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Abstract An alternative approach to evaluating the perfor-
mance of computational methods for predicting chemical
shifts is presented. The influence of the theoretical level and
basis set on the accuracy in calculating both proton and carbon
NMR spectra of a large number of heterocyclic molecules is
assessed using a linear regression method, thus omitting the
need for a reference (as a potential source of error). The best
theoretical levels employed herein (GIAO-PBE0/6-31G(d)//
ωB97xD/6-31G(d) or GIAO-ωB97xD/6-31G(d)//ωB97xD/
6-31G(d)) approach the accuracy of the most elaborate
benchmark-quality calculations. One interesting observation
is an unexplained distortion of the derived chemical shifts
when an internal reference is used: It leads to larger relative
shifts and deviations when the Bquality^ (size) of the basis set
employed is increased. This effect can be corrected by using
simple linear regression, but a lack of a systematic correlation
between the quality of the basis set and the accuracy of the
calculated shifts can still be observed; in fact, very good re-
sults can be achieved with modest basis sets. Although the
general reliability of this approach needs to be evaluated for
other theoretical levels and other substance classes, the
abovementioned levels of theory appear robust enough for
wider applicability.
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Introduction

Heterocycles that bear nitrogen and sulfur or oxygen are very
common moieties in biochemistry and are therefore potential-
ly of high pharmaceutical value [1]. Among them, thiazines
are known to have various pharmacological properties: they
exert anti-inflammatory, cytostatic, sedative, analgesic, and
immunosuppressive effects [2]. The oxazine structure is com-
mon to all promising antitumor compounds, such as the
tumor-specific benzocycloheptoxazines [3, 4], which also
possibly exhibit anti-inflammatory properties [5].
Furthermore, compounds from the benzoxazine family are
known to be antioxidant, analgesic, and hypolipidemic drugs
[6]. 1,4-Thiazines and 1,4-oxazines are potential remedies for
tuberculosis due to their antimycobacterial action [7].
Derivatives of thiazoline are equally valuable; one example
is agrochelin, which possesses cytotoxic and antibiotic prop-
erties [8]. Oxazolines have completely different but nonethe-
less highly valuable properties (e.g., the aminorex family,
which are psychostimulants [9, 10]). Furthermore,
dibenzothiazines are known building blocks of typical anti-
psychotics such as chlorpromazine [11]. The parent com-
pound of this class, phenothiazine, has itself been found to
be a useful insecticide and anthelmintic [12, 13]. From the
perspective of combinatorial chemistry, these highly desirable
pharmacological properties show that this substance class
should be considered to be among the most interesting regions
of chemical space.

There has recently been considerable interest in chemical
species that can be synthesized and/or derived in multicom-
ponent reactions such as the Ugi [14], Passerini [15, 16], and
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Asinger [17–20] reactions. These reactions have high atomic
efficiencies and can be performed in biocompatible solvents
such as glycols, ionic liquids, or even plain water, which links
them to aspects of green chemistry [21–27]. Combinatorial
application of these reactions leads to whole libraries of sim-
ilar compounds [14, 28, 29] in a very short time, although a
downside of this is that structure elucidation or validation
could become a bottleneck in the workflow.

NMR spectroscopy is undoubtedly one of the most valu-
able tools for structure elucidation and has become a routinely
employed method in most modern organic research groups
since the advent of pulse FT techniques. Unlike other analyt-
ical methods (e.g., elementary analysis), predicting the expec-
tation value for a chemical shift is not an easy task. This can
make the evaluation of complex NMR spectra very tedious.

Many empirical solutions to this problem have been pro-
posed, such as incremental systems [30–32] (e.g., the CS
ChemNMR Pro facility [33]). Other approaches are systems
that utilize databases [34] and descriptors such as the HOSE
code [35]. Prominent examples of database-driven programs
are NMRShiftDB [36] and SpecInfo [37, 38]. Another class of
empirical methods are the regression methods, such as partial
least squares fitting [39, 40] and artificial neural networks
[40–49], which have been used extensively. There are also
programs that combine neural networks with HOSE code,
such as the ACD NMR predictor [50].

