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Abstract Population analyses are part of the theoretical
chemist’s toolbox. They provide means to extract information
about the repartition of the electronic density among mole-
cules or solids. The values of atomic multipoles in a molecule
can shed light on its electrostatic properties and may help to
predict how different molecules could interact or to rationalize
chemical reactivity for instance. Not being physical observ-
ables to which a quantum mechanical operator can be associ-
ated, atomic charges and higher order atomic multipoles can-
not be defined unambiguously in a molecule, and therefore,
several population schemes (PS) have been devised in the last
decades. In the context of density functional theory (DFT), PS
based on the electron density seem to be best grounded. In
particular, some groups have proposed various iterative
schemes the outcomes of which are very encouraging.
Modern implementations of DFT that are for example based
on density fitting techniques permit the investigation of mo-
lecular systems comprising of hundreds of atoms. However,
population analyses following iterative schemes may become
very CPU time consuming for such large systems. In this

article, we investigate if the computationally less expensive
analyses of the variationally fitted electronic densities can be
safely carried out instead of the Kohn-Sham density. It is
shown that as long as flexible auxiliary function sets including
f and g functions are used, the multipoles extracted from the
fitted densities are extremely close to those obtained from the
KS density. We further assess if the multipoles obtained
through the Hirshfeld’s approach, in its standard or iterative
form, can be a useful approach to calculate interaction ener-
gies in non-covalent complexes. Relative energies computed
with the AMOEBA polarizable forced field combined to iter-
ative Hirshfeld multipoles are encouraging.

Keywords AMOEBA . Charges . deMon2k . Density
Fitting . Hirshfeld

Introduction

Electronic population analyses (PA) represent a powerful
means to connect the outputs of quantum chemistry computa-
tions to the chemical knowledge. Atomic charges may be
useful to rationalize chemical reactivity, for example to inves-
tigate substituent effects on an energy profile. Atomic charges
and higher order multipoles are also key quantities for molec-
ular mechanics force fields. The possibility to extract reliable
multipoles from quantum chemistry computations is actually a
topic of high interest for the development of second or third
generation force fields and hybrid QM/MM schemes [1–3].
Various quantum chemistry methodologies also rely on atom-
ic charges. For the sake of illustration let us mention
constrained density functional theory (DFT) whereby atomic
charges are imposed to some molecular fragments in order to
define diabatic states at the DFT level [4, 5]. Such diabatic
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states proved to be useful for modeling electron transfer pro-
cesses or charge transfers within non-covalent complexes [6].

It is actually well-known that there is no unique way to
define an atom in a polyatomic molecule, and hence to define
atomic charges. This is due to the fact that atomic charges are
not physical observables. Despite this ambiguity of atomic
charges, atom centered multipole expansions are rather reliable
if the problem of atomic multipole invariance is properly ad-
dressed. A convenient way to do so is the definition of cumu-
lative atomic multipole moments [7, 8]. These moments are
built up from atomic charges, which are invariant to coordinate
transformation. Because the convergence of the atom centered
multipole expansion depends on the quality of the underlying
atomic charges [9], population analyses are important ingredi-
ents for the development of atom centered multipole expan-
sions with only a limited number of expansion terms. A critical
point to any population scheme is to divide the real or function
space in order to distribute the electron density over the atoms.
It is customary to classify population schemes along various
categories. The Mulliken [10, 11] and Löwdin [12] approaches
as well as the more elaborated natural population analysis [13]
or natural bonding orbital (NBO) [14] analysis define atomic
charges by division of the function space spanned by the atomic
or molecular orbitals. Another family encompasses the Becke
[15], Hirshfeld [16], and Voronoi deformation density [17] ap-
proaches. These schemes are based on a real space partitioning
of the electron density itself. On-going efforts are deployed by
several groups to improve the quality of the charges produced
by these approaches [18–20]. For example iterative schemes
have been proposed such as the Hirshfeld-I [21], Hirshfeld-λI
[22], the fractional occupation Hirshfeld-I [23] or the
Stockholder-I methods [24]. We also mention the methods
where the charges are obtained through the integration of the
electronic density over topological basins of well suited func-
tions [25]. These functions may be the electronic density (the
Bader’s atoms-in-molecules theory [26]) or the electron locali-
zation function [25]. For the sake of completeness, we finally
mention methods like the Merz-Singh-Kollman scheme that
consists in the fit of the atomic charges so as to reproduce the
electrostatic potential created by the molecule [27–29]. These
methods have been abundantly employed to develop molecular
mechanics force fields like AMBER [30] or CHARMM [31].

