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Abstract

The Hellmann-Feynman theorem has, with a few exceptions, not been exploited to the degree that it merits. This is due, at least in
part, to a widespread failure to recognize that its greatest value may be conceptual rather than numerical, i.e., in achieving insight
into molecular properties and behavior. In this brief overview, we shall discuss three examples of significant concepts that have
come out of the Hellmann-Feynman theorem: (1) The forces exerted upon the nuclei in molecules are entirely Coulombic in
nature. (2) The total energies of atoms and molecules can be expressed rigorously in terms of just the electrostatic potentials at
their nuclei that are produced by the electrons and other nuclei. (3) Dispersion forces are due to the attractions of nuclei to their
own polarized electronic densities. To summarize, energy and force analyses should not be viewed as competitive but rather as

complementary.

Keywords Hellmann-Feynman theorem - Coulombic forces - Chemical bonding - Electronic densities - Energies - Electrostatic

potentials at nuclei - Dispersion forces

The unappreciated Hellmann-Feynman
theorem!

The Hellmann-Feynman theorem has an illustrious albeit
somewhat complicated lineage, which includes three Nobel
Laureates. The key relationship was reported by Schrodinger
in one of his landmark 1926 papers [1], by Giittinger in 1932
[2] and by both Pauli [3] and Hellmann [4] in 1933. Feynman
presented it, apparently independently, in 1939 [5]. It was
Hellmann [6] and Feynman [5] who arrived separately at
one of the best known consequences of the theorem, which
is presumably why their names are attached to it.

Over the years, the approval rating of the Hellmann-
Feynman theorem has fluctuated wildly. In a 1945 paper,
Coulson and Bell concluded that it was invalid [7];
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however, Berlin rescued it in 1951 [8], demonstrating that
it was their argument that was invalid. He also showed
how the theorem could be used to obtain insight into
bonding forces in molecules, an approach that Bader et
al. followed successfully a few years later [9-11]. In
1962, Wilson used the theorem to derive an exact formula
for molecular energies [12]. Nevertheless, Musher
claimed in 1966 that many find the theorem to be “too
trivial to merit the term ‘theorem’ [13]. Yet only six
years later, no less an authority than Slater proclaimed
the Hellmann-Feynman theorem to be one of the “two
most powerful theorems applicable to molecules and
solids” [14], the other being the virial theorem.

Overall, the Hellmann-Feynman theorem has not received
the respect that it deserves. Fernandez Rico et al. commented
in 2005 that “the possibilities that it opens up have been
scarcely exploited, and today the theorem is mostly regarded
as a scientific curiosity” [15]. Deb had already concluded
nearly 25 years earlier that “the apparent simplicity of the H-
F theorem had evoked some skepticism and suspicion” [16].
We agree with Deb, and note the irony in the fact that simplic-
ity arouses suspicion, given the observations of Newton
(“Nature is pleased with simplicity.”) and Einstein (“Nature
is the realization of the simplest conceivable mathematical
ideas.”) [17].
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We suggest that the real power of the Hellmann-Feynman
theorem is, at present, more conceptual than numerical. In this
brief overview, we shall point out some significant insights to
which it has led, despite the “flaw” of being lamentably
straightforward.

Derivations

Consider a system having a Hamiltonian operator H with a
normalized eigenfunction ¥ and energy eigenvalue E; then
HV = EV¥ and accordingly E = <W*H|¥>. If A is any param-
eter that appears explicitly in the Hamiltonian, then,

oE 0
3= o (VH) (1)
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Since the operator H is Hermitian, we can rewrite the third
term on the right side of Eq. (2),
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and since HV = EV,
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The first and third terms on the right side of Eq. (4) add up
to zero,
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so that Eq. (4) becomes,
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Equation (6) is what Levine has called the “generalized
Hellman-Feynman theorem” [18]. (This term has also been
applied to various extensions of Eq. (6) [19-21].)
While the derivation of Eq. (6) may appear to be deplorably

simple, this is somewhat deceptive, and even as eminent a
theoretician as Coulson could be misled. Equations (1) and

(6) show that,
cH
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Since H can be expressed in terms of the kinetic energy
operator T and the potential energy operator V, H=T + V, then
Eq. (7) might seem to imply that analogous equations can be
written for T and V separately. Coulson and Bell argued that
the analogues of Eq. (7) for T alone and V alone would not be
valid [7], and that is correct:
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)
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)

Their error was in not recognizing that Eq. (7) does not in
reality imply the T and V analogues. As pointed out by Berlin
[8], the derivation of Egs. (6) and (7) relies on the fact that W is
an eigenfunction of H; it is not an eigenfunction of either T or
V and so the transition from Eq. (3) to Eq. (4) could not be
made for either T or V as the operator.