In the framework of electronic structure theory, every prop-
erty of a particular chemical system can be calculated from its
wavefunction or even from its electron density. Thus, if the
geometry of a system is known, it is possible to immediately
calculate its chemical shifts (for a detailed review of the quan-
tum mechanical calculation of NMR parameters, see [51]).
While empirical methods are inherently approximate, ab initio
calculations—but not DFT methods—offer systematic in-
creases in accuracy up to an arbitrary precision, given enough
computational power. Furthermore, a pure quantum chemical
ab initio treatment can be regarded as a physically sound un-
derstanding of the subject, while methods such as neural net-
works are dependent on experimental reference data and are
difficult to interpret (their synaptic weights have been de-
scribed as Ban opaque, unreadable table … valueless as a
scientific resource^ [52]).

However, because of practical limitations, all computational
chemistry tools rely on different approximations, which are rather
poorly understood or uncontrollable in the case of DFTmethods.
Although quantum chemical methods have the potential to be
true simulations that are perfectly accurate in theory, practical
obstaclesmay downgrade their accuracy to levels far below those
of pure empirical methods. Indeed, in one study in which gauge-
invariant atomic orbital (GIAO) calculations were performed for
various test sets, even the Bgold standard^ ab initio method
CCSD(T) seemed to perform poorly and was inferior to various
DFT functionals [53].

In the present study, we investigated the general perfor-
mance of computationally inexpensive GIAO calculations,
their compatibility with simple empirical upgrades, and their
special limitations in the practically relevant task of comput-
ing the chemical shifts of a pharmaceutically interesting sub-
stance class.

Theoretical details

Geometry optimizations of all investigated compounds were
carried out at the DFT level of theory according to the Kohn–
Sham scheme [54] using the well-established B3LYP hybrid
functional [55–58] and the dispersion-correctedωB97xD func-
tional [59] with the basis set 6-31G(d) [60–62]. Additional
geometry optimizations within the 6-311++G(d,p) basis set
[63–65] were performed for comparison. All shielding con-
stants were calculated using the gauge-invariant atomic orbital
method [66–68] (GIAO), and solvent effects were included
using the polarizable continuum model [69] with the dielectric
constant of chloroform. GIAO single-point calculations were
performed using the B3LYP, ωB97xD, WP04 [70], WC04
[70], M06-2X [71], and PBE0 [72, 73] functionals, the
Hartree–Fock [74, 75] method and the Møller–Plesset [76]
second-order perturbation theory. The Wx04 functionals have
been developed to provide an accurate description of chemical
shifts (x = P for proton, C for carbon), and are therefore of
particular interest. M06-2X is a relatively new and promising
functional, while PBE0 has been known for quite a while to be
reliable when calculating chemical shifts [77]. Basis set sizes up
to valence quintuple-ζ quality were employed in one case
study, while the basis sets 6-31G(d) and pcS2 [78] were used
to evaluate the test set. The latter has been specifically designed
for GIAO calculations with density functionals. All quantum
chemical calculations were performed with the Gaussian 09
program [79]. External basis sets were taken from the EMSL
basis set exchange database [80].

Chemical shifts δ can be computed in various ways using
calculated shielding constants. The most common uses a ref-
erence compound such as tetramethylsilane (TMS), and the
relative chemical shifts are obtained by subtracting the
shielding constant of the simulated nucleus σcalc from the
shielding constant of the reference compound σref:

δ ¼ σre f−σcalc: ð1Þ

This requires computation of the reference shielding con-
stants at the same level of theory as they are for the investi-
gated compound. The choice of the reference compound is
usually arbitrary. TMS is used in most cases, but this may
not be the best choice [81].

