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Abstract Octopus is an automated workflow management
tool that is scalable for virtual high-throughput screening
(vHTS). It integrates MOPAC2016, MGLTools, PyMOL,
and AutoDock Vina. In contrast to other platforms,
Octopus can perform docking simulations of an unlimited
number of compounds into a set of molecular targets.
After generating the ligands in a drawing package in the
Protein Data Bank (PDB) format, Octopus can carry out
geometry refinement using the semi-empirical method
PM7 implemented in MOPAC2016. Docking simulations
can be performed using AutoDock Vina and can utilize
the Our Own Molecular Targets (OOMT) databank.
Finally, the proposed software compiles the best binding
energies into a standard table. Here, we describe two suc-
cessful case studies that were verified by biological assay.
In the first case study, the vHTS process was carried out
for 22 (phenylamino)urea derivatives. The vHTS process
identified a metalloprotease with the PDB code 1GKC as
a molecular target for derivative LE&007. In a biological
assay, compound LE&007 was found to inhibit 80% of
the activity of this enzyme. In the second case study,
compound Tx001 was submitted to the Octopus routine,
and the results suggested that Plasmodium falciparum

ATP6 (PfATP6) as a molecular target for this compound.
Following an antimalarial assay, Tx001 was found to have
an inhibitory concentration (IC50) of 8.2 μM against
PfATP6. These successful examples illustrate the utility
of this software for finding appropriate molecular targets
for compounds. Hits can then be identified and optimized
as new antineoplastic and antimalarial drugs. Finally,
Octopus has a friendly Linux-based user interface, and
is available at www.drugdiscovery.com.br.

Keywords Structure-based drug design . Docking . Virtual
screening

Introduction

The innovation process in the pharmaceutical industry is driv-
en by the release of new drugs onto the market, as this process
often involves modifying the structure of a known drug in an
attempt to produce a new drug that is as active or more active
towards a target receptor. [1]. First, pharmaceutical companies
search for Bhits;^ a hit is a compound that shows activity
towards a specific target under study, which is evaluated by
performing biological and toxicological assays and structure–
activity relationship (SAR) studies. The hit then becomes a
lead compound. In this context, even though investment in the
innovation process has increased, the availability of new drugs
on the market has not followed suit. This is partly because the
regulatory requirements associated with the approval of a new
drug have also been increased in order to prevent pharmaco-
logical accidents (such as the birth defects resulting from tha-
lidomide use by pregnant women). Furthermore, the high cost
of the biological assays and the other methodologies used are
limiting factors, especially for startups. This makes it critical
to develop new approaches to identifying lead compounds [2].
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The most common strategies used to identify active com-
pounds are analog design and systematic screening [3–6].
Analog design is a strategy widely used by research groups.
It involves synthesizing analogs of active compounds that are
currently on the market; these analogs are known as Bme-too
compounds.^ Since proposed me-too compounds have very
similar structures to active compounds, they have a good
chance of also being active towards the desired target. This
biological activity can be improved by optimizing the com-
pound. However, analog design is generally considered to
produce only incremental innovation. Amoxicillin is a good
example of a drug obtained using this approach—it shows
improved bioavailability compared to penicillin, which per-
mits it to be administered orally. In other words, the analog
design approach is ligand-focused.

On the other hand, systematic screening involves searching
for evidence that a particular molecule or set of molecules,
which may be natural or synthetic, has/have significant bio-
logical activity [7]. This is an exhaustive and time-consuming
pharmacological investigative process. It is repeated until a
compound with biological activity is identified. Recently, this
methodology was mechanized. Such a high-throughput
screening (HTS) process can screen several thousand com-
pounds simultaneously using 30–50 different biochemical as-
says. When a hit compound is found, it can be submitted to a
lead optimization process in the hope that it can ultimately be
used as a lead compound. This approach has a good rate of
success. However, this methodology can only be implemented
by pharmaceutical companies or consolidated research
groups. Efavirenz, delavirdine, and nevirapine are examples
of antiviral drugs obtained by HTS that inhibit the reverse
transcriptase of HIV. In this approach, drug discovery is
target-focused [8, 9].