Prior to 1937, Eq. (6) had already been obtained by
Schrédinger [1], Giittinger [2], Pauli [3], and Hellmann [4],
and perhaps by others as well. However it was Hellmann in
1937 [6] and Feynman in 1939 [5] who arrived at its most
famous (or infamous) formulation. For a system of nuclei and
electrons within the Born-Oppenheimer approximation, the
Hamiltonian is,
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In Eq. (9), R, and Ry are the positions of nuclei A and B
and r; and r; are the positions of electrons i and j. Atomic units
are used throughout this paper. Let the parameter in Eq. (6) be
a coordinate of nucleus A, e.g., x4; then,

x_(y
ox A

Since the gradient of an energy is the negative of a force,
Eq. (10) will give the x-component of the force felt by nucleus
A.

The first, second, and fifth terms on the right side of Eq. (9)
do not explicitly depend upon the nuclear coordinates; hence,
their derivatives in Eq. (10) are zero. Performing the differen-
tiations indicated in Eq. (10) for the remaining two terms of
Eq. (9), and doing this for each coordinate of A (see Feynman
[5] or Levine [18]), will yield the gradient of E at R and thus
the negative of the force exerted upon nucleus A:

o
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The negative of the first term on the right side of Eq. (11) is the
force on nucleus A due to the other nuclei, and the negative of
the second term is the force due to the electrons.

Equation (11) is the key result. It is just the generalized
Hellmann-Feynman theorem for a particular choice of A, but
to distinguish it from the more general Eq. (6), it has some-
times been called the “electrostatic theorem” [11, 15, 18].

What is the significance of Eq. (11)? It is said, in
Feynman’s words [5], that “the force on any nucleus
(considered fixed) in any system of nuclei and electrons
is just the classical electrostatic attraction exerted on the
nucleus in question by the other nuclei and by the elec-
tron charge density distribution for all electrons.” Thus,
Coulomb’s Law is sufficient to explain the bonding in
molecules, complexes, etc. All that is needed is the elec-
tronic density distribution (which can be obtained exper-
imentally as well as computationally) and the positions
and charges of the nuclei. The Hellmann-Feynman theo-
rem, in the form of Eq. (11), can in fact be regarded as a
forerunner of the Hohenberg-Kohn theorem [22], which
shows that the electronic density alone determines all of
the properties of a system of nuclei and electrons, even
the electrical potential of the nuclei.

Equation (11), expressing the Coulombic force felt by a
nucleus in a molecule or complex, could certainly be written
by someone with no knowledge of the generalized Hellmann-
Feynman theorem, Eq. (6), or even of quantum mechanics. So
what function does Eq. (6) serve in this context? It establishes
the quantum-mechanical credibility of Eq. (11), by relating it
directly to the Schrédinger equation.

Hellmann-Feynman theorem
and approximate wave functions

The derivation of the generalized Hellmann-Feynman theo-
rem, Eq. (6), relied explicitly upon the wave function ¥ being
an eigenfunction of the Hamiltonian operator. In practice,
however, the wave functions are almost invariably approxi-
mate, and therefore not eigenfunctions. Can Eq. (6) still be
valid? A second and independent question is, for an approxi-
mate electronic density, how accurate is the force obtained by
Eq. (11)?

The validity of Eq. (6) for approximate wave func-
tions was addressed quite a few years ago by a number
of studies, summarized very well by Deb [19]; see also
Epstein [23]. Deb cites significant contributions made by
Coulson, notwithstanding the latter’s earlier concern
about the Hellmann-Feynman theorem. These various
studies showed that a number of different types of ap-
proximate wave functions, including true Hartree-Fock,
do satisfy Eq. (6), despite not being eigenfunctions of
the Hamiltonian operator. However, this does not

necessarily mean that they will give accurate forces via
Eq. (11); for approximate wave functions this is a sepa-
rate issue from satisfying Eq. (6).

The accuracy of the force by Eq. (11) depends upon
the quality of the electronic density that is used.
According to the Mpller-Plesset theorem [24], Hartree-
Fock electronic densities are correct to the first-order.
However, this can be misleading; second-order correc-
tions can sometimes be quite significant [25]. Forces are
in particular very sensitive to a proper description of
inner-shell polarization, due to the 1/rp2 dependence of
the force [19, 26].