Another method for obtaining the shifts is more suitable in the
statistical analysis of large test sets. In this method, linear regres-
sion of the computed shielding constants against experimental
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chemical shifts in the form σcalc = b −mδexp gives the slope m
and the intersect b as regression parameters. Using those param-
eters, chemical shifts δcalc can easily be computed by

δcalc ¼ σcalc−b
m

: ð2Þ

In a regression-based calculation, the accuracy of the meth-
od can be expressed in terms of the mean unsigned error
(MUE, or mean absolute error) in the regression values:

MUE ¼
X

δexp−δcalc
� ��� ��

n
: ð3Þ

Data processing of the test sets was facilitated by two
scripts based on M. Siebert’s scripts from the Tantillo group

[82–85]. The first script, called geometryExtractor, extracts
the optimized geometries of concatenated Gaussian output
files of jobs and constructs a linked input file with these ge-
ometries and the GIAO tag in the keyword section. The other
script, calledNMRDataExtractor, was designed to extract iso-
tropic shifts from the concatenated output of GIAO jobs cre-
ated with the first script. Modifications were made to ensure
more general usability; our modified scripts can therefore be
applied to all concatenated files, whereas the old scripts were
tailored to a specific test set.

Evaluation of the validity and robustness of the linear re-
gression results indicates a high degree of reliability: cross-
validation yields almost identical coefficients of determina-
tion, and small confidence intervals were obtained (for details,
see the BElectronic supplementary material,^ ESM).

Scheme 1 Heterocyclic
compounds included in the test
set
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Results and discussion

To examine the influences of the methodology, basis set, and
geometry on the quality of chemical shift prediction for het-
erocyclic compounds, a test set of 24 compounds was de-
signed with chemically similar 1,4-thiazines, 3-thiazolines,
and their oxo derivatives (Scheme 1). The first nine molecules
were synthesized and characterized by the Martens group here
in Oldenburg.1 The remaining entries were taken from the
SDBS data bank [90].

Only molecules that can be described by a single geometry
or—as in the case of freely rotating methyl groups for in-
stance—by the simple averaging of computed shieldings were
included in the test set. Electronic structure theory commonly

relies on static geometries, whereas NMR is a slow process
that measures time-averaged chemical environments and not
snapshots. If a measured compound is subject to conforma-
tional isomerism, this is usually treated by performing
Boltzmann averaging of all important geometries, which com-
plicates the NMR prediction [91–94].

The test set contains 217 1H nuclei, but the number of
shielding constants is reduced to 83 signals using averaging
and by omitting nuclei that were not safely assignable. It also
contains 169 13C nuclei, which correspond to 134 signals.

The results of the statistical analysis of all calculations are
given in Tables 1 and 2. These tables show the linear regres-
sion results; most importantly, the mean unsigned error
(MUE) and the slope factor m. Table 1 contains the results
of GIAO-NMR calculations performed using various methods
employing the 6-31G(d) basis set and the B3LYP/6-31G(d) or
ωB97xD/6-31G(d) geometry. In addition to the gas-phase
NMR calculations, a simulated solvent field was employed

The synthesis and characterization of compounds 1 – 9 were reported in the
following works: 1, 3, 4, and 7 in [86]; 6 and 7 in [87]; 4, 5, and 8 in [20]; 2 in
[88]; and 4 in [89]

Table 1 Linear fit parameters from (PCM-)GIAO-method/6-31G(d) calculations for two different geometries

