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Abstract
We propose some methods for quantifying the reliability of coarse-grained representations of displacement vectors of normal
mode vibrations. In the framework of our basic theory, the original displacement vectors are projected onto a lower-dimensional
(i.e., a coarse-grained) space. Four types of functions denoted fidelity indices were introduced as measures of the similarity of the
original to the restored displacement vectors. These indices were applied to several hydrogen-bonded homodimers, and the
behavior of each index was examined. We found that a coarse-grained representation with high reliability resulted in the accurate
restoration of properties such as eigenfrequency, modal mass, and modal stiffness.

Keywords Molecular vibration . Coarse graining .Molecular assembly . Normal mode analysis . GFmatrixmethod

Introduction

Among the vibrational modes of molecular assemblies such
as dimers, clusters, and crystals, low-frequency (LF) vibra-
tional modes are of considerable importance in terahertz
absorption [1–5], Raman scattering [6–9], and resonant
two-photon ionization [10–12]. These methods provide a
great deal of information about intermolecular forces
concealed in translational and librational motions of mole-
cules. If the constituent molecules are sufficiently rigid, the
LF vibrations can be represented as the relative displace-
ments of rigid bodies and are virtually separate from high-
frequency intramolecular vibration modes [13, 14]. In mol-
ecules containing flexible moieties, some intramolecular
vibrations may couple with intermolecular motions [15].
The contributions of inter/intramolecular components to
LF vibrations are of considerable importance in crystal
structure prediction [16, 17]. Several methods of modal
analysis that explicitly account for coupling effects among
inter/intramolecular vibrations have been proposed [3, 5,
18–20]. However, strict atomistic models often face

problems relating to the computational cost of the associat-
ed calculations.

Previously, we proposed a universal formulation for
coarse-graining LF vibrational modes that incorporated
contributions from inter/intramolecular vibrational cou-
pling [21–23]. In the framework of our formulation, an
atomic displacement vector (3N dimensions for a mole-
cule containing N atoms) is represented by a linear ex-
pansion in a lower-dimensional space (a coarse-grained
space) spanned by a basis set corresponding to inter/
intramolecular motions, namely three translations, three
rotations, and some (a maximum of 3N − 6) intramolec-
ular vibrations per nonlinear molecule. The coefficient of
linear expansion can be regarded as a component in an
internal coordinate system that determines its own repre-
sentation of the stiffness constants and inertial loads of
the constituents. In principle, we can restore information
about the original vibrations, namely the atomic displace-
ment, modal stiffness, modal mass, and eigenfrequency.
However, if the basis set of the coarse-graining space is
inadequately selected, some essential details will be lost,
so the results of that calculation may be erroneous [22].
In other words, the quality of the basis set can be eval-
uated by measuring the similarity of the restored data to
the original data. In this study, we propose four such
indices for quantifying the reliability of coarse-grained
representations of inter/intramolecular vibrations. We ap-
ply these measures to several hydrogen-bonded dimers
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and compare their characteristics. We then consider the
best index to use according to the type of information to
be restored.

Theory

The normal mode motion of a molecular assembly composed
of N atoms is represented as a displacement vector ci with 3N
dimensions, where i identifies either the zero-frequency
modes (three translations i = 1, 2, 3; three rotations i = 4, 5,
6) or Btrue^ vibrations (i = 7, 8, ..., 3N). A full-displacement
matrixC contains ci as the ith column vector. By definition, ci
is normalized but not necessarily orthogonal to another col-

umn vector. Here, we select a non-square (3N × n) matrix ~C
that contains n columns (implicitly including zero-frequency
modes and LF vibrational modes) from C, where n is the
number of LF-mode vectors to be coarse-grained and equals
the dimension of the coarse-grained space.

~C is converted to a mass-weighted displacement (MWD)

matrix ~W by a diagonal matrix M containing atomic masses.

In Eq. 1, ~wi, the ith column vector of ~W, is normalized using
matrix L, the square root of the modal mass matrix L2.

~W ¼ M1=2 ~CL−1 ð1Þ

L2 ¼ ~CTM~C ð2Þ

To fulfill Eq. 3, a coarse-grained displacement matrixΞ is

defined that involves ~B, a non-square (3N × n) coarse-graining
matrix detailed in previous papers [21, 22]. In the present

work, some improvements are made in the definition of ~B
(see the BAppendix^).

Ξ ¼ Γ~BTM~C ð3Þ

Matrix Γ is the inverse of the inertial load matrix Γ−1,
which is named by analogy with the matrix G−1 in the GF
method [24].