Deb pointed out that a very demanding test of the
accuracy of a computed electronic density is the degree
to which it meets the condition that the net force upon
each nucleus as computed by Eq. (11) is zero at equilib-
rium [19, 27]. Applying this to a series of hydrogen
fluoride calculations is illustrative [28]. For electronic
densities from minimal-basis-set SCF wave functions,
the electronic forces exerted upon the hydrogen nucleus
(which has no inner shell) were given quite well, with
deviations from the zero force criterion of just 1.5-2.8%.
Extended-basis-set near-Hartree-Fock densities gave even
better results, the deviations being 0.4-0.6%. For the
forces exerted upon the fluorine nucleus (which does
have inner shell electrons), the situation was very differ-
ent. The minimal-basis-set electronic densities gave al-
most no net electronic force upon the fluorine nucleus,
i.e., deviations of nearly 100%! Furthermore, the two
extended-basis-set densities yielded very different results;
one deviated from the zero force criterion by 26%, the
other by only 3.4%. The latter electronic density was
clearly more accurate, even though the energies differed
by just 0.0004 au and the one giving the greater devia-
tion actually had the lower energy! (This shows again
that a lower energy does not necessarily imply better
values for other properties.)

To summarize this section, the Hellmann-Feynman the-
orem proves that the force felt by a nucleus in a real
system is the resultant of the Coulombic attraction of the
electrons and the Coulombic repulsion of the other nuclei.
That concept is correct, regardless of the particular wave
function that may be used to describe the system.
Equation (11) is the exact expression of these forces.
The accuracy of the result that is obtained with Eq. (11)
in any specific case depends solely upon how well the
electronic density and the nuclear positions are represent-
ed. The preceding example shows that any generalizations
with respect to the density must be made with caution,
since the forces are so sensitive to it. A good option for
evaluating the quality of the electronic density would
seem to be to follow Deb’s suggestion [19], and test
how close to zero the net force is upon each nucleus.
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Applications to chemical bonding

Equation (11) indicates that a purely Coulombic interpretation
suffices to explain covalent and noncovalent bonding. This is
highly disturbing to many theoreticians. What about such
time-honored quantum-mechanical concepts as exchange,
Pauli repulsion, orbital interaction, correlation, etc.?

To a large extent, such concerns reflect a failure to distin-
guish between mathematical modeling and physical reality.
Exchange and Pauli repulsion reflect the requirements that elec-
trons be indistinguishable and the wave function antisymmetric.
They are very important in arriving at a good approximate
solution to the Schrodinger equation and hence electronic den-
sity; however, they do not correspond to physical forces [8, 14,
18, 29, 30]. Correlation refers to the instantaneous repulsions
between electrons and thus is part of the total Coulombic inter-
action. Orbitals are simply mathematical constructs, a useful
means of expressing a wave function. They are not physically
real [31], nor is their overlap. It is essential to distinguish — as
did Schrédinger [32] — between the mathematics that produces
the wave function, which itself has no physical significance,
and the electronic density, which does. To quote Levine, “there
are no ‘mysterious quantum-mechanical forces’ acting in mol-
ecules” [18]. (For a good relevant discussion, see Bader [33].)

In 1951, Berlin examined the bond-strengthening or bond-
weakening effects of electronic charge in various regions
within a molecule [8]. Figure 1 illustrates the basic idea in
simplified fashion. Consider a diatomic molecule AB with
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Fig. 1 Bond-strengthening or bond-weakening effects of a charge Q at
different locations in a molecule AB. Forces are not drawn to scale. (a)
Bond-strengthening. (b) and (c) Bond-weakening if Fg, > F4,, bond-
strengthening if F5, > Fp,
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nuclear charges Z, and Zg, and an element of electronic
charge Q at distances r, and rg from the nuclei. Q exerts an
attractive force upon each nucleus, the components of which
along the z-axis are, by Coulomb’s Law,

~ QZxcos0a

FA,Z - 2 B,z
A

~ QZgcosbp

3 (12)

Iy

In Fig. 1(a), Fs , and Fg , are clearly pulling the two nuclei
together; thus, the effect of Q is bond-strengthening. In Fig.
1(b), Fg_, is likely to be larger than F, , due to rg being much
less than ra, in which case Q is pulling nucleus B away from A
and thus is bond-weakening. However, if Z, is considerably
greater than Zg, and depending also upon the magnitudes of
04 and O, then F4 , could be larger than Fg,, and the result
would be to pull nucleus A toward B, i.e., bond-strengthening.
In Fig. 1(c), it is yet more plausible that Q could have either
effect, depending upon the relative magnitudes of the nuclear
charges and the angles.

