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Can Fe3+ and Al3+ ions serve as cationic bridges to facilitate
the adsorption of anionic As(V) species on humic acids? A density
functional theory study
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Abstract A computational chemistry investigation was un-
dertaken to shed light on the facilitatory role played by Fe3+

and Al3+ cations in the adsorption of anionic As(V) species by
humic acids through the formation of so-called cationic brid-
ges. Geometric and energetic parameters were obtained using
density functional theory at the B3LYP/6-31G(d,p) level in
conjunction with the polarizable continuummodel (to account
for the influence of bulk water). We found that, despite their
similar molecular geometries, the adsorption energies of the
As(V) species AsO4

3− and H2AsO
4− differ when Fe3+,

FeOH2+, Al3+, and AlOH2+ participate in the bridge. We also
found that effective adsorption of As(V) species by humic
acids strongly depends on whether the considered cationic
bridges are tightly coordinated by humic acids at the adsorp-
tion sites, as well as on the rigidity of these humic acid ad-
sorption sites.
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Introduction

According to the World Health Organization, arsenic and its
derivatives are among the most hazardous environmental

contaminants. Due to anthropogenic activities such as mining,
farming, and industrial processes, these species are present in
toxic amounts in some groundwaters of Argentina, Cambodia,
Chile, Mexico, the United States, Vietnam, India, and
Bangladesh [1–4]. In the aquatic environment, arsenic exists
in two chemical states: As(III), in derivatives of arsenous acid
H3AsO3; and As(V), in derivatives of arsenic acid H3AsO4.

The environmental fate of As(III) and As(V) species in
groundwater is dependent on their interactions with natural
organic and inorganic matter. The current literature discusses
three such scenarios:

(i) Microbial degradation of As(III) and As(V)—the ratio of
As(III) to As(V) found in the environment is influenced
by microbial activity [5]

(ii) Adsorption by mineral surfaces [6, 7]
(iii) Interaction with humic acids [8, 9]

Scenario (iii) is the topic of this paper. Thermodynamically
feasible interactions between anions of both arsenic and
arsenous acids and components of humic acids such as car-
boxylate and phenolate groups are the dominant topics in this
context in the literature [8, 9]. However, it should be noted that
both of these species (carboxylate/phenolate groups and an-
ions of arseneous/arsenic acid) are negatively charged.
Therefore, if they interact directly, they will actually repel
each other. Consequently, a positively charged bridge between
these anions is needed to initiate such interactions. Recently, it
has been reported that Fe3+ plays this role when interacting
with humic acids [10–13]. However, when As(III)/As(V) spe-
cies are adsorbed by the surfaces of inorganic minerals, Fe3+

ions are not the only mediators of this binding mechanism. It
was found that arsenic derivatives are adsorbed on the sur-
faces of iron(III) oxides and hydroxides such as goethite (see
[14] and references therein), as well as on the surface of
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gibbsite (see [15] and references therein), which is an
alumina-containing mineral. It was also found that, in the case
of Suwannee River humic acid, neither Al3+ nor Ga3+ are able
to serve as bridges [16], so they do not mediate the adsorption
of As(V) species.

To shed more light on the specific roles of cations such as
Al3+ and Fe3+ as bridges that potentially could mediate the
adsorption of arsenic derivatives at adsorption sites on humic
acids, we opted to investigate their roles using a computational
chemistry approach. Specifically, we employed the anion of
benzoic acid (C6H5COO

−) as a model humic acid adsorption
site, Fe3+, FeOH2+, Al3+, and AlOH2+ as model cationic brid-
ges, and the anions AsO4

3− and H2AsO4
− as model As(V)

anionic species.