In this paper, we focus on methods based on the real space
integration of the density in the context of DFT. These calcu-
lations have become the most used quantum chemistry ap-
proaches because they provide an excellent cost/quality ratio.
Indeed, modeling systems containing up to a few hundreds of
atoms are nowadays accessible by DFT. These performances
have become possible thanks to the development of ingenious
algorithms for solving the Kohn-Sham equations. In particu-
lar, methods resorting on fitted densities besides the Kohn-
Sham density (e.g., variational density fitting [32, 33] and
Cholesky decomposition of the density matrix [34]) permit

the elimination of the cumbersome evaluation of four-center
electron repulsion integrals.

Performing population analyses on optimized electronic
densities is usually not a CPU demanding task compared to
the self-consistent-field (SCF) procedure. However, if ite-
rative schemes are employed this task can be a computa-
tional bottleneck. This limitation can become critical for
systems comprising tens or hundreds of atoms, as com-
monly investigated by nowadays DFT approaches. One
possible strategy to overcome these potential limitations
is to develop more efficient parallelization and/or grid
techniques. An alternative, although not exclusive, ap-
proach is to perform analyses based on auxiliary function
densities instead of Kohn-Sham densities. Even though
this procedure seems rather straightforward, it must be ta-
ken into account that auxiliary densities, as obtained in
density fitting approaches, are not designed to mimic the
Kohn-Sham orbital density, but to provide a density from
which a mathematically simpler electron-electron repul-
sion energy term will be calculated, avoiding explicit
four-center-integrals. There is no guarantee that auxiliary
densities can be used in lieu of Kohn-Sham densities in
population analyses.

The objectives of this paper are twofold. First, we wish to
assess whether auxiliary densities are suited for population
analyses. By this, we mean extracting not only monopoles
(atomic charges) but also atomic dipoles and quadrupoles.
We have considered large sets of organic molecules in our
tests. Second, wewish to investigate the capabilities of various
populations schemes, including some of the most advanced to
produce electrostatic multipoles that may be used for interac-
tion energy calculations. Reliable schemes would then be
valuable for second or third generation force fields or for ac-
curate hybrid DFT/MM (molecular mechanics) approaches.
As an example, relative energies of different structures be-
tween a tryptamine molecule, a water molecule and a sodium
cation are computed with the AMOEBA [35, 36] force field
using multipoles extracted from DFT population analyses.

The article is organized in three parts. We first present the
new population schemes we have introduced in deMon2k.We
then report extensive benchmark calculations on sets of orga-
nic molecules. We finally report the performances of the pop-
ulation schemes to produce atomic multipoles that can be used
in the AMOEBA force field to reproduce structures and non-
covalent energies.

Population schemes

The population schemes described thereafter have been
implemented in a new version of the program deMon2k
[37]. They can be classified into two categories. The
first category refers to population analyses that define
atomic charges from the number of electrons belonging
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to each atom and its nuclear charge. The charge on atom
A reads:

QA ¼ ZA−NA ð1Þ

whereNA represents the number of electrons on atom A and ZA
its nuclear charge. In the second category the charge is defined
from a deformation density between the converged SCF den-
sity and a reference density.