Even though HTS helps to get new drugs on the market,
this approach is limited by its high cost, which has motivated
the development of new technologies based on high-
throughput screening and combinatorial synthesis.
Considering the large number of biological targets available
in the Protein Data Bank (PDB) [10] and the diverse libraries
of compounds such as ZINC [11] that can be used to generate
new drugs, structure-based virtual screening has shown itself
to be a useful new strategy for identifying novel bioactive
substances via molecular docking [12, 13]. Docking is an in
silico method that is employed to identify hit compounds for a
three-dimensional structure-of-interest receptor. Docking pro-
grams measure the affinities of small molecules (ligands) for a
molecular target to determine their interaction energies with
the target [14]. In addition, visualization software can be used
to show the intermolecular interactions responsible for molec-
ular recognition, such as those associated with the complex
between the ligand and the receptor. As a result, docking can
identify the most promising hits for biological assays and de-
crease the cost of drug development.

Docking approaches can be applied in two different con-
texts. First, a library of ligands normally obtained from analog
design can be submitted to docking simulation to find the best
hit for a specific molecular target. This approach is known as
virtual screening (VS) [15]. In contrast, the pharmacological
activity of a specific ligand such as a new natural compound
can be searched for by performing docking simulations with a
set of targets. This approach is called inverse virtual screening
(IVS) [16, 17]. IVS, for instance, helped identify dorzolamide
as an anhydrase carbonic inhibitor that could be used in cases
of glaucoma [9].

Molecular docking programs were first used in the early
1990s. Back then, there were high expectations that this ap-
proach would support the development of new drugs.
However, after a few years of use, the community noticed that
the ranking functions used in these programs did not accurate-
ly predict the free energy of binding. In the last decade, these
tools have made use of advances in technology and changes in
docking methodologies [18]. These improvements in technol-
ogy, including better processors and software, have permitted
the implementation of IVS with a staggered docking method-
ology and a set of molecular targets. This approach is called
virtual high-throughput screening (vHTS), and it simulates
HTS experiments but is faster and more affordable [1, 7].
vHTS motivated the development of the Octopus software
described in the present paper.

Octopus is an in-house automated workflow management
tool that performs vHTS. It integrates MOPAC2016 [19],
MGLTools [13], PyMOL [20], and AutoDock Vina [21] in
order to perform molecular docking through a user-friendly
interface. Unlike other platforms, such as Raccoon2 [22] and
PyRx (http://pyrx.scripps.edu), Octopus can simulate the
molecular docking of an unlimited number of ligands
against an unlimited number of molecular targets. Further,
neither Raccoon2 nor PyRx permit the refinement of ligands
using MOPAC2016. In addition, Octopus includes a databank
of 42 molecular targets (called the Our Own Molecular
Targets Data Bank, OOMT [23]) against malaria, dengue,
and cancer. These targets have been parameterized in the
Protein Data Bank Partial Charge (Q) & Atom Type (T)
(PDBQT) format [23]. OOMT was validated based on the
root-mean-square deviation (RMSD) and the area under the
ROC curve (AUC) using two different docking methodolo-
gies: AutoDock Vina and DOCK 6 [24].

Search algorithms in virtual screening software

Most of the software used for molecular docking can be cat-
egorized based on the analysis of ligand flexibility and the
search process strategy used (including systematic searches
or random searches or those based on simulation [12]).

In a systematic search or incremental algorithm, a set of
values is determined for each degree of freedom. The goal is to

26 Page 2 of 11 J Mol Model (2017) 23: 26

http://pyrx.scripps.edu/


apply a combinatorial method for all molecular degrees of
freedom through incremental ligand construction at the recep-
tor site. Thus, the algorithm probes for different conformations
of the same molecule [25]. In incremental algorithms, the
ligand is fragmented and one of its fragments is positioned
at the binding site of the molecular target during docking.
The fragments are successively added until the molecule is
completely rebuilt. Conformational ensembles comprise tools
that use a molecular motion database which stores a set of
conformations for eachmolecule and submits it to the docking
process. During docking, each conformation is considered
static. These approaches are effective at exploring the confor-
mational space, but they can converge to a local minimum
rather than the global minimum [21].