Computational methods

The Gaussian 09 program package was used for all of the
calculations [17]. The geometries of all considered species
were optimized using density functional theory at the
B3LYP/6-31G(d,p) level. To establish that a minimum was
observed for each optimized geometry, the harmonic vibra-
tional frequencies were calculated for all obtained structures.
The energy of the interaction was obtained with the inclusion
of the gas-phase-calculated basis set superposition error
(BSSE). Most of the adsorbed species considered here were
expected to be quite flexible; to take this into account, the
relaxation energy—the difference between the total energy
of the isolated species and the energy of the species in the
adsorbed state—was also calculated. The relaxation energy
was considered a component of the adsorption energy. The
influence of bulk water was taken into account using the po-
larizable continuum model (PCM) [18], assuming the static
dielectric permittivity to be 80.

Since iron(III)-containing species can in principle possess
several spin states, separate calculations for such iron-
containing species as Fe3+, Fe(OH)2+, Fe(OH)2

+, and
Fe(OH)3 were also performed. In all cases except for
Fe(OH)2+ (SCF convergence was not reached), a strong pref-
erence of the d-electron shell of iron for a sextet configuration
was noted. Therefore, only the sextet configuration was used
in further calculations.

Results and discussion

Before discussing the obtained results, we first explain why
we chose our models. The anion of benzoic acid (C6H5COO

−)
was selected as it is the most strongly interacting component
of humic acids. FeOH2+ and AlOH2+ are species that mimic
the geometric structure of an adsorption bridge close to neutral
pH; Fe3+ and Al3+ mimic the structure of an adsorption bridge

under acidic conditions. H2AsO4
− is the most realistic struc-

ture of an anionic As(V) species, and AsO4
3− is the anionic

As(V) species that results from the full dissociation of
H2AsO4

− [10–13]. According to experimental data, adsorbed
humic acid complexes that include a humic acid adsorption
site, an anionic arsenic species, and a cationic bridge are ter-
nary complexes, so those complexes were considered here.
We also considered complexes that include two
(C6H5COO

−) fragments and are formally quaternary com-
plexes. This was done to reflect the fact that complexation of
metal cations by humic acids actually results in the formation
of multi-coordinate complexes due to the presence of other
electron-donating groups such as –O, –NH2, etc. The
B3LYP-calculated structures of the complexes are presented
in Fig. 1. Since the only available experimentally determined
geometric parameter is the As–Fe interatomic distance, we
present values of this in Fig. 1 along with values of the
(similar) As–Al distance. All other geometric parameters can
be obtained by analyzing the Cartesian coordinates of the
species of interest, which are available upon request from
the authors.

Useful experimental data on the structures of cation-
bridge-mediated As(V) species are rather scarce [10–16].
As we have already mentioned, the only experimentally
determined structural parameter is the As–Fe interatomic
distance. Data on this distance allow us to categorize the
complex as bidentate if this distance is ca. 2.9 Å and
monodentate if this distance is ca. 3.2 Å [9, 12, 19].
Despite using monodentate structures as the initial geom-
etries in all cases, the results of the analysis of As–Fe
distances presented in Fig. 1 suggest that both
monodentate and bidentate structures were obtained during
the presented study. The calculations predict slightly
shorter distances than the corresponding experimentally
determined distances. This is probably because our models
are very simple compared to the structures of real adsorp-
tion complexes. We would also like to highlight the sim-
ilarity between the geometric structures of the Al3+- and
Fe3+-containing species. According to the graphics present-
ed in Fig. 1, those adsorption complexes are similar in
shape and have comparable As–Fe and As–Al interatomic
distances. However, since the ionic radius of Al3+ is
slightly smaller than the ionic radius of Fe3+ (Rion

Al =
0.67 Å, Rion

Fe = 0.69–0.78 Å; see https://en.wikipedia.
org/wiki/Ionic_radius), the As–Al distance is also slightly
shorter than the corresponding value for As–Fe. In
addition, we noticed that our calculations predict that
both interatomic distances are only weakly sensitive to
the coordination number by ligands.