Γ−1 ¼ ~BTM~B ð4Þ

Using the inertial load matrix Γ−1 in the given coarse-
grained coordinate system, Ξ is converted to the coarse-
grained MWD matrix U. In Eq. 4, each column vector of U
is normalized using matrix Λ, the square root of the modal
mass matrix Λ2. We then have the following representations
for the given coordinate system (which are somewhat similar
to those for the Cartesian coordinate system, Eqs. 1 and 2):

U ¼ Γ−1=2ΞΛ−1 ð5Þ

Λ2 ¼ ΞTΓ−1Ξ: ð6Þ

The modal mass matrix Λ2 is largely identical to L2 when

the transformer ~B is chosen appropriately. The MWD matrix
in the original coordinate system is then approximately re-
stored to the full-dimensional mass-weighted displacements
by the following equation:

W ¼ M1=2~BΓ1=2U: ð7Þ

The restored MWD matrix W contains wi as the ith col-
umn, which is normalized but not necessarily orthogonal to
another column.

We define a correlation matrix R as the product of ~WT and

W; therefore, its component Rij is the inner product of ~wi and
w j.

R ¼ ~WTW ð8Þ

By definition,Rwill be a unit matrix ifW is identical to ~W.

To quantify the similarity between ~W and W, we define four
types of fidelity indices (F1 to F4) as follows:

F1 ¼ 1

n
tr Rð Þ ð9Þ

F2 ¼ ∏
n

i¼1
Rii

� �1
n

ð10Þ

F3 ¼ ∏
n

i¼1
Rii ð11Þ

F4 ¼ det Rð Þ ð12Þ

According to the original formulation, the reverse transfor-
mation ofΩ (an eigenfrequency matrix) using U and Γ gives
the stiffness matrix Φ. The element Φij in the stiffness matrix
is a force constant with respect to the given coarse-grained
internal coordinate system:

Φ ¼ Γ1=2UΩ2UTΓ1=2 ð13Þ

The matrix Φ also includes an error originating from the

selection of the coarse-graining matrix ~B. Therefore, the diag-
onalization of Γ−1/2ΦΓ−1/2 does not need to yield
eigenfrequencies identical to the original ones. Here, we de-

fine the reproduced eigenfrequencymatrix asΩ, which fulfills
the following eigenvalue equation:

Γ1=2ΦΓ1=2U ¼ Ω2U ð14Þ

Computational details

We examined six hydrogen-bonded homodimers of formic
acid, acetic acid, trichloroacetic acid, formamide,
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formamidine, and urea (Fig. 1). We chose three carboxylic
acids from our previous study [22], and added three new com-
pounds in order to check the applicability of our method to
nitrogen-containing hydrogen-bonding systems. The geome-
tries of the monomers and dimers were optimized at the
Hartree–Fock level of theory with the 6-311G(d, p) basis set
in order to maintain continuity with our previous studies [21,
22]. Although we are aware that this level of theory is not
sufficient for supramolecular systems, the present method
does not depend on the level of calculation. Using the opti-
mized geometries, normal mode analysis was performed at the
same level of calculation. These molecular orbital calculations
were performed using the Gaussian 09 W [25] suite of pro-
grams. The displacement vectors and frequencies of the nor-
mal mode vibrations were obtained from the output files and
applied in subsequent calculations performed by a coarse-
graining program developed in-house in order to determine
stiffness constants and the four fidelity indices. The displace-
ment vectors of the molecules were visualized using Jmol
ver.14.4.0 [26].

Results and discussion

According to the definitions given in the BTheory^ section,

the indices F1 to F4 will be 1 ifW and ~W are identical and will
be <1 if these matrices are different from each other. F1 and F2

are the arithmetic and geometric means of Rii, respectively, so
F1 is always larger than F2. Therefore, F2 is a more severe
criterion than F1. As n increases, F2 underestimates the local

mismatch betweenW and ~W, whileF3, the nth power ofF2, is
the severest criterion. In addition to the similarity between ~wi

and wi, F4 takes into account the orthogonality between ~wi

and w j (i ≠ j). As a result, F4 is considered to be the most
severe criterion among the four indices.