QA ¼ NA−Nre f
A ð2Þ

Typically NA and NA
ref refer to the number of electrons of

atom A from the SCF electronic density and the so-called
promolecular density which is the superposition of non-
interacting atomic densities. The latter scheme will be called
deformation density analyses. In both approaches, NA is ob-
tained by numerical integration of the electronic density over a
grid of points

NA ¼
X

i

ρ rið Þωq rið ÞωA rið Þ ð3Þ

where the index i loops over grid points. We have chosen
Lebedev grids for the angular integration in combination with
an Euler-MacLaurin radial quadrature scheme. The here used
grids are identical to the default fixed grids in deMon2k for
coarse, medium, and fine integration accuracy. In the above
formula ωq collects all quadrature weights, angular and radial
ones, whereasωA is an atomic weight function for the real space
partition into atomic cells. Five variants have been implement-
ed in deMon2k. These are the Voronoi (V), Becke (B) [15],
Hirshfeld (H) [16], iterative Hirshfeld (IH) [21] and, finally, the
iterative Hirshfeld with fractional occupations numbers (IHFO)
[23] partition schemes. The Voronoi cell of atom A is defined
by all grid points that are closer to nucleus A than from any
other atom. Therefore, the ωA function takes the form:

ωV
A rið Þ ¼ 1 if ri−rAj j < ri−rXj j ∀ X≠A ð4Þ

ωV
A rið Þ ¼ 0 ri−rAj j > ri−rXj j ∀ X≠A ð5Þ

ri, rA and rX are the positions of grid point i and of nucleiA and
X, respectively. The Voronoi scheme renders a space division

by non-overlapping polyhedrons. The Becke atomic cells are
defined from the Voronoi cells by making them slightly over-
lapping [15]. This is achieved by introducing a smoothing
function to define fuzzy borders of cells.

ωB
A rið Þ ¼ PA rið Þ

X
X
PX rið Þ

ð6Þ

The cell functions PA(ri) and PX(ri) are defined by:

PA rið Þ ¼ ∏
B≠A

s μABð Þ ð7Þ
.

The Bsoft^ step function s(μAB) is obtained by a threefold
iteration of the polynom p μABð Þ ¼ 3

2μAB− 1
2μ

3
AB. The here

appearing elliptic coordinate,

μAB ¼ rA−rB
RAB

;

is defined in the local coordinate system of the atom pairA and
B as depicted in Fig. 1

For atom A ωA
B equals unity close to the nuclei but it rapidly

drops to zero when approaching the border of the Voronoi cell of
the atom. Both the Voronoi and Becke schemes are based on
geometrical considerations only. The chemical nature of the atoms
composing themolecule of interest never enters into the definition
of the atom cells, and then into the definition of the atomic
charges. As a consequence, these population schemes may pro-
duce atomic charges that are not satisfactory from a chemical
point of view. For example, charges on hydrogen atoms typically
take values around -0.5, simply because the Voronoi/Becke cells
of hydrogen atoms expand to half the length of the bonds inwhich
they are engaged. The H, IH, and IHFO schemes constitute im-
provements in that regard. For these three schemes, the integration
weights are functions of atomic reference densities, ρA

ref.

ωH
A rið Þ ¼ ρre fA rið Þ

X
X
ρre fX rið Þ

ð8Þ

The denominator in Eq. (8), ∑Xρ
re f
X , defines the so-called

promolecular density. There is some liberty to define the ρX
ref

Fig. 1 Elliptic coordinate
definition for Becke weight
calculation
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functions. In the standard Hirshfeld scheme, ρX
ref are the den-

sities of neutral atoms. Note that other choices are acceptable,
for example ρX

refmay be the densities of isolated ions. The non-
uniqueness of reference density is actually a drawback of the
standard Hirshfeld scheme. In deMon2k, ρX

ref are obtained by
performing SCF calculations of spherically averaged neutral
atoms. The ωA

H will be close to unity near atom A but will
progressively decay to zero when approaching other nuclei.
Note that another drawback of the standard Hirshfeld partition
is that atomic charges are generally close to zero.