Since we do not know how rigid the adsorption sites of humic
acids are, Table 1 collates interaction energies calculated in two
different ways: either the adsorption site was allowed to relax
following interactions with AsO4

3– and H2AsO4
– or it was not.
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Fig. 1a–p Geometric structures
of the models considered in this
work: a Fe3+C6H5COO

−AsO4
3−,

b Fe3+C6H5COO
−H2AsO4

−,
c Al3+C6H5COO

−AsO4
3−,

d Al3+C6H5COO
−H2AsO4

−,
e [FeOH]2+C6H5COO

−AsO4
3−,

f [FeOH]2+C6H5COO
−H2AsO4

−,
g [AlOH]2+C6H5COO

−AsO4
3−,

h [AlOH]2+C6H5COO
−H2AsO4

−,
i Fe3+(C6H5COO

−)2AsO4
3−,

j Fe3+(C6H5COO
−)2H2AsO4

−,
k Al3+(C6H5COO

−)2AsO4
3−,

l Al3+(C6H5COO
−)2H2AsO4

−,
m [FeOH]2+(C6H5COO

−)2AsO4
3−,

n [FeOH]2+(C6H5COO
−)2H2AsO4

−,
o [AlOH]2+(C6H5COO

−)2AsO4
3−,

p [AlOH]2+(C6H5COO
−)2

H2AsO4
−. The atoms are color-

coded as follows: purple iron,
green aluminum, red oxygen,
gray carbon, white hydrogen
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The data presented in Table 1 suggest that, despite the very sim-
ilar ionic radii of Al3+ and Fe3+, the interaction energies differ
significantly for Al3+ and Fe3+, especially when the coordination
number is low. It is clear that interactionswith sites that have Fe3+

and Al3+ ions with low coordination numbers (i.e.,
Fe3+C6H5COO

−, Al3+C6H5COO
−, Fe3+OH−C6H5COO

−, and
Al3+OH−C6H5COO

−) result in unrealistically high interaction en-
ergies, especially in the case of AsO4

3−; such values would never
be observed in adsorption experiments. This is the case regardless
of how the interaction energy is calculated (i.e., with or without
adsorption site relaxation). In reality, free coordination sites are
saturated by the same or other humic acid fragments or by sur-
rounding water molecules. Indeed, if we consider the interaction
energies for Fe3+(C6H5COO−)2, Al3+(C6H5COO−)2,
Fe3+OH−(C6H5COO

−)2, and Al3+OH−(C6H5COO
−)2, it is clear

that they are much lower than those for the other Al3+ and Fe3+

species, especially in the case of the H2AsO4
− anion, which, as

mentioned above, is the most realistic As(V) species. It is evident
fromTable 1 that calculations which do not include the relaxation
energy only predict the bonding situations for the Fe3+ and Al3+

species considered. However, when the relaxation energy is in-
cluded in the calculations, they predict both the bonding (negative
interaction energy) and nonbonding (positive interaction energy)
situations. As we have already mentioned, both of these cases
(bonding and nonbonding) are observed experimentally [10–16].
This means that adsorption sites of some humic acids with Fe3+

or Al3+ bridges sometimes cannot adsorb anAs(V) species due to
the unfavorable bonding contribution of the relaxation energy.
This phenomenon could be explored in more depth by consider-
ing more realistic models of humic acid adsorption sites.

Conclusions

We have performed a computational study of the efficiencies
of cationic bridges formed by Fe(III) and Al(III) species at
facilitating the adsorption of As(V) species by humic acids.

Simple molecular models were developed. The adsorption
energies of AsO4

3− and H2AsO4
−were predicted for scenarios

where the adsorption is mediated by Fe3+ and Al3+ bridges
coordinated by active sites on humic acids. Both bridges were
found to have similar molecular structures and to display sim-
ilar trends in the change in interaction energy with increasing
coordination number. Increasing the coordination number
caused the interaction energy to decrease. Including the relax-
ation energy in the calculation of the interaction energy chang-
es the bonding situations for both the Fe3+ and the Al3+ deriv-
atives, in agreement with available experimental data.
Therefore, we speculate that the relaxation energy is an influ-
ence on the roles played by Fe3+ and Al3+ cationic bridges in
the adsorption of As(V) species by humic acids.
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