In contrast, deterministic algorithms do not rely on random
data. Thus, the result is predetermined by the input data. The
simulation methods of molecular dynamics and energy mini-
mization are examples of the deterministic search algorithms
used in docking. These methods have a high computational
cost. Inmolecular dynamics simulations, atoms andmolecules
interact for a predetermined time, and we observe if they con-
tinue to interact after a particular time has elapsed or if the
interaction is lost. Energy minimization algorithms apply an
energy minimization strategy to an initial conformation of a
molecule to find its minimum-energy conformation during the
docking process.

Other random strategies used in molecular docking include
generic algorithms and Monte Carlo methods. Genetic algo-
rithms are implemented as a computer simulation where a
population of abstract representations is mutated to search
for better solutions. Each individual represents a possible so-
lution to the problem. For each new generation, the adaptation
of each solution is evaluated. Thus, some individuals are se-
lected for the next generation, and they are recombined or
mutated to generate new individuals. This process is repeated
to find better solutions until it is finalized. A Monte Carlo
method uses a statistical methodology based on a large set of
random samples to get results that approximate reality [26].
Thus, Monte Carlo methods perform a sufficiently high num-
ber of successive simulations to allow probabilities to be cal-
culated heuristically. When used as docking methods, Monte
Carlo methods randomly generate an initial conformation of
the ligand and calculate its binding energy. Based on this
initial conformation, a new configuration is generated. If the
binding energy for the new configuration is less (i.e., more
negative) than that for the initial conformation, then it is auto-
matically accepted as the reference for the next iteration.
Otherwise, another evaluation is performed to check whether
it should be used as the reference. This process is repeated
until the desired number of iterations is reached.

In general, however, most virtual screening software pack-
ages utilize a combination of these approaches. Table 1 sum-
marizes the strategies used for selected docking tools.

Scoring functions in virtual screening software

Docking software packages use scoring functions to estimate
the strength of noncovalent interactions between a ligand and
a molecular target via mathematical methods [52]. Scoring
functions are one of the most important elements of
structure-based drug design. However, despite their wide-
spread use, estimating the strength of interaction between a
ligand and a molecular target remains a major challenge in
docking methods.

There are three basic important applications of scoring
functions in molecular docking. The first is the determination
of the binding site and the binding conformation for a molec-
ular target and a ligand. Another is the prediction of the bind-
ing affinity between a protein and a ligand. Finally, they can

Table 1 Search algorithms used in docking software (adapted from
[12] and [25])

Search algorithm Method Software

Random Genetic algorithm AutoDock Vina [21]
GOLD [27]
DARWIN [28]
rDOCK [29]

Monte Carlo Autodock Vina [21]
MOE-Dock [30]
ICM [31]
MC DOCK [32]
DOCK VISION
AFFINITY
QXP [33]
GLIDE [34]
PharmDOCK [35]
Biovia Discovery

Studio [36]

Systematic Deterministic FRED [37]

Conformational
ensembles

Flexibase/FLOG [38]
FRED [39]
SLIDE [40]
eHITS [41]
Surflex-Dock [42]
DOCK[43]
GLIDE [34]
EUDOC [44]
FlexX [45]

Incremental construction DOCK [46]
FlexX [47]
Glide [34]
Surflex-Dock [42]
Hammerhead [48]
HOOK [49]
SYBYL-X [50]
eHiTS [41]
EUDOC [44]

Simulation Molecular dynamics DynaDock [51]

Energy minimization DOCK [46]
AutoDock Vina [21]
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also be used to identify potential drugs for a given protein
from large databases.

There are three types of scoring function [12, 25, 52, 53]:
force-field, empirical, and knowledge-based. Force-field (FF)
scoring functions are calculated based on the intermolecular
interactions between the atoms of the ligand and those of the
molecular target, such as van der Waals, electrostatic, and
bond stretching/bending/torsional forces. FF scoring functions
are usually based on experimental data and follow the princi-
ples of quantum physics [12]. However, these methods do not
consider the solvent in their calculations. They also lack a
physical model that describes entropic contributions, which
leads to imprecision in the results generated by the scoring
function.