To alleviate the inconvenience of the standard scheme, itera-
tive variants have been proposed [21]. In the IH scheme, one
chooses ρX

ref to be the density of an isolated atom X holding the
same number of electrons NX as the atom in the molecule (there-

after denoted ρre f ;NX
X ). In otherwords theωA

IH function, hence the
Hirshfeld cell of atom A, is adjusted iteratively so that both the
reference atom and the corresponding atom in the molecule have
the same number of electrons. This procedure has been shown to
minimize the loss of information when defining an atom in a
molecule according to the Shanon theory of information [21].
In the original article of the IH scheme, the authors proposed to

define ρre f ;NX
X by interpolation between electronic densities of

isolated ions, the electron numbers of which bracket NX.

ρre f ;NX
X ¼ ρfint Nxð Þ

X cint Nxð Þ−Nx½ � þ ρcint Nxð Þ
X Nx−fint Nxð Þ½ � ð9Þ

In this expression, fint(Nx) (resp. cint(Nx)) is the largest
(resp. smallest) integer less (resp. greater) than or equal to

Nx. Alternatively ρre f ;NX
X can be obtained by running a SCF

calculation for an ion holding Nx electrons. Note that Nx is
usually a non-integer number. Both variants have been tested
in deMon2k and showed to give very similar atomic charges.
We finally only kept the second variant based on atomic SCF
calculations with non-integer electron numbers because of its
simple straightforward definition.

The IHFO scheme represents an extension of the IH
scheme in which both alpha (ρα) and beta (ρβ) densities
are integrated separately [23]. Accordingly, NA

σ, ωA
σ and

ρ
re f ;Nσ

A
A become spin-specific. The reference ionic densities

are obtained as for the IH scheme by running SCF calcu-
lations in which the number of both alpha and beta num-
bers of electrons are imposed. Now the reference atom and
the corresponding atom in the molecule have the same
charges and spin charges. For closed-shell molecules, the
IH and IHFO schemes obviously are identical but they
should produce different charges for open-shell systems.
Another alternative for defining ρA

ref in Eq. (7) is the
IHDO-D scheme where the atomic dipoles are further im-
posed in the iterative procedure. We leave the introduction
of the IHDO-D scheme in deMon2k for future work.
Finally, we mention that ρA

ref may also be built from the den-
sities of reference molecular fragments, as shown for example

in [17]. We have already described such an implementation in
deMon2k [6].

Once atomic cells have been defined according to any of
the partition schemes defined above, atomic charges are easily
computed with Eqs. (1) or (2). Now, higher order moments
can be defined based on the atomic cells. For example, the
components of the "intrinsic" atom dipoles (μ) and quadru-
poles (Θ) can be calculated by:

μA
α ¼

X

i

ri;α−rA;α
� �

ρ rið Þωq rið ÞωA rið Þ ð10Þ

ΘA
αβ ¼

X

i

ri;α−rA;α
� �

ri;β−rA;β
� �

ρ rið Þωq rið ÞωA rið Þ ð11Þ

where rA,α are the components of the position vector of nucle-
us A.

All the electronic densities that have been introduced above
are obtained from the Kohn-Sham molecular orbitals (MOs).
In deMon2k, these MOs are expanded within the LCGTO
approximation (linear combination of Gaussian-type orbitals).
The corresponding density is given as:

ρ rð Þ ¼
X

μ;ν

Pμνμ rð Þν rð Þ ð12Þ

where Pμν is an element of the density matrix and μ, ν repre-
sent GTOs. Greek letters are used as indexes and also to label
the GTOs. In deMon2k auxiliary densities (denoted by ρ ) are
also introduced to reduce the scaling of the calculation of the
Coulomb interaction. The auxiliary density, ρ, is expanded as

a linear combination of auxiliary functions k :