Figure 2 compares the four fidelity indices F1 to F4 as
functions of the coarse-graining dimension n. The component
ΦTx,Tx, corresponding to translation along the x-axis, is also
included in each plot as a representative of the set of intermo-
lecular stiffness constants. Except for a few data points, F1 and

F2 varied within a narrow range between 0.95 and 1, suggest-

ing that a discrepancy between the columns of ~W andW was
averaged over the dimension n. Thus, F1 and F2 can be un-
derstood as indicators of the average similarity between the
original vectors and the restored vectors. The variations in F3

and F4 show similar behavior within the range between 0.6
and 1, a muchwider range of variation than seen for F1 and F2.
This behavior is reasonably explained from the character ofF3

and F4 that are approximately a product of all the similarity
between ~wi and wi. Thus, F3 and F4 can be understood as
indicators of the completeness of the restored vectors.

Among the four fidelity indices, we can see that F3 and F4

commonly show alternating behavior as a function of n: the
values obtained at odd n are lower than those obtained at even
n. This phenomenon is caused by the symmetries of the mo-
lecular systems. In the case of the formic acid dimer, for ex-
ample, when going from the coarse-graining dimension n = 12

to n = 13, we need to add a newMWD vector to construct a ~W
matrix composed of six zero-frequency motions (translation
and rotation) and seven vibrations. The 13th column (~w13 )
corresponds to the seventh vibrational motion, which is char-
acterized as in-phase coupling of the intramolecular bending
motions of O–C=O moieties (Fig. 3a). To coarse-grain this

motion, the coarse-graining matrix ~B needs to contain dis-
placement vectors corresponding to the symmetric combina-
tion of the bending motions of O–C=Omoieties. In this study,

however, each column vector in ~B is defined to represent the
intramolecular motion of each molecule in the dimeric system
(see the BAppendix^). This procedure means that the coarse-
graining of ~w13 requires two vectors corresponding to the
bending motions of the respective molecules. Specifically,

we need at least 14 columns in ~B to adequately compress

the dimension of ~w13. This augmented ~B matrix can also ad-
equately compress the dimension of ~w14, the MWD vector of
the eighth vibrational mode, which is characterized as
antiphase coupling of the bending motions of O–C=O moie-
ties (Fig. 3b). These considerations explain the rapid increases
in the fidelity indices at n = 14. Similarly, the vibrational mo-
tions corresponding to two sequential columns are in-phase
and antiphase couplings of intramolecular vibrations, which

Fig. 1 Structures of the
hydrogen-bonded dimers studied
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accounts for the alternating behavior of the fidelity indices in
Fig. 2a. The alternating behaviors of F3 and F4 for the other
molecular dimers can be explained in a similar manner. In
view of these results, we can propose a threshold for these
fidelity indices: 0.8. Below this value, the intramolecular

vibrational motion(s) in ~B would be insufficient to express
the vibrations of the molecular system. In contrast, this type
of error does not seem to be notable for F1 and F2.

In Fig. 2b, c, f, there are some disturbances of this alternat-
ing behavior, implying inconsistency in the vibrational
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Fig. 2 a–f The four fidelity indices (left-hand y-axes) versus the coarse-
graining dimension, as calculated for molecular dimers of a formic acid, b
acetic acid, c trichloroacetic acid, d formamide, e formamidine, and f

urea. Stiffness constants corresponding to x-axis translation (right-hand
y-axes) are superimposed
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motions between a monomer in a dimer and an isolated mono-
mer. For the acetic acid dimer (Fig. 2b) and trichloroacetic
acid dimer (Fig. 2c), the stiffness constants obtained with
n = 12 and 13 are unnaturally low (0.0 and 7.9, respectively;
data points not shown), implying that coarse-graining of the
molecular vibration was conducted inadequately. This error is
known to occur due to a lack of displacement vectors corre-
sponding to intramolecular vibration modes (libration of the

methyl group) in the ~Bmatrix under these computational con-
ditions [22]. As compared to those seen at higher n, the fidelity
indices at these dimension values are rather low: F1 and F2 are
lower than 0.95 and F3 and F4 are only 0.0–0.5. These results
suggest that the absence of an intramolecular vibrational mo-
tion that contributes to the vibration of the whole molecular

system results in severe decreases in the fidelity indices. In
some cases, such severe decreases in fidelity indices occur si-
multaneously with an anomaly in the trend for the stiffness
constant. However, for most coarse-graining dimension values,
the stiffness constant shows a stepwise increase with increasing
n. As described elsewhere, the stiffness constants calculated
under low-dimension coarse-graining conditions are apparent
stiffness constants (Φapp), which are normally smaller than the
actual ones (Φinter) due to modulation caused by coupling with
the internal elasticity of the constituent molecules [22, 23].
Based on simple four-body models, we formulated a relation-
ship between the height of the stepwise increase and the intra-
molecular stiffness constant (Φintra). According to this formula-
tion, an erroneous evaluation of the step height will severely