Empirical scoring functions estimate the binding free
energy based on weighted structural parameters obtained
after adjusting the scoring functions based on the experi-
mentally determined binding constants for a set of com-
plexes [53]. This creates a training dataset of some pro-
tein–ligand complexes with known affinities [12]. Thus,
linear regression is performed to predict the values of
some variables [52]. Constants known as weights are then
generated using the empirical function to use as coeffi-
cients to adjust the terms of the equation. Each term of
the function describes a type of physical event involved in
the formation of the ligand–receptor complex. Thus, hy-
drogen bonding as well as ionic, nonpolar, desolvation,
and entropic effects are all considered.

In knowledge-based scoring functions, the binding af-
finity is calculated using the sum of the interactions be-
tween the ligand atoms and target atoms [53]. These func-
tions obtain statistical data (i.e., the frequencies of specif-
ic intermolecular ligand-receptor interactions) on large da-
tabases (such as the Protein Data Bank). For example, if a
hydrogen bond is present in 90% of the relevant cases,
this bond is weighted more heavily in the equation of the
force field. They use pairwise energy potentials extracted
from known target–ligand complexes to obtain a generic
scoring function, and generally assume that intermolecu-
lar interactions occur near atoms or functional groups, as
such intermolecular interactions occur more frequently
and are more likely to favorably contribute to the binding
affinity. The final score is given as a sum of the scores of

all individual interactions. Table 2 summarizes the types
of scoring functions used in various docking tools.

Octopus

Octopus is software for virtual high-throughput screening
(vHTS) developed in Shell Script, Python, HTML, and CSS.
It offers fast and user-friendly docking simulations. It inte-
grates MOPAC2016 [54], PyMOL [20], MGLTools [13],
and AutoDock Vina [21] via an inteface that is intuitive and
self-assessing (i.e., Octopus takes the output of Mopac and
prepares it automatically for use as input to other programs).

In general, docking software is suitable for carrying out a
simulation of one ligand docking into a specific molecular
target. However, Octopus can automatically perform virtual
high-throughput screening (vHTS) of N ligands docking into
M molecular targets, i.e., it can perform simulations of an
unlimited number of compounds docking into a set of molec-
ular targets.

The main advantages of Octopus relative to MOPAC2016,
PyMOL, MGLTools, and AutoDock Vina are its automation,
ease of use, speed, and error reduction. If Octopus is not used,
each of the four programs mentioned must be managed by a
human operator. Also, the output of one programmust be used
as input for the next program,which often requires user action,
introducing delays into the screening process and the possibil-
ity of user-generated errors. Therefore, there is also a need to
check for human error at each step that requires user action.
Also, the steps necessitating user actionmust be performed for
each ligand–target combination. However, in Octopus, as
soon as one of the programs is completed, the next is executed
automatically without user intervention. Consequently,
Octopus reduces the possibility of user-generated error be-
cause it reduces human interactions.

In the Octopus protocol, MOPAC2016 refines the ligands,
PyMOL visualizes the ligand geometry, MGLTools deter-
mines the rotatable bonds and assigns net atomic Gasteiger–
Marsili charges, and AutoDock Vina performs the molecular
docking. Finally, the results are compiled and presented as
binding energies for ligand–receptor combinations (Fig. 1).
The protocol used by Octopus is summarized in the
BMethods^ section.

Table 2 Scoring functions used
in docking software (adapted
from [12, 25, 52, 53])

Scoring function Software

Force-field GOLD [27], DARWIN [28], MOE-Dock [30], MC DOCK [32], QXP [33], GLIDE [34],
FRED [37], DOCK [43], EUDOC [44]

Empirical AutoDock Vina [21], rDOCK [29], ICM [31], GLIDE [34], PharmDOCK [35], Biovia
Discovery Studio [36], FRED [37], SLIDE [40], eHITS [41], FlexX [45],
Hammerhead [48], HOOK [49], Surflex-Dock [42]

Knowledge-based AutoDock Vina [21], GOLD [27]
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Methods

In this section, we describe the steps performed in the Octopus
protocol:

1. First, directories of ligands and targets are chosen (all the
ligands and all the targets must be placed in separate di-
rectories). For instance, the ligand directory could be de-
rived from the ZINC platform, as shown in Fig. 2.