ρ rð Þ ¼
X

k

x
k
k rð Þ ð13Þ

where xk are the so-called Coulomb fitting coefficients. In

deMon2k, the k are primitive Hermite GTOs [38]. The co-
efficients xk are obtained from the variational fitting of the
Coulomb potential as proposed by Dunlap [32, 33]. Because
we have at hand such auxiliary densities in DFT calculation
in deMon2k, we may expect them to be valuable to perform
population analysis in lieu of the Kohn-Sham density. The
fitted density may be used to calculate the number of elec-
trons for each atom by replacing ρwith ρ in Eqs. (1) or (2). It
can also be used to calculate the integration weights in-
volved in the Hirshfeld schemes. In both cases, one should
expect an important saving of computer time since the
Kohn-Sham density is expressed as a sum of products of
atomic orbitals whereas the fitted density is a simple linear
combination of auxiliary functions. Note that the number of
atomic orbital products greatly exceeds the number of aux-
iliary functions which are typically 3 to 5 times the number
of basis functions. Thus, significant computational savings
can be expected. Approximating the Hirshfeld weights
using the fitted density is certainly less dramatic than
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integrating this density itself instead of the Kohn-Sham den-
sity. In our implementation the Hirshfeld weights are always
calculated with \overset{\sim}{\rho} while the liberty is left to
the user to integrate either the Kohn-Sham, ρ, or fitted, ρ,
densities. To conclude this section, we stress that for deforma-
tion density analyses, although the fitted reference densities,

ρre fA , are used to calculate the integration weights, the Kohn-
Sham reference densities, ρA

ref, are used to calculate NA
ref.

Accuracy of population analyses

In this section, we assess the accuracy of population analysis
performed from the auxiliary function density within the
Becke, Hirshfeld (standard and iterative variant), and
Voronoi deformation density (VDD). To this end we consider
two sets of molecules. The first one is an ensemble of 66
organic molecules relevant to biological structures (thereafter
referred as S66). It contains C, H, N, and O atoms. The S66 set
of molecules has been reported recently by Řezác et al. in the
context of benchmarking computations of interaction energies
by quantum chemistry methodologies [39, 40]. Although the
present paper is not devoted to this topic, the S66 set still
provides a valuable ensemble of organic molecules to test
our population analysis implementation. The second set con-
tains 40 halogenated organic molecules, also provided by
Řezác and Hobza [41]. In total 105 organic molecules are
considered. These test sets encompass 987 H, 584 C, 70 N,
96 O, 2 S, and 74 halogen (X) atoms. We used the DZVP-

GGA (double zeta with valence polarization functions, cali-
brated for generalized-gradient-approximation functionals)
[42] basis set and the PBE exchange correlation functional
[43]. The XC energy and potential have been integrated nu-
merically on an adaptive grid of medium accuracy [44]. The
auxiliary density has been used to compute both the classical
Coulomb and XC potential following the so-called auxiliary
DFT (ADFT) framework [45]. Various auxiliary basis sets
have been considered. Auxiliary basis sets are generated by
an automatic procedure implemented in deMon2k that de-
pends on the atomic orbital basis set. The GEN-An auxiliary
function sets contain groups of auxiliary functions with s and
spd angular momenta. The index n determines the number of
auxiliary function sets, i.e., the number of these sets increase
with increasing n [42]. We have considered the GEN-A1,
GEN-A2, and GEN-A3 auxiliary function sets, as well as
the GEN-A2* that is supplemented by f and g auxiliary func-
tions. Numerical integrations involved in population analysis
have been carried out with fixed grids of medium accuracy.
For the iterative schemes the iterations were pursued until the
root-mean-square error was below 10-5.

We first consider atomic charges obtained by four popula-
tion schemes. We report the mean unsigned error (MUE) and
the maximum error (MAXERR) between atomic charges ob-
tained by analyzing the Kohn-Sham and the auxiliary density
in Figs. 2 and 3, respectively. For simplicity, we will refer to
them as the KS (BASIS) and auxiliary (AUXIS) charges. The
calculations are repeated for four sets of auxiliary functions.

