just the ortho carbons
that are expected to be the most electrophilic atoms.

Conclusions

In order to discuss the concept of local electrophilicity, we
considered several approaches. Thus, we analyzed the original
proposal of Chattaraj et al. and presented two alternative pro-
cedures to derive the expression. We also connected the recent
approaches [61, 64] related with the description of the local
electrophilicity in terms of the electron density into one for-
mulation that leads to a local electrophilicity with the same
units as the one proposed by Chattaraj et al., but that intro-
duces f −(r) in addition to the natural Fukui function for
charge acceptance f +(r). On the other hand, to explore other
possibilities for this important concept, we derived an expres-
sion for the condensed electrophilicity based on information
theory, and we also considered the temperature dependent
approach, through the use of a local chemical potential and a
local hardness.

The poor results obtained for the last two approaches lead
us to conjecture that the reasonmay be associated with the fact
that the global electrophilicity is not a derivative of one of the
Taylor series of the energy or any thermodynamical potential
because certainly these two approaches have been successful-
ly applied to describe other reactivity indicators.

In summary, it seems that the best way to obtain a local
version of the electrophilicity is using Chattaraj’s suggestion,
which is the simplest one, and it has been mathematically
motivated by two different approaches in the present work.
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