2. When choosing the target directory (Fig. 3), a previously
parameterized molecular target databank called Our Own
Molecular Targets (OOMT) [23] that is included in
Octopus can be utilized. The OOMT databank comprises
various receptors from the Protein Data Bank (PDB), and
it includes specific targets for cancer, dengue, andmalaria.
The main objective of the OOMT databank is to facilitate
virtual screening studies using molecular docking at spe-
cific molecular targets. Appropriate biological assays can
then be performed based on the results of the molecular
docking. The OOMT databank has a configuration file
with X, Y, and Z coordinates, and a grid box size
delimiting the region for molecular docking simulations
and the reference binding energy according to the crystal-
lographic ligand.

3. As mentioned before, the 3D structures of ligands can be
obtained from ZINC [11]. If the ligands come from a
known public database, then we can proceed to step 4.
Otherwise, if the ligand has been generated using the
MarvinSketch program [56] or another application, then
Octopus will carry out out ligand refinement using the
run_MOPAC software developed in Python. This soft-
ware reads the net atomic charges of the atoms of all the
ligands in PDB format into the ligand folder. Next, all of
the ligands are refined by the semi-empirical parametric
method 7 (PM7) [55] implemented inMOPAC2016 using
a routine minimum search (EF) [19]. The user is asked to
check how many alpha and beta electrons are present in
each molecular orbital after energy minimization of the
ligands. This reduces the likelihood of accepting incorrect
structures (i.e., free radicals) for subsequent calculations.
This process is can be applied for ZINC databank struc-
tures converting from smile format (only) to pdb format
through babel software using the keyword gen3d. The
automated workflow of run_MOPAC is shown in Fig. 4.

4. In this step, ligands are converted from PDB to PDBQT
format while assigning the rotatable bonds, the Gasteiger–
Marsili net atomic charges [56], and only the hydrogens
on polar atoms (oxygen and nitrogen) are retained; the
other hydrogens are removed [13].

5. Visual inspection of the geometries of the ligands is then
performed using PyMOL [20].

6. In this step, the ligands in PDBQT format are submitted to
molecular docking by AutoDock Vina [21], which exe-
cutes until all of the ligands have been docked into the
targets. Configuration files follow the AutoDock Vina
protocol, with exhaustiveness set to 24 [57].

7. Finally, the binding energy results for each molecular tar-
get are generated in CSVor HTML format. This makes it
simple for the user to determine whether the ligand is
capable of interacting with a specific molecular target.
Figure 1 shows an example of the results obtained by
Octopus in HTML. First, complementary information
about the experiments (number of ligands, number of tar-
gets, date and time of experiment) is shown. The default
crystallographic values for the binding energies between
the ligands and targets are also displayed.

In addition, the entire process can be repeated while storing
the previous results. A summary of the Octopus algorithm is
presented as a six-step workflow in Fig. 5.

The interface of Octopus

Octopus has a user-friendly interface. Figure 6 shows the start
interface of Octopus. Five selection options are available: (1)
inverse virtual screening without run_MOPAC; (2) inverse

Fig. 1 Octopus vHTS results in html format. The yellow row shows
reference values obtained from the redocking of crystallographic
ligands. All values are in kcal/mol
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virtual screening with run_MOPAC; (3) run_ MOPAC; (4)
tutorials; and (5) install software.

Inverse virtual screening without run_MOPAC must be
used when the PDB file is downloaded from a public
databank. Steps 1, 3, 4, 5, and 6 of Octopus are performed
in this protocol (Fig. 5). Inverse virtual screening with

run_MOPAC must be used when the PDB file is generated
with the MarvinSketch program. In this case, all six steps of
Octopus presented in Figure 5 are performed (run_MOPAC
refines a set of ligands when they are generated by the user
using a tool such as MarvinSketch). Tutorials on manual in-
stallation and the use of all applications associated with

Fig. 2 Library of ligands obtained from the ZINC platform

Fig. 3 Select molecular targets from the OOMT Fig. 4 The automated workflow of run_MOPAC
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Octopus are available. Install software is used to install other
applications available in Octopus.

Octopus can perform IVS in automatic or manual mode. In
automatic mode, the entire experiment is performed without
user intervention after choosing the ligand and molecular tar-
get directories. PyMOL is not executed in this case. In manual
mode, user intervention is required after every step shown in
Figure 5. In addition, the entire process can be repeated while
storing the previous results. To test out this Octopus process,
we used it to perform two case studies examining the

metalloprotease activities of (phenylamino)urea derivatives
and the antimalarial activity of a pyrazole derivative [58]
(see the next section).