Fig. 2 Mean unsigned error
(MUE) between atomic charges
(in atomic units) of the fitted
density with respect to KS density
analysis for four populations
schemes. The symbol X refers to
F, Cl, Br, and I atoms. Four
population schemes are
investigated (Becke, VDD,
standard Hirshfeld, and iterative
Hirshfeld) in combination with
four auxiliary basis sets (GEN-
A1, GEN-A2, GENA3, GEN-
A2*). Please note that different
scales are used for the graphs
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With the Hirshfeld schemes the differences between the KS
and auxiliary charges decrease when going from GEN-A1 to
GEN-A2. Passing to GEN-A3 does not guarantee a better
convergence. For the Becke and VDD schemes none of the
GEN-A1, -A2 or -A3 auxiliary function sets allow to match
the atomic charges obtained by integration of the KS density.
Similar conclusions can be drawn for the maximum errors
(Fig. 3). Note that the maximum errors with the GEN-A1
auxiliary function set can be quite large (0.3 e-). For any of
the four population schemes investigated here, it is the addi-
tion of angular flexibility in the auxiliary function set (i.e.,
GEN-A2*) that enables a significant decrease of the MUE
and of the maximum error. In conclusion the GEN-A2* aux-
iliary function set seems to offer an excellent accuracy close to
0.01 e- of the fitted density analysis compared to the KS den-
sity. On the other hand, auxiliary function sets comprising
only s and spd sets (GEN-An, n = 1, 2 or 3) should only be
used in population analyses of the fitted electronic densities if
qualitative results are aimed.

We now turn to the analysis of the intrinsic dipole mo-
ments. In Fig. 4, we report the root-mean-square-deviation
between the norms of the intrinsic dipole moments obtained
with the AUXIS and BASIS approaches. In Fig. 5, we report
the angles between the dipoles obtained with the two ap-
proaches. The atomic dipoles obtained with GEN-A1 are
clearly not reliable. In particular, the orientation of the dipoles
obtained from the integration of ρ or of ρ can be extremely

different (see Fig. 5). The situation is largely improved with
GEN-A2 or GEN-A3 both in term of the norms and orienta-
tions of the dipole moments. When using GEN-A2* the com-
parison is, as for atomic charges, much more satisfactory. In
most cases the RMSD between the dipoles obtained with both
approaches is below 0.01 D, while the orientation of the
AUXIS dipoles is below 1° from the BASIS dipoles.

Computational performances

In this section, we report the efficiency of our iterative
Hirshfeld population analysis implementation, which is the
most time consuming partition scheme here discussed. To this
end, we optimized the insulin molecule at the PBE/DZVP/
GEN-A2 level of theory employing ADFT. This molecule
contains 784 atoms (H, C, N, O, and S) and a total of 3078
electrons. The optimized geometry is depicted in Fig. 6.

For the optimized insulin structure, we performed IH anal-
yses of the KS (BASIS) and fitted (AUXIS) densities
employing a varying number of compute cores. The same
level of theory as for the structure optimization was used,
i.e., PBE/DZVP/GEN-A2. The resulting timings are depicted
in Fig. 7 as a function of the number of cores. All calculations
are performed with Intel® Xeon™ E5-2650v2 (2.6 GHz) 8
core CPUs with 4 GB RAM per core. To guide the eye the
individual data points in Fig. 7 are connected. As expected the
analysis of the fitted density is always significantly faster

Fig. 3 Maximum error between
atomic charges obtained through
the analyses of the auxiliary
density and the Kohn-Sham
density. The symbol X refers to F,
Cl, Br, and I atoms. Four
population schemes are
investigated (Becke, VDD,
standard Hirshfeld, and iterative
Hirshfeld) in combination with
four auxiliary basis sets (GEN-
A1, GEN-A2, GENA3, GEN-
A2*). Please note that different
scales are used for the graphs
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(factor of around 2) than the KS density. The scaling with
respect to the number of cores is rather satisfying. As Fig. 7

shows computational savings are still gained when passing
from 96 to 128 cores.