(a) (b)
Fig. 3 a–b Atomic displacement
vectors for a the seventh and b the
eighth normal-mode vibrations of
the formic acid dimer
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Fig. 4 a–f Restored frequency corresponding to stretching of the intermolecular bond as a function of the coarse-graining dimension for molecular
dimers of a formic acid, b acetic acid, c trichloroacetic acid, d formamide, e formamidine, and f urea
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compromise the accurate evaluation of the intramolecular stiff-
ness constant. The present study provides a rational criterion for
choosing the coarse-graining dimension with which the calcu-
lation can yield an adequate value of Φapp. If we adopt a thresh-
old for F4 of 0.8, we can designate the minimum reliable di-
mension for the coarse-graining of formic acid, formamide,
formamidine, and urea dimers as 12, and that for acetic acid
and trichloroacetic acid dimers as 14. These values depend on
the degrees of freedom of the LF molecular motion.

We examined the eigenfrequencies reproduced from the
stiffness constants and inertial loads with respect to the
given coarse-grained internal coordinate system (Eq. 14).
Figure 4 shows the wavenumber νj (in cm−1) calculated

from an element of Ω corresponding to an intermolecular
stretch mode (jth) vibration, in which the contribution from
antisymmetric translation of the two monomers is predom-
inant. As can be seen from this figure, the frequencies are
nearly constant across a wide range of n (dimension)
values, although there are some anomalies at positions
where the fidelity indices decrease significantly (n = 36
and 37 for acetic acid and n = 30 and 31 for trichloroacetic
acid; see Fig. 2). The reproduced frequencies are nearly
identical to those obtained with full-dimensional calcula-
tions (i.e., without coarse-graining) at the minimum reliable

dimension or higher. These results clearly show that with
respect to the given coordinate system, the ratio of the stiff-
ness constant to inertial load is adequately maintained irre-
spective of the coarse-graining dimension. We examined
the modal masses calculated using Eq. 6. Figure 5 shows
the values of λj

2, the jth diagonal elements ofΛ2 calculated
in the coarse-graining space, for various dimension values.
Except the data for the trichloroacetic acid dimer, the values
are almost constant over a wide range of n. A stepwise
increase at n = 24 for trichloroacetic acid is probably con-
nected to the stepwise increase in ΦTx,Tx at the same dimen-
sion. Errors in the apparent stiffness seem to be compensat-
ed for by errors in the apparent inertial load when the fre-
quencies are reproduced using Eq. 14. The ideal modal
mass matrix is diagonal, but the real Λ2 is not. In previous
studies [21, 22], we approximated Λ2 to be diagonal when
obtaining the normalized U matrix (Eq. 4). However, the
above consideration suggests that an arbitrary modification
of Λ2 may cause unpredictable errors in the subsequent
computational procedure. Therefore, for all the calculations
in the present study, we used Λ2, as it is nondiagonal. As a
result, in contrast to our previous prediction [21], the be-
havior of the modal masses is not a good measure of the
completeness of the selected coarse-graining basis set.
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Fig. 5 a–f The modal mass corresponding to stretching of the intermolecular bond as a function of the coarse-graining dimension for dimers of a formic
acid, b acetic acid, c trichloroacetic acid, d formamide, e formamidine, and f urea
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Conclusions

We verified the reliability of our method of coarse-graining
intermolecular vibrations by quantifying the fidelity of the
restored MWD vectors. We proposed four fidelity indices F1

to F4, each of which measured the similarity between the
original and restoredMWDvectors in different ways. Of those
four indices, F4, the determinant of the product of the two
MWD matrices, was the most severe criterion, and we tenta-
tively proposed an index value of 0.8 as the lowest value that
would indicate reliable coarse-graining calculations. When
this criterion was applied, the minimum reliable dimension
for the molecular dimers was found to be 12 or 14, depending
on the degrees of freedom of the LF molecular motion. In
contrast to an apparent dependence of the stiffness constants
on the coarse-graining dimension n, the eigenfrequencies and
the modal masses were not very sensitive to n. These findings
suggest that coarse-graining analyses using our method are
useful for deriving the effective stiffnesses of intermolecular
forces, facilitating the efficient calculation of LF-mode vibra-
tions for large systems such as molecular crystals or
biomacromolecules. A formulation for calculating LF pho-
nons using coarse-grained force constants is now being pre-
pared and will be published elsewhere.
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Appendix: Definition of the coarse-graining
matrix

Based on our previous formulation, we can write matrix ~B to
transform the atomic displacement vectors of an X-meric mo-
lecular assembly from a Cartesian to an internal coordinate
system as Eq. A1. Provided that the constituent molecules

are nonlinear, matrix ~B is composed of B°
m; representing

twelve basic motions, including six translational modes (Tx,
Ty, Tz) and six rotational modes (Rx, Ry, Rz). bm is a set of
vibrational motions selected from the first to the (3Nm − 6)th
normal mode, where m designates the constituents I, II, ..., X.