The docking approach is limited by the flexibility of the
receptor, which is generally considered to be rigid, and the
fixed bond angles and lengths generally assumed for the li-
gands. Consequently, improper results can be obtained for
molecular targets when using the induced-fit mechanism.
This issue can be resolved by using an ensemble of protein
structures or flexible docking [22]. These tools are comple-
mentary to docking methods as they reduce computational
costs. Even though Octopus uses rigid receptors from the
OOMT databank, all molecular targets are evaluated based
on RMSD and AUC values to gauge the accuracy that can
be achieved. In addition, explicit water molecules (which par-
ticipate in two hydrogen bonds) were retained in the docking
simulation, whereas water molecules in the molecular targets
were removed [24]. Docking using receptors with flexible side
chains will be considered in subsequent versions of the
program.

Results

This section discusses two successful applications of Octopus.
In the first case study, the IVS process was applied to deter-
mine the metalloprotease activities of (phenylamino)urea de-
rivatives. In the second (which has been reported previously),
the process was applied to check whether a particular pyrazole
derivative possesses antimalarial activity.

Successful case study 1: metalloprotease activities
of (phenylamino)urea derivatives

A set of 22 (phenylamino)urea derivatives (BLSO&ME^ com-
pounds) were submitted to Octopus. Docking results from the
IVS approach suggested that, among the 40 molecular targets
studied, the metalloproteinases were feasible targets. The ma-
trix metalloproteinases (MMPs) are zinc-dependent enzymes
that have collagen (present in the extracellular matrix) as one
of their substrates. They participate in the tissue remodeling
process. Moreover, they are involved in tumor metastasis be-
cause they are overexpressed in some types of tumors. The
IVS methodology showed that binding energies with the me-
talloproteinase with PDB code 1GKC ranged from −8.0 kcal/
mol to −9.5 kcal/mol [59]. The corresponding crystallographic
binding energy was −6.6 kcal/mol. 1GKC recognized
LSO&ME007, with interactions including hydrogen bonds,
van der Waals interactions, and intramolecular π-stacking.
This molecular target is a metalloprotease involved in cancer
pathology; it was evaluated previously based on the RMSD
and the ROC curve [24], yielding values of 0.55 Å and 0.60,
respectively. RMSD values of <2.0Å imply good pose fidelity

Fig. 5 Automated workflow of Octopus

J Mol Model (2017) 23: 26 Page 7 of 11 26



[21], while AUC values of >0.5 enable the methodology to
distinguish between true- and false-positive compounds. In
other words, docking studies of this system should be evalu-
ated by performing a corresponding experimental study.

Figure 7 summarizes the intermolecular interactions be-
tween 1GKC and two ligands in the form of 2D diagrams.
L-Valinamide (Fig. 7a) and LE&007 (Fig. 7b) present similar
molecular interactions in terms of van derWaals and hydrogen
bonds, although LE&007 shows additional intermolecular in-
teractions, such as π–π stacking and T-shaped stacking. In
addition, the interaction (at a distance of 2.39 Å) between

the zinc atom of 1GKC and the lone pairs of the carbonyl
moiety of LE&007 is highlighted in the figure. These addi-
tional molecular interactions with LE&007 help to explain the
binding energies of the (phenylamino)urea derivatives with
the metalloproteinases. The compounds of interest were stud-
ied in a biological assay, and LE&007 was found to inhibit
80% of the enzymatic activity of the metalloproteinase 1GKC.

Following the IVS experiments, the effects of the
(phenylamino)urea derivatives (LSO&ME compounds) on
the proteolytic activities of MMP gelatinases were measured
by gelatin zymography performed according to a previous

Fig. 6 User-friendly interface of
Octopus: the main menu

Fig. 7a–b 2D diagrams of the binding between 1GKC and two ligands, as visualized using Discovery Studio Visualizer 4.5 [60]: a the crystallographic
ligand L-valinamide; b LE&007
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report [61]. The samples were dissolved in dimethyl sulfoxide
(DMSO) at 6 mg/mL, and 10 μL were applied to a well of gel
containing the substrate-rich MMPs: saliva (20 U of protein)
in sample buffer (SDS 2.5 wt% and saccharose 1 wt%). This
corresponded to the same quantity of saliva was used as the
standard, and this represented 100% of the active enzymes.
Electrophoresis (PROTEAN II, Bio-Rad, Hercules, CA,
USA) was conducted under reducing conditions (0.025 M
Tris, 0.192 M glycine, and 0.1% SDS, pH 8.5) at 70 V and
4 °C for 3.5 h.