Berlin [8] and subsequently Bader et al. [9-11] formalized
and quantified the preceding type of analysis, and Bader et al.
in particular applied it to a variety of molecules. For other
approaches that relate electronic densities and Coulombic
forces to chemical bonding, see Fernandez Rico et al. [15,
34] and Hirshfeld and Rzotkiewicz [35]. Correlations have
been reported, for diatomic molecules, between intramolecu-
lar forces and dissociation energies [11, 35].

Such reasoning can be quite useful even qualitatively. For
instance, the relative bond lengths and vibration frequencies
indicate that the bond in CO" is stronger than in CO [36]. Why
is that? It can be explained quite readily [37] by noting that the
most energetic electrons in CO are in the carbon lone pair.
Their effect, as discussed in relation to Fig. 1, is to pull the
carbon away from the oxygen, which weakens the bond.
When one of them is lost, in forming CO*, then this bond-
weakening effect is diminished and the bond is strengthened.

Applications to calculating energies

From classical physics, a force is the negative gradient of an
energy. Accordingly, as Slater pointed out [14], one could in
principle calculate the energy of a system by integration of Eq.
(11) — however, this would require a knowledge of the elec-
tronic density for arbitrary positions of the nuclei.

Another approach was taken by Wilson [12]. The starting
point was the molecular Hamiltonian, as in Eq. (9). A key step
was the introduction of a general scaling parameter A such that
the charge on any nucleus A is Z,” = AZ,, where Z4 is the true
nuclear charge on atom A. A can vary between 0 and 1. In the
actual molecule A = 1, so that Z,* = Z,. Introducing A allows
all of the nuclear charges to vary in a concerted manner be-
tween 0 and their real values.
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Equation (9) thus becomes,
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Then according to Eq. (6),
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In Eq. (14), the number of electrons N is to be held constant.

Note that A serves two purposes: First, it allows Eq. (6) to
apply simultaneously to all of the nuclei. Second, since A is
continuous between 0 and 1, it avoids the problem that would
arise if E were being differentiated with respect to a nuclear
charge, which can only have integer values and thus is non-
continuous. (There is continuing controversy over defining
the chemical potential as OE/ON [38], since N is also not
continuous.)

Integrating both sides of Eq. (14) between A =0 and A = 1
produces Wilson’s formula [12], Eq. (15).
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The quantity in brackets in Eq. (15) is simply V. g,o(A),
the electrostatic potential at nucleus A due to all of the elec-
trons,

(16)

Accordingly, Eq. (15) can also be written as,
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For a single atom with nuclear charge Z and located at R,
an analogous procedure gives Eq. (18).
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Equations (15), (17), and (18) are exact formulas for mo-
lecular and atomic energies. Applying them rigorously en-
counters the problem that evaluating the integrals requires
knowing the electronic density as a function of A, with the
number of electrons being held constant.

However Egs. (15), (17), and (18) are of considerable sig-
nificance conceptually. They demonstrate, surprisingly, that
molecular and atomic energies can be expressed exactly in
terms of only the electronic electrostatic potentials at the nu-
clei, which are one-electron properties, and the nuclear
charges and positions. Interelectronic repulsion, a two-
electron property that has traditionally been a key problem
in quantum chemistry, is not explicitly mentioned; it is evi-
dently taken into account by the integration over A.

In drawing attention to the key roles of electronic electro-
static potentials at nuclei (a purely Coulombic property), Egs.
(15), (17), and (18) stimulated a great deal of further analysis,
including the derivation of a variety of approximate atomic
and molecular energy expressions. For reviews, see Levy et al.
[39] and Politzer et al. [40, 41]. In this context, it is important
to note that while Hartree-Fock electronic densities are correct
to the first-order [24], the electrostatic potentials at nuclei are
correct to the second-order [39, 42]. Levy et al. have exploited
this to derive some remarkably accurate formulas for atomic
energies and energy differences, including even atomic corre-
lation energies, obtained from Hartree-Fock electrostatic po-
tentials at the nuclei [43].