Method Parameter ωB97xD/6-31G(d) geometry B3LYP/6-31G(d) geometry

Gas-phase NMR PCM NMR Gas-phase NMR PCM NMR

1H 13C 1H 13C 1H 13C 1H 13C

HF MUE 0.21 3.94 0.18 4.04 0.21 3.90 0.18 4.01

m 1.06 1.03 1.07 1.05 1.06 1.04 1.08 1.06

b 32.93 205.52 32.89 206.28 32.89 205.18 32.85 205.92

B3LYP MUE 0.16 2.22 0.14 2.26 0.15 2.59 0.14 2.65

m 0.98 0.93 0.99 0.94 0.98 0.93 0.99 0.94

b 32.32 186.36 32.28 186.96 32.28 185.81 32.24 186.39

ωB97xD MUE 0.18 1.86 0.15 1.92 0.17 2.07 0.14 2.11

m 1.01 0.95 1.02 0.97 1.01 0.96 1.03 0.97

b 32.40 192.85 32.36 193.51 32.36 192.36 32.32 192.99

M06-2X MUE 0.21 3.01 0.19 2.96 0.21 2.87 0.18 2.83

m 1.10 1.06 1.11 1.08 1.10 1.07 1.11 1.08

b 32.60 195.33 32.56 196.02 32.57 194.87 32.53 195.53

PBE0 MUE 0.17 1.80 0.15 1.85 0.16 2.12 0.14 2.16

m 1.00 0.94 1.02 0.95 1.01 0.94 1.02 0.95

b 32.26 191.40 32.23 192.03 32.23 190.86 32.19 191.46

WC04 MUE 0.21 3.67 0.18 3.73 0.20 3.60 0.18 3.66

m 1.00 0.94 1.02 0.95 1.01 0.95 1.02 0.96

b 33.53 196.69 33.50 197.37 33.50 196.36 33.47 197.02

WP04 MUE 0.14 3.00 0.13 3.09 0.14 3.51 0.12 3.62

m 0.95 0.91 0.96 0.92 0.95 0.92 0.97 0.93

b 32.49 179.92 32.45 180.49 32.45 179.26 32.41 179.81

MP2 MUE 0.20 2.77 0.18 2.56 0.19 3.12 0.17 2.94

m 0.99 0.89 1.01 0.90 0.99 0.89 1.01 0.90

b 32.12 199.93 32.08 200.52 32.08 199.34 32.04 199.91

MUE is the mean unsigned error in ppm, m the slope, and b is the offset of the linear regression
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using the polarizable continuum model (PCM) and chloro-
form as solvent. Table 2 shows the parameters for the same
calculations performed using the same geometries as above
but with the pcS2 basis set for NMR evaluations, with a single
exception. MP2 calculations were not performed with the
pcS2 basis set because the calculations were prohibitively
expensive.

The results in Tables 1 and 2 were analyzed to investigate
the influence of the simulated chloroform solvent field, the
impact of the underlying geometry, and the importance of
the method and the basis set used for NMR calculations.
The most interesting of these factors is probably the latter,
in which the performance of theoretical methods in repro-
ducing (and predicting) 13C chemical shifts is evaluated.
From the data presented in the paper, it is apparent that the
HF-based calculations give the worst results. Interestingly,
the specialized WC04 functional does not yield satisfactory
results, even though it was reparametrized for this purpose.
There are two functionals that give the smallest MUE values
regardless of basis set and geometry used: PBE0 and
ωB97xD. Their average errors are well below 2 ppm per
carbon atom. B3LYP also gives average deviations of only a
little more than 2 ppm. The differences between the

functionals in terms of accuracy of 1H chemical shift pre-
diction are relatively small. The abovementioned func-
tionals also perform well here (with MUEs of 0.11–
0.15 ppm), and the purpose-built functional WP04 yields
the lowest errors. However, the methods show a lack of
consistency in performance, as several theoretical levels that

Table 2 Linear fit parameters from (PCM-)GIAO-method/pcS2 calculations for two different geometries