After electrophoresis, the gels were washed for 1 h with
Triton X-100 (2.5 g%) to remove the SDS, and then sub-
merged (with stirring) in an activation buffer (Tris–HCl
0.05 M, CaCl2 0.6 g%, pH 8.0) for 16 h at room temperature.
Next, the gels were stained (0.25% Coomassie Blue R-250,
methanol 45%, and acetic acid 10%) for 1 h and then bleached
(using 30% ethanol/10% acetic acid) for another hour.

The compounds LSO&ME005, LSO&ME004, and
LSO&ME007 suppressed the activity of MMP-9 by approxi-
mately 80%, and partial inhibition was observed when
LSO&ME004 wa s app l i e d . LSO&ME005 and
LSO&ME028 suppressed the activity of MMP-2 by approxi-
mately 55%. Inhibition of gelatinase activity was measured by
comparing the decrease in the amount of undigested bound
substrate in solutions containing MMPs and the LSO&ME
compounds with the decrease in the amount of undigested
bound substrate observed in solutions of MMPs that did not
contain the LSO&ME compounds.

Successful case study 2: antimalarial activity of a pyrazole
derivative

Several reports have shown that pyrazole derivatives possess
biological activities (e.g., [62]). Hence, our group performed
VS of the pyrazole derivative Tx001. Octopus showed that
this compound can complex with a model of Plasmodium
falciparum ATP6 (PfATP6) [63], with a binding energy of
−8.6 kcal/mol (as compared to −7.7 kcal/mol for the binding
energy of thapsigargin (TG)—a natural compound that is an
inhibitor of PfATP6) calculated for docking into the hydro-
phobic cavity of this model. The complex Tx001–PfATP6
was then evaluated by molecular simulation utilizing an im-
plicit solvent model, and the system was observed to reach
equilibrium in 30 ns. The potential energy of the system de-
creased during the simulation to approximately −5500
kcal/mol. The main ligand–PfATP6 interactions were van
der Waals, electrostatic, and hydrogen bonding between the
guanidinium moiety of Tx001 and Ile752 of PfATP6. Finally,
Tx001 was evaluated for antimalarial activity, and it presented
a good inhibitory concentration (IC50) of 8.2 μM. Its antima-
larial activity is therefore stronger than that of chloroquine
(IC50 = 0.38 μM), a widely used antimalarial drug, which

motivated us to optimize this ligand. Second-generation de-
rivatives of Tx001 are currently being evaluated [58].

Conclusions

Drug development is a difficult task for small academic
groups. Thus, applying a theoretical approach can increase
the Bhit^ rate, and these hits have the potential to become lead
compounds for new therapies. This motivated us to develop
Octopus as a tool for the vHTS of multiple compounds against
a set of molecular targets. It can also reduce the number of
biological assays needed to determine a pharmacological
mechanism. It is limited principally by the time to draw the
structures of the ligands as well as the choice of desired tar-
gets. The entire Octopus protocol can run automatically, al-
though computational chemists are still needed to visually
inspect the intermolecular interactions.

In this manuscript, we also showed two successful exam-
ples of the application of Octopus to find molecular targets.
Octopus identified a new hit compound, LE&007, that can be
optimized to generate a new lead compound for antineoplastic
drugs, and it was also used to determine the antimalarial ac-
tivity of the pyrazole derivative Tx001. Neither LE&007 nor
Tx001 were lead candidates originally identified for these dis-
eases. Thus, Octopus provides a second chance to find a use
for these compounds as lead compounds.

Finally, Octopus provides a user-friendly Linux-based
interface for MOPAC2012, PyMOL, and AutoDock Vina.
Work to enhance Octopus by adding a new molecular
dynamics simulation code is also in progress. Octopus
can be obtained from www.drugdiscovery.com.br
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