Dispersion interactions

As an example of the suspicion with which the Hellmann-
Feynman theorem is viewed can be mentioned the long-
standing failure to accept Feynman’s interpretation of what
are known as dispersion interactions, e.g., between two xenon
atoms, in spite of the evidence that supports it. These weak
nonbonding attractions have historically been described as
arising from fluctuating induced dipoles, as in structure 1 be-
low [44, 45]. Feynman’s explanation, on the other hand, was
that the electronic charge of each xenon atom is slightly po-
larized toward the other, structure 2, and that it is “the attrac-
tion of each nucleus for the distorted charge distribution of its
own electrons that gives the attractive 1/R” force” [5]. In phys-
ical terms, the two interpretations (1 vs. 2) are obviously quite
different, even though they both lead to the 1/R” dependence
of the force.

Y. G (ALY CRERY (A
1 2

Feynman’s argument has been confirmed by several sub-
sequent studies [27, 46—49] . Investigations of the computed
electronic density in the Ar—Ar complex [50-52] indicate
polarization of the electronic charge of each atom toward the
other, as predicted by Feynman [5] and depicted in structure 2.
All of this is in full agreement with Feynman’s interpretation.
Nevertheless, dispersion interactions continue to be widely
attributed to fluctuating dipoles.

@ Springer
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Discussion and summary

The generalized Hellmann-Feynman theorem, Eq. (6), has
often been criticized on the grounds that it is only valid for
the exact wave function. We find this criticism puzzling. First
of all, the same statement could be made about the
Schrédinger equation, yet it is the foundation of quantum
chemistry. Second, it is not true that only exact wave functions
satisfy Eq. (6); as mentioned above, some types of approxi-
mate wave functions (e.g., Hartree-Fock) do so as well.

Equations (6) and (11) prove the key concept that, in phys-
ical reality, the forces felt by the nuclei in molecules and other
systems are entirely Coulombic. This physical fact is indepen-
dent of whatever wave function may be used to describe a
system. Equation (11) is the rigorous expression for these
forces in terms of Coulomb’s law, however one may in prac-
tice obtain the electronic density.

Evaluation of these forces typically requires approxima-
tions, as does nearly everything else in quantum chemistry.
An approximate wave function is generally used to obtain
the electronic density for Eq. (11), and unfortunately the
resulting forces are very sensitive to any inadequacies in the
wave function, more so than is the energy [19, 23, 26, 46].
Accordingly, it is often preferred to use the negative gradients
of the approximate energies rather than Eq. (11) to determine
forces in molecules, as in geometry optimizations invoking
the zero net force criterion for equilibrium [26]. However, this
does not alter the basic fact that the forces on the nuclei are
purely Coulombic and that Eq. (11) is their rigorous
formulation.

For the exact wave function, and therefore exact electronic
density, Eq. (11) and the negative of the energy gradient must
of course give the same results, but they come from different
spatial regions in the two cases [26]. They may therefore differ
significantly for approximate wave functions. This is illustrat-
ed by the fact that wave functions for optimized geometries
that meet the zero net force criterion using energy gradients
typically do not give zero net forces by Eq. (11); see, e.g.,
Kern and Karplus [28].

The focus of quantum chemistry has traditionally been up-
on energy. These efforts have been enormously successful. We
suggest that the proper role of the Hellmann-Feynman theo-
rem, at present, is not in that area but rather in the development
of insight and understanding. In this paper, for example, we
have discussed three important concepts that have come out of
the Hellmann-Feynman theorem:

(1) The forces felt by the nuclei in molecules, complexes,
etc. are purely classical Coulombic. Given an accurate
electronic density and geometry, quantum mechanics has
no further role.

(2) The energies of atoms and molecules can be expressed
rigorously in terms of just the electronic electrostatic

@ Springer

potentials at their nuclei, which are one-electron proper-
ties dependent only upon the electronic density, and the
nuclear charges and positions. This is fully in accord with
the Hohenberg-Kohn theorem [22].

(3) The forces in dispersion interactions arise from polariza-
tion such as is depicted in 2. Both 1 and 2 give the R™’
dependence of the forces but physically they are the op-
posite of each other. 2 is supported by considerable
evidence.

There are certainly more examples, such as the use of mo-
lecular electrostatic potentials to interpret intermolecular inter-
actions, pioneered by Scrocco and Tomasi [53, 54] and now so
widespread (e.g., [55, 56]). This is clearly an application of the
Hellmann-Feynman theorem.

We suggest that energies and forces not be viewed as alter-
natives but rather as complementary. Again quoting Deb [19],
“we should do well to employ both the energy and the force
formulation in our studies of molecular structure and dynam-
ics. The former approach would generally provide more accu-
rate numbers, while the latter should provide a simple unified
basis for developing physical insights into different chemical
phenomena.” This statement was made many years ago, but it
seems to still be generally valid.
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