Method Parameter ωB97xD/6-31G(d) geometry B3LYP/6-31G(d) geometry

Gas-phase NMR PCM NMR Gas-phase NMR PCM NMR

1H 13C 1H 13C 1H 13C 1H 13C

HF MUE 0.22 3.74 0.19 3.91 0.21 3.71 0.18 3.87

m 1.09 1.14 1.10 1.15 1.09 1.15 1.10 1.16

b 32.23 198.52 32.19 199.34 32.20 198.19 32.15 198.98

B3LYP MUE 0.13 2.01 0.12 1.93 0.13 2.34 0.11 2.33

m 1.04 1.07 1.05 1.08 1.04 1.07 1.06 1.09

b 31.71 177.46 31.67 178.14 31.67 176.85 31.63 177.49

ωB97xD MUE 0.16 1.69 0.15 1.75 0.16 1.84 0.14 1.87

m 1.06 1.08 1.08 1.10 1.07 1.09 1.08 1.10

b 31.78 184.67 31.74 185.38 31.74 184.12 31.70 184.80

M06-2X MUE 0.20 3.11 0.19 3.05 0.19 3.00 0.18 2.91

m 1.14 1.20 1.16 1.21 1.15 1.21 1.16 1.22

b 32.01 186.42 31.97 187.17 31.98 185.89 31.93 186.60

PBE0 MUE 0.15 1.65 0.13 1.63 0.14 1.94 0.13 1.94

m 1.06 1.07 1.07 1.08 1.06 1.07 1.08 1.08

b 31.64 183.44 31.60 184.11 31.60 182.85 31.56 183.49

WC04 MUE 0.19 3.57 0.17 3.65 0.19 3.46 0.17 3.57

m 1.06 1.04 1.07 1.05 1.06 1.05 1.07 1.06

b 32.89 190.89 32.85 191.69 32.85 190.56 32.82 191.34

WP04 MUE 0.13 2.56 0.11 2.60 0.12 3.04 0.11 3.09

m 1.01 1.06 1.02 1.07 1.01 1.06 1.03 1.08

b 31.92 170.33 31.87 170.96 31.87 169.59 31.83 170.18

MUE is the mean unsigned error in ppm, m is the slope and b is the offset of the linear regression

Table 3 Linear fit parameters from GIAO-method/6-31G(d)
calculations for the M06-2X/6-311++G(d,p) geometries

Method Parameter M06-2X/6-311++G(d,p) geometry

Gas-phase NMR

1H 13C

ωB97xD MUE 0.18 1.87

m 1.01 0.95

b 32.48 193.12

PBE0 MUE 0.18 1.89

m 1.01 0.94

b 32.35 191.70

MUE is the mean unsigned error in ppm,m is the slope, and b is the offset
of the linear regression
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are good at calculating 13C cores do not necessarily perform
well for 1H cores, and vice versa.

The influence of the solvent field is only slight. For the
proton shifts, the chloroform environment leads to a small
systematic improvement in the MUE. For the 13C signals,
the inclusion of solvation has a rather more random effect.
All in all, the impact is very limited. This is in agreement with
the findings of Pecul and Sadley [95], who pointed out that
explicit solvent–solute interactions—but not implicit ones—
are required to significantly improve the prediction of chem-
ical shifts.

When comparing the results for different geometries, the
13C data obtained from NMR calculations based on the
ωB97xD/6-31G(d) geometry are usually somewhat better
than those afforded by their B3LYP/6-31G(d) geometry coun-
terparts. In particular, the methods with small MUEs give
better results with the dispersion-corrected functional opti-
mized structures. For the computed 1H shifts, the errors are
comparable for both underlying geometries (B3LYP struc-
tures lead to slightly lower MUEs). Employing an established
modern functional and a larger basis set (M06-2X/6-311++
G(d,p)) for geometry optimization has only a minor impact
on the results (Table 3): the abovementioned Bbest^ func-
tionals PBE0 and ωB97xD give MUEs of 1.89 and 1.87,

respectively, for gas-phase GIAO calculations (6-31G(d)), as
compared to 1.80 and 1.86 for the ωB97xD/6-31G(d) struc-
tures, respectively.

The 1H shifts as well as the 13C shifts of all test compounds
were additionally simulated with ChemDraw. For the 1H
shifts, an MUE of 0.35 ppm is calculated, while the MUE
for the 13C shifts is 4.17 ppm, larger than the worst of the
corresponding values in Tables 1 and 2. It can therefore be
concluded that the incremental code in ChemDraw performs
rather badly for this class of substances.