Fig. 4 Root mean square
deviation between the norms of
the intrinsic dipole moments (in
D) obtained with the AUXIS and
BASIS approaches. The symbol
X refers to F, Cl, Br and I atoms.
Four population schemes are
investigated (Becke, VDD,
standard Hirshfeld and iterative
Hirshfeld) in combination with
four auxiliary function sets (GEN-
A1, GEN-A2, GEN-A3, GEN-
A2*). Please note that different
scales are used for the graphs

Fig. 5 Average angle between
the intrinsic dipole moments
obtained with the AUXIS and
BASIS approach. The symbol X
refers to F, Cl, Br, and I atoms.
Four population schemes are
investigated (Becke, VDD,
standard Hirshfeld, and iterative
Hirshfeld) in combination with
four auxiliary function sets (GEN-
A1, GEN-A2, GEN-A3, GEN-
A2*). Please note that different
scales are used for the graphs
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To put the timings in Fig. 7 into perspective we note that the
structure optimization of insulin took around 1200 optimiza-
tion steps. This optimization required 3 weeks on 32 of the
above specified Xeon™ cores. Thus, the here reported timings
for the iterative Hirshfeld analysis are a small overhead to the
structure optimization. Because they scale similar to the SCF
and geometry optimization this relation holds also for larger
number of cores, e.g., the above shown 128 cores. In fact, in
the case of the insulin molecule the CPU time needed for the
iterative Hirshfeld analysis is only 2 to 3 times larger as for a
single point ADFT energy calculation. Therefore, the here
discussed population analysis implementation can be used
for larger systems that are of interest to biological chemistry
or material science.

Electrostatic interaction calculations with amoeba

In this section we wish to determine if the multipole distribu-
tion obtained from the population schemes described above
are suitable to calculate electrostatic interaction energies with-
in supramolecular complexes. Previous work showed that it-
erative approaches give atomic charges that better reproduce
the DFT electrostatic potential than non-iterative approaches
[46]. We use the Na+(Tryp)(H2O) complex to see the capabil-
ity of the various population schemes to produce multipole
sets in order to compute non-covalent interactions with the
AMOEBA polarizable force field. The tryptamine molecule
(Tryp) is derived from the tryptophan amino acid, the carbox-
ylic acid being replaced by a hydrogen atom, and classified as
a neurotransmitter. Four conformers have been selected from
the previous work of Nicely and Lisy (see Fig. 1 in ref. [47]
and Fig. 8). For structures A and B, the water molecule inter-
acts both with the sodium cation and the amino group, making
a hydrogen bond with the amino nitrogen. They differ mainly
by the orientation of the ethylamine side chain. In structure C,
the sodium cation is Bsandwiched^ between the water and the
amino group whereas in structure D, the water molecule is
acceptor of a hydrogen bond from the indole N-H.

This complex provides interesting structural pictures with
various electrostatic interactions such as charge-dipole,
dipole-dipole and polarization effects. The AMOEBA force
field was chosen for its high-level treatment of electrostatic
interactions by using a multipolar expansion up to quadru-
poles on each atom and an explicit iterative polarization term.
The multipoles have been computed following both IH and H
schemes for the isolated tryptamine and then defined in their
local atomic frame using the Orient program [48] to be used in
the framework of AMOEBA. The relative energies taking

Fig. 6 3D representation of the geometrically optimized insulin
molecule. Color code: H in white, C in green, N in blue, O in red, and
S in yellow

Fig. 7 Computational time for an iterative Hirshfeld analysis of insulin
employing the Kohn-Sham (BASIS) or fitted (AUXIS) densities as a
function of the number of compute cores

B

0.0 

-5.9

D

+

+

+4.9

34.4

C 

A 

Fig. 8 Calculated structures for the Na+(Tryp)(H2O) complex and M06-
2X relative energies (kJ mol-1)
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structure A as reference, computed at the M06-2X/TZVP [49]
level, are compared with the different atomic multipole sets
and the energetic errors are reported in Fig. 9.When extracting

multipoles from the KS density (BASIS), the error is found to
be small, in the range of the error from quantum chemistry
calculations ("IHGEN-A2*/A3* (BASIS)" histograms). If the

Fig. 9 Error (kJ mol-1) on the
relative energies of the four
conformers between M06-2X and
AMOEBA using the different
multipole sets. Conformer A is
taken as reference