~B ¼
B°
I 0 0 0 bI 0 0 0
0 B°

II 0 0 0 bII 0 0
0 0 ⋱ 0 0 0 ⋱ 0
0 0 0 B°

X 0 0 0 bX

0
BB@

1
CCA ðA1Þ

To construct an appropriate ~B matrix, we need to choose
the set of vectors bm that best represents the intramolecular
vibrational motions, as extracted from the results of normal
mode analysis for the constituent in its isolated state.
However, there is a slight difference between the optimized

structure of a constituent in its isolated state and its optimized
structure in a molecular assembly. To reduce errors resulting
from this discrepancy, we adopted a method to adjust the
molecular orientation, namely arranging the principal axes of
inertia (a, b, c) of a constituent molecule in its isolated state to
coincide with those in the molecular assembly. Under this

coordination setting, submatrix B°
m cannot be uniquely deter-

mined, but there is an arbitrariness with respect to the defini-

tion of the rotating axes. Even though matrix ~B is not neces-

sarily orthogonal, the MWD vectors (columns inM1/2~B ) will
be orthogonal when the rotational axes of a constituent coin-
cide with its principal axes of inertia, and only then will Γ−1 =
~BTM~B become diagonal. Even when they do not coincide
with each other, the definitions of the axes of translation (x,
y, z) and rotation (a, b, c) do not influence the reliability of
coarse-graining. We should note that the parameters obtained
(stiffness and inertial load) are represented based on the given
coordinate system and designated as matrix elements like
components (Tx, Tx) or (Ra, Rb). Similar attention should be
paid when we construct the Cmatrix. The first six columns of
C cannot be uniquely determined, but there is an arbitrariness
with respect to the definition of the axes of rotation. The
MWD vectors (columns in W =M1/2C) are orthogonal to
each other only when the rotational axes of the molecular
assembly coincide with the principal axes of inertia.
Although the definitions of the axes of translation and rotation
do not affect the result of the coarse-graining calculation, the
orthogonality of W influences matrix R and hence the maxi-
mum values of the fidelity indices F1 to F4.

For example, the matrix for a dimeric molecular system is
given by

~B ¼ B°
I 0
0 B°

II

bI 0
0 bII

� �
ðA2Þ

In our previous studies [21–23], we used ~BCi specified for a
molecular dimer with Ci symmetry. However, this treatment

does not greatly affect the result because ~BCi and ~B are con-
nected by the following relation:

~BCi ¼ 1ffiffiffi
2

p B°
I B°

I
B°
II −B°

II

bI bI
bII −bII

� �
¼ ~BPCi ðA3Þ

using the symmetry-adapted transformation PCi composed of
the (6 + v) × (6 + v) unit matrix E (v is the number of intramo-
lecular vibrational modes included in the basis set):

PCi ¼ 1ffiffiffi
2

p E E
E −E

� �
ðA4Þ

If we use ~B to obtain the various matrices (stiffness, inertial
load, displacement, and mass-weighted displacement), the pa-
rameters are designated as matrix elements like (Tx, Tx) and
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(Ra, Rb) components. Using the PCi matrix, we can transform
them to the corresponding values for a given coordination
system such as the Ci-specific coordination system in which
the parameters are designated like (Tx – Tx, Tx – Tx) or (Ra +
Ra, Rb – Rb) components:

ΦCi ¼ PCi
TΦPCi ðA5Þ

ΓCi
−1 ¼ PCi

TΓ−1PCi ðA6Þ
ΞCi ¼ PCi

TΞ: ðA7Þ

Using an appropriate transformation matrix P, we can also
redefine the directions of the x, y, and z axes in order to con-
veniently clarify the physical meaning of an obtained param-
eter (e.g., the stiffness of a specific hydrogen bond). In the
present study, we defined the xy plane as the least-squares
plane of the four atoms participating in the double hydrogen
bond and the x-axis as the average of two hydrogen-bonding
vectors projected onto the xy plane. Since the obtained param-
eters of stiffness are represented based on a non-symmetry-
adapted coordinate system, those corresponding to translation
along the x-axis are designated ΦTx,Tx.
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