Comparison of Tables 1 and 2 shows that enlarging the basis
set from 6-31G(d) to pcS2 results in a slight reduction of the
mean unsigned errors of the chemical shifts in many cases.
This is more pronounced for the 1H shifts, where a more system-
atic improvement appears possible. However, the improvements
are very small considering the vastly greater computational de-
mand of pcS2 calculations.

Closer inspection of Tables 1 and 2 reveals an interesting
fact: in Table 1, the values of the slope m are scattered around
the ideal value of 1 (in general, a slope value of approximately
1 is desirable because much larger values will lead to signif-
icant deviations at either end of the scale). One would expect
that a larger basis set would bring the slope values closer to 1
on average, as enlarging a basis set represents a systematic
improvement. However, Table 2 gives values for m that are
always larger than those in Table 1. It appears that the basis set
size exerts an effect on the magnitude and/or quality of the
computed shieldings.

To demonstrate that this effect is not introduced by our
linear regression approach, chemical shifts with a
Btraditional^ reference-based procedure are calculated . Data
on the computed relative chemical shifts for compound 1 (2,2-
dimethyl-2H-1,4-benzothiazine, Chart 1, B3LYP/6-31G(d)
geometry) using TMS as a reference are plotted against the

Chart 1 Compounds used in reference-based evaluation of chemical
shifts
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Fig. 1 Plot of HF-calculated against experimental 13C chemical shifts δ of 1 (TMS used as internal reference, regression function without intersect) for
different basis sets
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respective experimental chemical shifts [96] in Fig. 1, where
the best-fit lines are forced through the origin to obtain a one-
parameter function.

One might expect that the effect of changing the basis set
on the individual chemical shifts would result in changes in
13C signal scatteringwhen using different basis sets. However,
this is clearly not the case: it can be seen from Fig. 1 that
enlarging the basis set from the modest 6-31G(d) to the spe-
cialized pcS2 barely changes the pattern (or the accuracy),
although it does yield higher chemical shift values and a dif-
ferent (higher) slope. The same behavior is observed for other
basis sets (the corresponding data are omitted from Fig. 1 for
clarity). Therefore, one could transform the results for one
basis set to those for another by simply applying a scaling
factor. We call this slope factor stigma ς. It is similar but not
equivalent to the slope m obtained in the linear regression: the
difference between different slope factors ς in Fig. 1 is similar
to the difference between the linear regression slopes m in
Tables 1 and 2.

Although the observed increase in chemical shifts with
increasing basis set size is somewhat counterintuitive, it fits
with the above observation for slope values, and supports
previous findings [97] that small basis sets are often equal to
or better than larger basis sets in terms of accuracy if linear
regression is used to fit the calculated shifts to experimental
data. The increased slope factor remains unexplained.

These findings are further underlined by a comparison of
different basis sets up to quintuple-ζ quality. One example is
given in Table 4, which presents the deviations of GIAO-
B3LYP-computed 13C chemical shifts of thiazole 7 (2,2,5,5-
tetramethyl-2,5-dihydro-1,3-thiazole; B3LYP/6-31G(d)-opti-
mized) from the respective experimental values [98]. The
shifts are again derived from comparison with TMS as the
reference.

It can be clearly seen that the number of basis functions
does not correlate with the accuracy of the obtained chemical
shifts; in fact, the larger the basis set, the higher the MUE.
There is one exception: the medium-sized pcS2 basis set gives

the largest errors, even though it has been specifically de-
signed for GIAO calculations with density functionals: in
B3LYP-GIAO calculations, it gives results closer to the basis
set limit than even the largest cc-pVxZ basis sets [78].

However, when linear regression is used to derive chemical
shifts (last two columns in Table 4) instead of a reference, this
trend vanishes: both basis sets give results with similar accu-
racy and outperform all uncorrected approaches. Recalling

that δcalc ¼ σcalc−b
m

� �
, this is not surprising, as dividing by m

drastically reduces or eliminates the basis set effect. Therefore,
the use of linear regression methods to evaluate NMR data
appears to be mandatory!