Fig. 10 Main electrostatic contribution error as a function of relative
energies between M06-2X and AMOEBA using the different multipole
sets (kJ mol-1) for structure B (top, left), structure C (top, right), and
structure D (bottom, left). See text for details. Charge and largest dipole

component on N atom in the NH2 group as a function of relative energy
for C (bottom, right) between M06-2X and AMOEBA using the different
multipole sets (kJ mol-1)
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multipoles are extracted from the auxiliary density (AUXIS)
the error is still very small as long as GEN-A2* is used ("IH
GEN-A2* (AUXIS)" histograms). The errors associated with
multipoles obtained from auxiliary density may become large
when using the GEN-A2 function set ("IH GEN-A2
(AUXIS)" histograms). Finally, we find that the standard
Hirshfeld scheme is less accurate to reproduce such relative
energies than the iterative version in both BASIS or AUXIS
approaches.

Due to the various interactions involved in the different
structures, the errors to reproduce the relative energies should
come fromwrong specific energetic contributions. The graphs
in Fig. 10 represent the values of the main components of the
electrostatic energy and the total electrostatic energy for struc-
tures B, C, and D as a function of the error on the total energy
relative to structure A. For the three structures, the largest error
comes from the underestimation of the Na+-N(amino) interac-
tion whereas the energy for the Na+-O interaction remains
relatively constant. Furthermore, the water-N(amino) interac-
tion also plays a role in structure B and the water-N(indole)
one in structure D, with a less extent, respectively.
Furthermore, this effect can be easily correlated to the charge
and the x-component of the dipole moment of the nitrogen
atom of the amino group when they are reported as a function
of the energetic error for C. The large error for C in the IH
scheme using the GEN-A2 auxiliary basis can be explained by
a cumulative error on the charge and dipole moment on N and
the small value of the polarization energy (Fig. 10).

Consequently, the polarization energy of the structures can
be compared for the different multipole sets (Fig. 11). Even if
the effect is smaller than for the electrostatic component, this
term contributes to the non-covalent interactions. Let’s focus
on the IH first. When the GEN-A2 auxiliary function set is
used the AUXIS and BASIS give different polarization ener-
gies that may differ by several kJ mol-1. This is especially
noticeable for structure C for example. On the other hand we

obtain very similar polarization energies for each structures
when the GEN-A2* auxiliary function set is used (compare
the "IH GEN-A2* (BASIS)" vs. "IH GEN-A2* (AUXIS)"
data points). When considering the standard Hirshfeld
scheme, we find that polarization energies are significantly
larger. For example if we consider structure C, together with
the BASIS approach (taking GEN-A2*) the polarization en-
ergy goes from 65 kJ mol-1 to 85 kJ mol-1.

Conclusions

In this work we have been interested in the accuracy of pop-
ulation analyses based on fitted densities in the context of
DFT. The main conclusion of our study can be summarized
as follow. We found that fitted densities can actually be used
instead of the Kohn-Sham density to extract electrostatic mul-
tipoles from DFT calculations. However, the quality of the
auxiliary function sets to expand the fitted density has a great
impact on the results and should thus be considered with care
in applications. With standard sets comprising s and spd an-
gular momentum functions only qualitative agreement be-
tween the BASIS and AUXIS atomic charges is found.
Conversely, when using GEN-A2* (or GEN-A3*) the agree-
ment between both approaches is excellent for either atomic
charges or higher order multipoles. As seen in the case of
insulin, the AUXIS approach offers a significant reduction
of computational cost compared to the BASIS one. We finally
tested the capabilities of the extracted multipoles of the trypt-
amine system to provide sufficiently accurate interaction en-
ergy calculation with the AMOEBA force field. In that regard
the iterative Hirshfeld scheme represents a clear improvement
over the traditional Hirshfeld scheme. Good results have been
obtained with the IH scheme and GEN-A2* or GEN-A3*
auxiliary function sets. Overall these results encourage us to
pursue our ongoing efforts on the implementation of advanced

Fig. 11 AMOEBA polarization
energies (kJ mol-1) of the four
conformers using the different
multipole sets
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QM/MM schemes that include second and third generation
force fields in deMon2k [50, 51].
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