If the HFmethod is comparedwith theMP2method, which
is the only hierarchically higher method used in this study, it
appears that ς is inversely proportional to the quality of the
method, and our conjecture is that, for good methods with
good basis sets, these diametric effects will cancel each other
out so that stigma will approach unity, as expected from a
correct calculation. One could speculate that a non-unity stig-
ma factor serves as an indicator of an unbalanced combination
of basis set and method.

It is worth noting that the WP4 and WC4 functionals have
been designed by adjusting the parameters of B3LYP to test
sets of various protons and carbon shieldings within the
6-311+G(2d,f) basis set and the chloroform PCM field.
These reparameterized methods produce much lower system-
atic errors, with mean errors almost one order of magnitude
lower than that of the parent functional B3LYP. In our study,
where proper regression treatment is applied, these ap-
proaches do not surpass B3LYP in terms of accuracy. This
indicates that the slope factor ς can be adjusted somewhat
arbitrarily by reparametrizing the respective functionals.
Another method of diminishing the influence of the stigma
factor is the multi-standard method of Sarotti et al. [81]. It
can easily be shown that splitting the range of the shift scale
- by introducing multiple standards - implicitly not only cor-
rects for offsets but also reduces the influence of pathological
slope factors such as stigma. Although barely explainable, the

Table 4 Deviations of GIAO-
B3LYP-computed NMR shifts for
various basis sets (in ppm, relative
to TMS) for 7 from the experi-
mental values, as well as the
number of basis functions and the
relative computation times; the
linear regression results for two
basis sets are provided in the last
two columns for comparison

Atom 6-31G(d) 6-311++G(d,p) cc-pVQZ cc-pV5Z pcS2 6-31G(d)LR pcS2LR

C-2 7.1 15.4 17.5 18.5 20.3 9.9 8.7

C-4 −8.4 7.4 10.6 13.2 15.0 −1.2 −1.5
C-5 6.0 13.0 14.0 14.5 16.3 7.0 6.6

C-6 0.5 3.0 3.4 4.3 5.0 −1.3 −1.6
C-7 0.5 3.0 3.4 4.3 5.0 −1.3 −1.6
C-8 0.4 2.8 3.1 4.0 4.5 −1.6 −1.9
C-9 0.4 2.8 3.1 4.0 4.5 −1.6 −1.9
MUE 3.33 6.77 7.87 8.97 10.09 3.41 3.40

Basis functions 165 297 889 1538 486 165 486

Relative time 1 10 476 2453 58 1 58

J Mol Model (2017) 23: 9 Page 7 of 11 9



errors that are caused by the deviation of stigma from unity
can easily be corrected by linear regression. However, a
deeper understanding of this rather unexpected artefact would
be nonetheless desirable.

In general, methods that perform well for 1H shifts
do not necessarily perform as well for 13C shifts and
vice versa. The slope m also differs greatly between the
two different nuclei, as shown in Tables 1, 2, and 3.
The accuracy of the various methods differs much more
for the 13C shifts than for the 1H shifts. The latter are
calculated fairly well (and much better than the incre-
mentally calculated values) by many of the methods
tested, but none of the methods studied here shows
excellent performance in this task. The best combination
is PCM-GIAO-WP04/pcS2//B3LYP/6-31G(d), although
this theoretical level is rather costly and its practical
use questionable. On the other hand, the 13C shifts are
calculated to astonishing levels of precision by the com-
binations GIAO-PBE0/6-31G(d)//ωB97xD/6-31G(d) and
PCM-GIAO-PBE0/pcS2//ωB97xD/6-31G(d). The gain in
accuracy from a larger basis is not huge, and neither is the
influence of the PCM field, so the PBE0 functional in
combination with 6-31G(d) is our recommended choice,
with an MUE as low as 1.80 ppm. Under the same condi-
tions, the ωB97xD functional also yields good results, and
is our close second favorite. In a study with benchmark-
quality methods (GIAO-CCSD(T) with basis sets as large
as 13s9p4d3f) and vibrational corrections for small mole-
cules in the gas phase, Auer and Gauss found errors as low
as 1–2 ppm to be possible [99]. This is only slightly better
than our favorite methods, and exemplifies the huge per-
formance gain that can be achieved through linear
regression.

There is, however, another issue that should be kept in mind:
the rather strong influence of relativistic effects on carbon atoms
bonded to third-row elements, especially sulfur and chlorine. The
largest deviations from our linear regressions are often seen for
carbon atoms directly bound to sulfur atoms. Shifts for simple
compounds such as carbon tetrachloride or chloroform, which
were calculated for reference purposes, were found to be exceed-
ingly inaccurate,with errors in excessof 30ppm.This is attributed
to relativistic effects. Heavy atoms exert relativistic influences on
directly bonded light atoms via spin–orbit interactions. This is
well documented in the literature [100–103] and in accord with
the findings of Dybiec and Gryff-Keller [104] and Tantillo et al.
[82], who included chlorine-bearing molecules in their test sets
but excluded the carbon atoms directly connected to chlorine.We
decided to include the carbonatomsdirectly bound to sulfur in our
study on heterocyclic compounds, as wewanted to determine the
magnitude of relativistic errors, which were found to be distinct
but not prohibitively large, implying general applicability of our
suggested approaches. However, the most pronounced errors for
carbon atoms bound to thiocarbonyl sulfur atoms are not purely

relativistic in nature, because the errorswere considerably smaller
when calculated by theMP2method, which accounts for correla-
tion effects but not for relativistic effects. The errors dropped from
values as high as 20 ppm or more to well below 10 ppm, but
remained large. If there is more than one formal bond (e.g., one
double bond or two single bonds) to a third-row element, then a
nonrelativistic GIAO calculation has to be considered potentially
unreliable.We also advise against using tetramethylsilane or even
chloroform as a reference compound, because systematic errors
will arise from disregarded relativistic effects, as the overwhelm-
ing majority of all practically reasonable methods are
nonrelativistic.

The other problematic signals that are difficult to reproduce
are those arising from carbonyl groups. However, this is a known
phenomenon, and suggestions for correcting this issue include
protonation and/or explicit solvation [105]. This is not satisfac-
tory in particular for a linear regression approach. A better option
could be the use of a method with a slope factor of close to 1, as
the large absolute shift value for the carbonyl carbon atom is
much more impacted by the slope m.

Conclusions

In this study, GIAO calculations with various functionals and
two ab initio methods were carried out on a set of heterocyclic
molecules. The results of our favored theoretical levels
(G IAO-PBE0 /6 - 31G(d ) / /ωB97xD /6 -31G(d ) o r
GIAO-ωB97xD/6-31G(d)//ωB97xD/6-31G(d)) approach
the accuracy of the most elaborate benchmark-quality calcu-
lations when applied to a chemically narrow class of mole-
cules and in combination with linear statistical enhancement.
Purely empirical incremental methods are erratic and consis-
tently outperformed bymost of the methods used in this study.

Interestingly, the accuracy of 1H shift calculations can be
more systematically improved by increasing the basis
set than that of 13C shift calculations. The latter shifts seem-
ingly become larger—but not more accurate—when the basis
set is enlarged.

An unexplained distortion factor called ς is observed
which is proportional to the Bcompleteness^ of the basis
set and seemingly inversely proportional to the quality
of the method when strictly hierarchical ab initio
methods are used. This distortion can be corrected by
simple linear regression but it leads to a poor systematic
correlation between method quality and overall perfor-
mance; in fact, very good results are achieved with very
modest basis sets. Additionally, in most cases, the resid-
ual errors are qualitatively similar regardless of the
method employed. This leads to the conjecture that pa-
rameters other than basis set composition and computa-
tional level also need to be considered.
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Although derived from a large test set, the general reliabil-
ity of this approach needs to be evaluated for additional func-
tionals and other substance classes. We would like to encour-
age the use the abovementioned levels in different chemical
situations and subsequent report of the results. Nevertheless,
these levels of theory appear to be sufficiently reliable for
wider applicability.
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